首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raf kinase inhibitory protein (RKIP; also known as phosphatidylethanolamine-binding protein or PEBP) is a modulator of the Raf/MAPK signaling cascade and a suppressor of metastatic cancer. Here, we show that RKIP inhibits MAPK by regulating Raf-1 activation; specifically, RKIP acts subsequent to Raf-1 membrane recruitment, prevents association of Raf-1 and p21-activated kinase (PAK), and blocks phosphorylation of the Raf-1 kinase domain by PAK and Src family kinases. Mutation of the PAK and Src phosphorylation sites on Raf-1 to aspartate, a phosphate mimic, prevented RKIP association with or inhibition of Raf-1 signaling. Interestingly, although RKIP can interact with B-Raf, RKIP depletion had no effect on activation of B-Raf. Because c-Raf-1 and B-Raf are both required for maximal MAPK stimulation by epidermal growth factor in neuronal and epithelial cell lines, we determined whether RKIP significantly affects MAPK signaling. In fact, RKIP depletion increased not only the amplitude but also the sensitivity of MAPK and DNA synthesis to epidermal growth factor stimulation by up to an order of magnitude. These results indicate that selective modulation of c-Raf-1 but not B-Raf activation by RKIP can limit the dynamic range of the MAPK signaling response to growth factors and may play a critical role in growth and development.  相似文献   

2.
Raf kinase inhibitory protein (RKIP or PEBP) is an inhibitor of the Raf/MEK/MAP kinase signaling cascade and a suppressor of cancer metastasis. We now show that RKIP associates with centrosomes and kinetochores and regulates the spindle checkpoint in mammalian cells. RKIP depletion causes decreases in the mitotic index, the number of metaphase cells, and traversal times from nuclear envelope breakdown to anaphase, and an override of mitotic checkpoints induced by spindle poisons. Raf-1 depletion or MEK inhibition reverses the reduction in the mitotic index, whereas hyperactivation of Raf mimics the RKIP-depletion phenotype. Finally, RKIP depletion or Raf hyperactivation reduces kinetochore localization and kinase activity of Aurora B, a regulator of the spindle checkpoint. These results indicate that RKIP regulates Aurora B kinase and the spindle checkpoint via the Raf-1/MEK/ERK cascade and demonstrate that small changes in the MAP kinase (MAPK) pathway can profoundly impact the fidelity of the cell cycle.  相似文献   

3.
Protein kinase C (PKC) regulates activation of the Raf-1 signaling cascade by growth factors, but the mechanism by which this occurs has not been elucidated. Here we report that one mechanism involves dissociation of Raf kinase inhibitory protein (RKIP) from Raf-1. Classic and atypical but not novel PKC isoforms phosphorylate RKIP at serine 153 (Ser-153). RKIP Ser-153 phosphorylation by PKC either in vitro or in response to 12-O-tetradecanoylphorbol-13-acetate or epidermal growth factor causes release of RKIP from Raf-1, whereas mutant RKIP (S153V or S153E) remains bound. Increased expression of PKC can rescue inhibition of the mitogen-activated protein (MAP) kinase signaling cascade by wild-type but not mutant S153V RKIP. Taken together, these results constitute the first model showing how phosphorylation by PKC relieves a key inhibitor of the Raf/MAP kinase signaling cascade and may represent a general mechanism for the regulation of MAP kinase pathways.  相似文献   

