首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of the current study was to identify pathogens of the large larch bark beetle, Ips cembrae, which is a secondary pest that has produced several local outbreaks across Europe in recent years. Beetles were collected from pheromone traps, trap trees and emergence traps (Larix decidua) during 2007 to 2011 at 10 study sites in central Europe. A total of 3379 mature and callow beetles were examined with a light microscope, and only two microsporidian pathogens [Chytridiopsis typographi and a diplokaryotic microsporidium (probably Nosema sp.)] and two gregarines (Gregarina typographi and Mattesia schwenkei) were found. Within the I. cembrae populations, the infection rate for C. typographi ranged from 2 to 58%. Nosema sp. occurred in only two beetles in 2007 (at two study sites). G. typographi was recorded only in Austria and Croatia and only in 1–2% of the beetles in those countries. Mattesia schwenkei was observed solely in Croatia in 0.6% of the beetles in that country. Only one fungal pathogen in the genus Fusarium was found and only in two mature beetles (0.7%) in 2010. The pathogen species found during our study of I. cembrae were very similar to the pathogens previously identified for Ips typographus. No species‐specific pathogen was detected.  相似文献   

2.
3.
  • 1 DISRUPT Micro‐Flake Verbenone Bark Beetle Anti‐Aggregant flakes (Hercon Environmental, Inc., Emigsville, Pennsylvania) were applied in two large‐scale tests to assess their efficacy for protecting whitebark pine Pinus albicaulis Engelm. from attack by mountain pine beetle Dendroctonus ponderosae Hopkins (Coleoptera: Scolytinae) (MPB). At two locations, five plots of equivalent size and stand structure served as untreated controls. All plots had early‐ to mid‐outbreak beetle populations (i.e. 7.1–29.2 attacked trees/ha). Verbenone was applied at 370 g/ha in both studies. Intercept traps baited with MPB aggregation pheromone were placed near the corners of each plot after the treatment in order to monitor beetle flight within the plots. Trap catches were collected at 7‐ to 14‐day intervals, and assessments were made at the end of the season of stand structure, stand composition and MPB attack rate for the current and previous years.
  • 2 Applications of verbenone flakes significantly reduced the numbers of beetles trapped in treated plots compared with controls at both sites by approximately 50% at the first collection date.
  • 3 The applications also significantly reduced the proportion of trees attacked in both Wyoming and Washington using the proportion of trees attacked the previous year as a covariate in the model for analysis of current year attack rates; in both sites, the reduction was ≥ 50%.
  • 4 The flake formulation of verbenone appears to have promise for area‐wide treatment by aerial application when aiming to control the mountain pine beetle in whitebark pine forests.
  相似文献   

4.
Ips amitinus and I. typographus are two serious pests of spruce in Europe, have similar bionomics and are likely to occur and meet on the same host trees. We therefore hypothesized that the two species support similar levels of similar pathogens. To test this hypothesis, we collected mature beetles from three trap trees at each of eight study sites and determined beetle numbers and pathogen infection levels. In total, 938 mature I. amitinus beetles and 3435 of I. typographus were dissected; five pathogens, as well as intestinal nematodes and endoparasitoids, were detected. The neogregarine Mattesia schwenkei is reported here for the first time as a new pathogen in 9.4% of I. amitinus individuals at one site. Average infection levels of most pathogens (Chytridiopsis typographi, Gregarina typographi, Mattesia schwenkei and parasitoids) were significantly higher in I. typographus than in I. amitinus. Metschnikowia typographi was confirmed only in Ips amitinus, while the microsporidium of Nosema typographi occurred only in I. typographus. Within‐season increases in G. typographi infection levels were documented in Ips amitinus.  相似文献   

5.
  1. Ambrosia beetles exhibit broad host ranges but a narrow preference based on the condition of the host. Tissues infected by pathogens or containing ethanol can facilitate attacks by ambrosia beetles, although it still remains unclear how these factors interact.
  2. The present study aimed to examine how (i) chestnut logs infected with the fungal pathogen Cryphonectria parasitica and treated with ethanol (i.e. baited with ethanol lure, soaked in ethanol or untreated) and (ii) hornbeam logs soaked in different ethanol concentrations (3–12.5%) affect host selection and colonization success of ambrosia beetles.
  3. Ethanol‐soaked logs were more attractive to Anisandrus dispar than ethanol‐baited logs or untreated logs, although this difference was more evident in uninfected than infected logs. Increasing ethanol concentration in host tissues was differentially attractive to Xyleborinus saxesenii and Xylosandrus germanus. A nonlinear relationship was also documented between ethanol concentration and emergence of X. germanus adults.
  4. Overall, the results obtained suggest that the presence of C. parasitica in chestnut logs can affect host selection in ambrosia beetles. In addition, the ethanol concentration in tree tissues affects host selection and colonization success, although the effect varies depending on the beetle species. This contrasting response could be a niche‐partitioning mechanism based on ethanol within host tissues.
  相似文献   