4.
5.
6.
The Ras-Raf-MEK-extracellular signal-regulated kinase (ERK) pathway participates in the control of many fundamental cellular processes including proliferation, survival, and differentiation. The pathway is deregulated in up to 30% of human cancers, often due to mutations in Ras and the B-Raf isoform. Raf-1 and B-Raf can form heterodimers, and this may be important for cellular transformation. Here, we have analyzed the biochemical and biological properties of Raf-1/B-Raf heterodimers. Isolated Raf-1/B-Raf heterodimers possessed a highly increased kinase activity compared to the respective homodimers or monomers. Heterodimers between wild-type Raf-1 and B-Raf mutants with low or no kinase activity still displayed elevated kinase activity, as did heterodimers between wild-type B-Raf and kinase-negative Raf-1. In contrast, heterodimers containing both kinase-negative Raf-1 and kinase-negative B-Raf were completely inactive, suggesting that the kinase activity of the heterodimer specifically originates from Raf and that either kinase-competent Raf isoform is sufficient to confer high catalytic activity to the heterodimer. In cell lines, Raf-1/B-Raf heterodimers were found at low levels. Heterodimerization was enhanced by 14-3-3 proteins and by mitogens independently of ERK. However, ERK-induced phosphorylation of B-Raf on T753 promoted the disassembly of Raf heterodimers, and the mutation of T753 prolonged growth factor-induced heterodimerization. The B-Raf T753A mutant enhanced differentiation of PC12 cells, which was previously shown to be dependent on sustained ERK signaling. Fine mapping of the interaction sites by peptide arrays suggested a complex mode of interaction involving multiple contact sites with a main Raf-1 binding site in B-Raf encompassing T753. In summary, our data suggest that Raf-1/B-Raf heterodimerization occurs as part of the physiological activation process and that the heterodimer has distinct biochemical properties that may be important for the regulation of some biological processes.  相似文献   

7.
Mutations in the extracellular signal-regulated kinase (ERK) pathway, particularly in the mitogen-activated protein kinase/ERK kinase (MEK) activator B-Raf, are associated with human tumorigenesis and genetic disorders. Hence, B-Raf is a prime target for molecule-based therapies, and understanding its essential biological functions is crucial for their success. B-Raf is expressed preferentially in cells of neuronal origin. Here, we show that in mice, conditional ablation of B-Raf in neuronal precursors leads to severe dysmyelination, defective oligodendrocyte differentiation, and reduced ERK activation in brain. Both B-Raf ablation and chemical inhibition of MEK impair oligodendrocyte differentiation in vitro. In glial cell cultures, we find B-Raf in a complex with MEK, Raf-1, and kinase suppressor of Ras. In B-Raf-deficient cells, more Raf-1 is recruited to MEK, yet MEK/ERK phosphorylation is impaired. These data define B-Raf as the rate-limiting MEK/ERK activator in oligodendrocyte differentiation and myelination and have implications for the design and use of Raf inhibitors.  相似文献   

8.
Brummer T  Shaw PE  Reth M  Misawa Y 《The EMBO journal》2002,21(21):5611-5622
Engagement of the B-cell antigen receptor (BCR) leads to activation of the Raf-MEK-ERK pathway and Raf kinases play an important role in the modulation of ERK activity. B lymphocytes express two Raf isoforms, Raf-1 and B-Raf. Using an inducible deletion system in DT40 cells, the contribution of Raf-1 and B-Raf to BCR signalling was dissected. Loss of Raf-1 has no effect on BCR-mediated ERK activation, whereas B-Raf-deficient DT40 cells display a reduced basal ERK activity as well as a shortened BCR-mediated ERK activation. The Raf-1/B-Raf double deficient DT40 cells show an almost complete block both in ERK activation and in the induction of the immediate early gene products c-Fos and Egr-1. In contrast, BCR-mediated activation of nuclear factor of activated T cells (NFAT) relies predominantly on B-Raf. Furthermore, complementation of Raf-1/B-Raf double deficient cells with various Raf mutants demonstrates a requirement for Ras-GTP binding in BCR-mediated activation of both Raf isoforms and also reveals the important role of the S259 residue for the regulation of Raf-1. Our study shows that BCR-mediated ERK activation involves a cooperation of both B-Raf and Raf-1, which are activated specifically in a temporally distinct manner.  相似文献   

9.
Activity-dependent regulation of neuronal events such as cell survival and synaptic plasticity is controlled by increases in neuronal calcium levels. These actions often involve stimulation of intracellular kinase signaling pathways. For example, the mitogen-activated protein kinase, or extracellular signal-regulated kinase (ERK), signaling cascade has increasingly been shown to be important for the induction of gene expression and long term potentiation. However, the mechanisms leading to ERK activation by neuronal calcium are still unclear. In the present study, we describe a protein kinase A (PKA)-dependent signaling pathway that may link neuronal calcium influx to ERKs via the small G-protein, Rap1, and the neuronal Raf isoform, B-Raf. Thus, in PC12 cells, depolarization-mediated calcium influx led to the activation of B-Raf, but not Raf-1, via PKA. Furthermore, depolarization also induced the PKA-dependent stimulation of Rap1 and led to the formation of a Rap1/B-Raf signaling complex. In contrast, depolarization did not lead to the association of Ras with B-Raf. The major action of PKA-dependent Rap1/B-Raf signaling in neuronal cells is the activation of ERKs. Thus, we further show that, in both PC12 cells and hippocampal neurons, depolarization-induced calcium influx stimulates ERK activity in a PKA-dependent manner. Given the fact that both Rap1 and B-Raf are highly expressed in the central nervous system, we suggest that this signaling pathway may regulate a number of activity-dependent neuronal functions.  相似文献   

10.
The dimerisation of Raf kinases involves a central cluster within the kinase domain, the dimer interface (DIF). Yet, the importance of the DIF for the signalling potential of wild-type B-Raf (B-Raf(wt)) and its oncogenic counterparts remains unknown. Here, we show that the DIF plays a pivotal role for the activity of B-Raf(wt) and several of its gain-of-function (g-o-f) mutants. In contrast, the B-Raf(V600E), B-Raf(insT) and B-Raf(G469A) oncoproteins are remarkably resistant to mutations in the DIF. However, compared with B-Raf(wt), B-Raf(V600E) displays extended protomer contacts, increased homodimerisation and incorporation into larger protein complexes. In contrast, B-Raf(wt) and Raf-1(wt) mediated signalling triggered by oncogenic Ras as well as the paradoxical activation of Raf-1 by kinase-inactivated B-Raf require an intact DIF. Surprisingly, the B-Raf DIF is not required for dimerisation between Raf-1 and B-Raf, which was inactivated by the D594A mutation, sorafenib or PLX4720. This suggests that paradoxical MEK/ERK activation represents a two-step mechanism consisting of dimerisation and DIF-dependent transactivation. Our data further implicate the Raf DIF as a potential target against Ras-driven Raf-mediated (paradoxical) ERK activation.  相似文献   

11.
Random mutagenesis and genetic screens for impaired Raf function in Caenorhabditis elegans were used to identify six loss-of-function alleles of lin-45 raf that result in a substitution of a single amino acid. The mutations were classified as weak, intermediate, and strong based on phenotypic severity. We engineered these mutations into the homologous residues of vertebrate Raf-1 and analyzed the mutant proteins for their underlying biochemical defects. Surprisingly, phenotype strength did not correlate with the catalytic activity of the mutant proteins. Amino acid substitutions Val-589 and Ser-619 severely compromised Raf kinase activity, yet these mutants displayed weak phenotypes in the genetic screen. Interestingly, this is because these mutant Raf proteins efficiently activate the MAPK (mitogen-activated protein kinase) cascade in living cells, a result that may inform the analysis of knockout mice. Equally intriguing was the observation that mutant proteins with non-functional Ras-binding domains, and thereby deficient in Ras-mediated membrane recruitment, displayed only intermediate strength phenotypes. This confirms that secondary mechanisms exist to couple Ras to Raf in vivo. The strongest phenotype in the genetic screens was displayed by a S508N mutation that again did not correlate with a significant loss of kinase activity or membrane recruitment by oncogenic Ras in biochemical assays. Ser-508 lies within the Raf-1 activation loop, and mutation of this residue in Raf-1 and the equivalent Ser-615 in B-Raf revealed that this residue regulates Raf binding to MEK. Further characterization revealed that in response to activation by epidermal growth factor, the Raf-S508N mutant protein displayed both reduced catalytic activity and aberrant activation kinetics: characteristics that may explain the C. elegans phenotype.  相似文献   