6.
Abstract
  • 1 It is widely known that many bark and wood‐boring beetle species use nonresistant coarse woody debris (CWD) created by disturbances; however, the ability of these secondary species to cause mortality in healthy trees following a build‐up of their populations remains unclear. We characterized the pattern of colonization by Ips pini (Say) following a major ice storm that created large amounts of CWD varying in resistance to colonization (i.e. ranging from snapped tops with no resistance to heavily damaged trees with intact root systems). A major question was how the beetles responded to the different types of storm‐damaged material and whether healthy undamaged trees were colonized and killed following increases in beetle populations.
  • 2 Six red pine, Pinus resinosa Ait., plantations in eastern Ontario were monitored from 1998 to 2001 inclusive: three with high storm damage (approximately 120 m3/ha CWD) and three with minimal damage (approximately 20 m3/ha CWD). Transects (200 × 2 m) were sampled yearly in each plantation to assess the type and amount of damaged pine brood material colonized by the pine engraver beetle, I. pini.
  • 3 Beetles preferentially infested the most nonresistant material available each year (i.e. all snapped tops in year 1, all standing snags, up‐rooted trees and many bent trees by year 2, but still less than 50% of trees blown over but with intact root systems by year 3). By years 3 and 4, the majority (approximately 75%) of severely damaged trees (with > 50% crown loss) died prior to beetle colonization.
  • 4 The size of the beetle population tracked the abundance of available woody material from year‐to‐year within a plantation; populations were very large in the first 2 years, and declined significantly in the last 2 years.
  • 5 Healthy standing red pines were apparently resistant to colonization by the beetles, despite the significant build‐up in their populations. Hence, the results of the present study suggest that native bark beetle populations will not cause further tree mortality following such a disturbance in this region.
  相似文献   

7.
8.
9.
The study presents new data on spatial distribution of bark beetle pathogens, on changes in frequency over several years and on their prevalence during different time periods within a year from several locations within the wilderness reserve Dürrenstein (Lower Austria). The occurrence of pathogens was investigated in Ips typographus (during five years), in Pityogenes chalcographus (during two years) and in Ips amitinus (in one year). In total, seven pathogen species could be detected in I. typographus. The most dominant pathogen species were the Ips typographus-Entomopoxvirus (ItEPV), the sporozoan species Gregarina typographi and the microsporidium Chytridiopsis typographi; the latter two pathogen species were recorded every year and at about similar high (G. typographi) or low (C. typographi) rates, the ItEPV in strongly varying rates. The neogregarine Mattesia cf. schwenkei and the two microsporidia Nosema typographi and Unikaryon montanum were found in I. typographus only sporadically and the rhizopodan species Malamoeba scolyti was found once. The number of infected males and females was relatively similar with almost all pathogen species in most of the years except U. montanum, which occurred exclusively in females. Three pathogen species were recorded in P. chalcographus which were Gregarina typographi, Mattesia cf. schwenkei and Chytridiopsis typographi. Two pathogen species were observed in I. amitinus, Gregarina typographi and Chytridiopsis typographi.  相似文献   

10.
1 Sudden oak death is caused by the apparently introduced oomycete, Phytophthora ramorum. We investigated the role of bark and ambrosia beetles in disease progression in coast live oaks Quercus agrifolia. 2 In two Marin County, California sites, 80 trees were inoculated in July 2002 with P. ramorum and 40 were wounded without inoculation. Half of the trees in each group were sprayed with the insecticide permethrin [cyclopropanecarboxylic acid, 3‐(2,2‐dichloroethenyl)‐2,2‐dimethyl‐(3‐phenoxyphenyl) methyl ester] to prevent ambrosia and bark beetle attacks, and then were sprayed twice per year thereafter. After each treatment, sticky traps were placed on only the permethrin‐treated trees. Beetles were collected periodically in 2003. 3 Inoculated trees accounted for 95% of all beetles trapped. The ambrosia beetles Monarthrum scutellare and Xyleborinus saxeseni and the western oak bark beetle Pseudopityophthorus pubipennis were the most abundant of the seven species trapped. 4 Permethrin treatment delayed initiation of beetle attacks and significantly reduced the mean number of attacks per tree. Beetles did not attack any wounded or noncankered inoculated trees. 5 Trees with larger cankers trapped more beetles early in the disease. Once permethrin lost effectiveness, the number of beetle entrance tunnels was a more reliable predictor of subsequent trap catch than was canker size. 6 Beetles were initially attracted to P. ramorum cankers in response to kairomones generated in the host‐pathogen interaction. After beetles attacked the permethrin‐treated trees, aggregation pheromones most probably were the principal factor in beetle colonization behaviour.  相似文献   