12.
13.
TC21 is a member of the Ras superfamily of small GTP-binding proteins and, like Ras, has been implicated in the regulation of growth-stimulating pathways. Point mutations introduced into TC21 based on equivalent H-Ras oncogenic mutations are transforming in cultured cells, and oncogenic mutations in TC21 have been isolated from several human tumours. The mechanism of TC21 signalling in transformation is poorly understood. While activation of the serine/threonine kinases Raf-1 and B-Raf has been implicated in signalling pathways leading to transformation by H-Ras, it has been argued that TC21 does not activate Raf-1 or B-Raf. Since the Raf-signalling pathway is important in transformation by other Ras proteins, we assessed whether the Raf pathway is important to transformation by TC21. Raf-1 and B-Raf are constitutively active in TC21-transformed cells and the ERK/MAPK cascade is required for the maintenance of the transformed state. We demonstrate that oncogenic V23 TC21, like Ras, interacts with Raf-1 and B-Raf (but not with A-Raf), resulting in the translocation of the Raf proteins to the plasma membrane and in their activation. Furthermore, using point mutations in the effector loop of TC21, we show that the interaction of TC21 with Raf-1 is crucial for transformation.  相似文献   

14.
Growth factor receptor tyrosine kinase regulation of the sequential phosphorylation reactions leading to mitogen-activated protein (MAP) kinase activation in PC12 cells has been investigated. In response to epidermal growth factor, nerve growth factor, and platelet-derived growth factor, B-Raf and Raf-1 are activated, phosphorylate recombinant kinase-inactive MEK-1, and activate wild-type MEK-1. MEK-1 is the dual-specificity protein kinase that selectively phosphorylates MAP kinase on tyrosine and threonine, resulting in MAP kinase activation. B-Raf and Raf-1 are growth factor-regulated Raf family members which regulate MEK-1 and MAP kinase activity in PC12 cells. Protein kinase A activation in response to elevated cyclic AMP (cAMP) levels inhibited B-Raf and Raf-1 stimulation in response to growth factors. Ras.GTP loading in response to epidermal growth factor, nerve growth factor, or platelet-derived growth factor was unaffected by protein kinase A activation. Even though elevated cAMP levels inhibited Raf activation, the growth factor activation of MEK-1 and MAP kinase was unaffected in PC12 cells. The results demonstrate that tyrosine kinase receptor activation of MEK-1 and MAP kinase in PC12 cells is regulated by B-Raf and Raf-1, whose activation is inhibited by protein kinase A, and MEK activators, whose activation is independent of cAMP regulation.  相似文献   

15.
To identify key proteins involved in the hepatoprotection afforded by schisandrin B (Sch B), we used a proteomic approach to screen proteins that were specifically regulated by Sch B in mouse livers and to investigate the role of the proteins in hepatoprotection. Thirteen proteins were specifically activated or suppressed by Sch B treatment. Among the 13 proteins, Raf kinase inhibitor protein (RKIP) was postulated to be the key regulator involved in the development of hepatotoxin-induced cellular damage. The results indicated that the downregulation of RKIP by antisense RKIP vector transfection led to the activation of the Raf-1/MEK/ERK signaling pathway, as evidenced by increases in the level of MEK/ERK phosphorylation and the level of nuclear factor erythroid 2-related factor 2 in the nucleus. The signaling effect produced by RKIP downregulation resembled that triggered by Sch B, wherein both treatments resulted in a decrease in the extent of carbon tetrachloride-induced apoptotic cell death in AML12 hepatocytes. Overexpression of RKIP by the sense RKIP transfection vector or the inhibition of MEK kinase by PD98059 was able to abrogate the cytoprotective effect of Sch B in the hepatocytes. The results indicate that Sch B triggers the Raf/MEK/ERK signaling pathway, presumably by downregulating RKIP, thereby protecting against carbon tetrachloride-induced cytotoxicity.  相似文献   

16.
Renal epithelial cell primary cilia act as mechanosensors in response to changes in luminal fluid flow. To determine the role of cilia bending in the mechanosensory function of cilia, we performed proteomic analysis of collecting duct cell lines with or without cilia that were kept stationary or rotated to stimulate cilia bending. Expression of the Raf-1 kinase inhibitor protein (RKIP), an inhibitor of the MAPK pathway, was significantly elevated in rotated cilia (+) cells. This was compared with RKIP levels in cilia (-) cells that were stationary or rotated as well as in cilia (+) cells that were stationary. This result was confirmed in cilia knockout adult mice that had lower renal RKIP levels compared with adult mice with cilia. Downstream of RKIP, expression of phosphorylated ERK was decreased only in cells that had cilia and were subjected to constant cilia bending. Furthermore, elevated RKIP levels were associated with reduced cell proliferation. Blockade of PKC abrogated ciliary bending-induced increases in RKIP. In summary, we found that ciliary movement may help control the expression of the Raf-1 kinase inhibitor protein and thus maintain cell differentiation. In terms of polycystic kidney disease, loss of cilia and therefore sensitivity to flow may lead to reduced RKIP levels, activation of the MAPK pathway, and contribute to the formation of cysts.  相似文献   

17.
The Raf-MEK-ERK pathway regulates many fundamental biological processes, and its activity is finely tuned at multiple levels. The Raf kinase inhibitory protein (RKIP) is a widely expressed negative modulator of the Raf-MEK-ERK signaling pathway. We have previously shown that RKIP inhibits the phosphorylation of MEK by Raf-1 through interfering with the formation of a kinase-substrate complex by direct binding to both Raf-1 and MEK. Here, we show that the evolutionarily conserved ligand-binding pocket of RKIP is required for its inhibitory activity towards the Raf-1 kinase mediated activation of MEK. Single amino acid substitutions of two of the conserved residues form the base and the wall of the pocket confers a loss-of-function phenotype on RKIP. Loss-of-function RKIP mutants still appear to bind to Raf-1. However the stability of the complexes formed between mutants and the N-region Raf-1 phosphopeptide were drastically reduced. Our results therefore suggest that the RKIP conserved pocket may constitute a novel phosphoamino-acid binding motif and is absolutely required for RKIP function.  相似文献   

18.
Many receptors coupled to the pertussis toxin-sensitive G(i/o) proteins stimulate the mitogen-activated protein kinase (MAPK) pathway. The role of the alpha chains of these G proteins in MAPK activation is poorly understood. We investigated the ability of Galpha(o) to regulate MAPK activity by transient expression of the activated mutant Galpha(o)-Q205L in Chinese hamster ovary cells. Galpha(o)-Q205L was not sufficient to activate MAPK but greatly enhanced the response to the epidermal growth factor (EGF) receptor. This effect was not associated with changes in the state of tyrosine phosphorylation of the EGF receptor. Galpha(o)-Q205L also potentiated MAPK stimulation by activated Ras. In Chinese hamster ovary cells, EGF receptors activate B-Raf but not Raf-1 or A-Raf. We found that expression of activated Galpha(o) stimulated B-Raf activity independently of the activation of the EGF receptor or Ras. Inactivation of protein kinase C and inhibition of phosphatidylinositol-3 kinase abolished both B-Raf activation and EGF receptor-dependent MAPK stimulation by Galpha(o). Moreover, Galpha(o)-Q205L failed to affect MAPK activation by fibroblast growth factor receptors, which stimulate Raf-1 and A-Raf but not B-Raf activity. These results suggest that Galpha(o) can regulate the MAPK pathway by activating B-Raf through a mechanism that requires a concomitant signal from tyrosine kinase receptors or Ras to efficiently stimulate MAPK activity. Further experiments showed that receptor-mediated activation of Galpha(o) caused a B-Raf response similar to that observed after expression of the mutant subunit. The finding that Galpha(o) induces Ras-independent and protein kinase C- and phosphatidylinositol-3 kinase-dependent activation of B-Raf and conditionally stimulates MAPK activity provides direct evidence for intracellular signals connecting this G protein subunit to the MAPK pathway.  相似文献   

19.
The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号