11.
12.
  1. Thousand Cankers Disease (TCD) of walnut trees is caused by the pathogenic fungus Geosmithia morbida vectored by the walnut twig beetle (WTB) Pityophthorus juglandis. Monitoring efforts for WTB rely on pheromone-baited traps, but lures are likely effective at attracting beetles only over short distances. Fungal-derived kairomones may increase the efficacy of current lures, while additional volatiles may repel beetles from valuable trees.
  2. The objective of this study was to determine the extent to which fungal, host and non-host volatiles modify the attraction of WTB to pheromone-baited traps. A trapping study that combined fungal, host-associated and non-host compounds with WTB-pheromone lures was conducted over three years in black walnut plantations experiencing a TCD outbreak in Walla Walla, WA.
  3. Traps baited with pheromone and G. morbida volatiles (i.e., isoamyl and isobutyl alcohol) consistently attracted more WTB, while other fungal volatiles inconsistently increased attraction compared to those baited with pheromone lure alone. This is the first field study that demonstrates fungal volatiles can increase the attraction of a bark beetle to its pheromone in a hardwood system.
  4. One fungal (benzyl alcohol) and two additional volatiles (limonene, piperitone) repelled WTB from pheromone-baited traps. Although limonene is known to repel WTB, this is the first demonstration that benzyl alcohol and piperitone repel a bark beetle.
  5. Fungal volatiles may increase the efficacy of monitoring efforts and may play an important role in management tactics for WTB, especially in detecting the introduction and establishment of nascent populations and protecting trees from colonizing beetles.
  相似文献   

13.
14.
15.
16.
  1. A warming climate, as predicted under current climate change projections, is likely to influence the population dynamics of many forest insect species. Numerous bark beetle species in both Europe and North America have already responded to a warming climate by significantly expanding their geographical ranges.
  2. The aim of the current study was to investigate how populations of bark beetles within stands of Sitka spruce, a widely planted non-native commercial plantation tree species in the U.K., were likely to respond to a warming climate. Experimental plots were established in stands of Sitka spruce over elevational gradients in two commercial forest plantations, and the abundance and emergence times of key bark beetle species were assessed over a 3-year period using flight interception traps. The air temperature difference between the lowest and highest experimental plot in each forest was consistently >1°C throughout the 3-year period.
  3. In general, the abundance of the most dominant bark beetle species (e.g. Trypodendron, Dryocoetes, Hylastes spp.) was higher, and emergence times tended to be earlier in the year at the lower elevation plots, where temperatures were higher, although not all bark beetle species responded in the same manner.
  4. The results of the study indicated that, under the projected future climate warming scenarios, monoculture Sitka spruce stands at low elevations may potentially be more vulnerable to significant outbreak events from existing or invasive bark beetle species. Hence, consideration of establishing more resilient forests of Sitka spruce by diversifying the species composition and structure of Sitka spruce stands is discussed.
  相似文献   

17.
  1. A blend of longhorn beetle pheromones was tested as a generic attractant in a Central European oak forest. Overall, 20 cerambycid species totalling 1250 specimens were captured using two trap types.
  2. More adults of Phymatodes testaceus and Leiopus nebulosus nebulosus were attracted to pheromone-baited traps compared to solvent controls. Significant numbers of four other species were caught by panel traps but not funnel traps. For the cerambycine Pyrrhidium sanguineum, significantly more beetles were caught in treatment traps than controls. For the cerambycine Anaglyptus mysticus, lepturines Cortodera humeralis and Rhagium sycophanta, the numbers of beetles caught in treatment or control traps were similar, indicating no attraction to the lure blend. Adults of a predatory clerid beetle Clerus mutillarius were caught in significantly larger numbers by both baited trap types in comparison to controls, totalling 1514 specimens.
  3. Antennae of both sexes of C. mutillarius showed responses to 3-hydroxyhexan-2-one and 2-methylbutan-1-ol, and males also responded to syn-2,3-hexanediol.
  4. Strong attraction of C. mutillarius suggests eavesdropping on the pheromones of cerambycids and that such attractant baits, without traps, might be used to manipulate the local population density of predators in a push-pull biological control program.
  相似文献   

18.
The flea beetle, Phyllotreta nemorum L. (Coleoptera: Chrysomelidae), is an intermediate specialist feeding on a small number of plants within the family Brassicaceae. The most commonly used host plant is Sinapis arvensis L., whereas the species is found more rarely on Cardaria draba (L.) Desv., Barbarea vulgaris R.Br., and cultivated radish (Raphanus sativus L.). The interaction between flea beetles and Barbarea vulgaris ssp. arcuata (Opiz.) Simkovics seems to offer a good opportunity for experimental studies of coevolution. The plant is polymorphic, as it contains one type (the P‐type) that is susceptible to all flea beetle genotypes, and another type (the G‐type) that is resistant to some genotypes. At the same time, the flea beetle is also polymorphic, as some genotypes can utilize the G‐type whereas others cannot. The ability to utilize the G‐type of B. vulgaris ssp. arcuata is controlled by major dominant genes (R‐genes). The present investigation measured the frequencies of flea beetles with R‐genes in populations living on different host plants in 2 years (1999 and 2003). Frequencies of beetles with R‐genes were high in populations living on the G‐type of B. vulgaris ssp. arcuata in both years. Frequencies of beetles with R‐genes were lower in populations living on other host plants, and declining frequencies were observed in five out of six populations living on S. arvensis. Selection in favour of R‐genes in populations living on B. vulgaris is the most likely mechanism to account for the observed differences in the relative abundance of R‐genes in flea beetle populations utilizing different host plants. A geographic mosaic with differential levels of interactions between flea beetles and their host plants was demonstrated.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号