首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Phosphorylation of eukaryotic initiation factor 4G (eIF4G) is hypothesized to be an important contributor to the stimulation of protein synthesis in skeletal muscle following meal feeding. The experiments reported herein examined the potential role for a rapamycin-sensitive signaling pathway in mediating the meal feeding-induced elevations in phosphorylation of eIF4G. Gastrocnemius from male Sprague-Dawley rats trained to consume a meal consisting of rat chow was sampled prior to and following 3 h of having the meal provided in the presence or absence of treatment with rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR) complex 1 (TORC1). Pretreatment with rapamycin prevented the feeding-induced phosphorylation of mTOR, eIF4G, and S6K1 but only partially attenuated the shift in 4E-BP1 into the gamma-form. In contrast, the feeding-induced increase in phosphorylation of PKCepsilon was not reduced by rapamycin. Rapamycin also prevented the augmented association of eIF4G with eIF4E and the decreased association of eIF4E with 4E-BP1. Similar findings were observed in gastrocnemius from animals after oral administration of leucine. Perfusion of gastrocnemius with medium containing rapamycin partially prevented the leucine-induced increase in phosphorylation of eIF4G. Thus, rapamycin attenuated a feeding- or leucine-induced phosphorylation of eIF4G in skeletal muscle both in vivo and in situ. The latter observation implies that the effects observed with rapamycin were the result of modulation of skeletal muscle signaling mechanisms responsible for eIF4G phosphorylation.  相似文献   

2.
An important function of growth hormone (GH) is to promote cell and tissue growth, and a key component of these effects is the stimulation of protein synthesis. In this study, we demonstrate that, in H4IIE hepatoma cells, GH acutely activated protein synthesis through signaling via the mammalian target of rapamycin (mTOR) and specifically through the rapamycin-sensitive mTOR complex 1 (mTORC1). GH treatment enhanced the phosphorylation of two targets of mTOR signaling, 4E-BP1 and ribosomal protein S6. Phosphorylation of S6 and 4E-BP1 was maximal at 30-45 min and 10-20 min after GH stimulation, respectively. Both proteins modulate components of the translational machinery. The GH-induced phosphorylation of 4E-BP1 led to its dissociation from eIF4E and increased binding of eIF4E to eIF4G to form (active) eIF4F complexes. The ability of GH to stimulate the phosphorylation of S6 and 4E-BP1 was blocked by rapamycin. GH also led to the dephosphorylation of a third translational component linked to mTORC1, the elongation factor eEF2. Its regulation followed complex biphasic kinetics, both phases of which required mTOR signaling. GH rapidly activated both the MAP kinase (ERK) and PI 3-kinase pathways. Signaling through PI 3-kinase alone was, however, sufficient to activate the downstream mTORC1 pathway. Consistent with this, GH increased the phosphorylation of TSC2, an upstream regulator of mTORC1, at sites that are targets for Akt/PKB. Finally, the activation of overall protein synthesis by GH in H4IIE cells was essentially completely inhibited by wortmannin or rapamycin. These results demonstrate for the first time that mTORC1 plays a major role in the rapid activation of protein synthesis by GH.  相似文献   

3.
Regulation of translation of mRNAs coding for specific proteins plays an important role in controlling cell growth, differentiation, and transformation. Two proteins have been implicated in the regulation of specific mRNA translation: eukaryotic initiation factor eIF4E and ribosomal protein S6. Increased phosphorylation of eIF4E as well as its overexpression are associated with stimulation of translation of mRNAs with highly structured 5'-untranslated regions. Similarly, phosphorylation of S6 results in preferential translation of mRNAs containing an oligopyrimidine tract at the 5'-end of the message. In the present study, leucine stimulated phosphorylation of the eIF4E-binding protein, 4E-BP1, in L6 myoblasts, resulting in dissociation of eIF4E from the inactive eIF4E.4E-BP1 complex. The increased availability of eIF4E was associated with a 1.6-fold elevation in ornithine decarboxylase relative to global protein synthesis. Leucine also stimulated phosphorylation of the ribosomal protein S6 kinase, p70(S6k), resulting in increased phosphorylation of S6. Hyperphosphorylation of S6 was associated with a 4-fold increase in synthesis of elongation factor eEF1A. Rapamycin, an inhibitor of the protein kinase mTOR, prevented all of the leucine-induced effects. Thus, leucine acting through an mTOR-dependent pathway stimulates the translation of specific mRNAs both by increasing the availability of eIF4E and by stimulating phosphorylation of S6.  相似文献   

4.
In the present study, the BCAAs (branched-chain amino acids) leucine and valine caused a significant suppression in the loss of body weight in mice bearing a cachexia-inducing tumour (MAC16), producing a significant increase in skeletal muscle wet weight, through an increase in protein synthesis and a decrease in degradation. Leucine attenuated the increased phosphorylation of PKR (double-stranded-RNA-dependent protein kinase) and eIF2alpha (eukaryotic initiation factor 2alpha) in skeletal muscle of mice bearing the MAC16 tumour, due to an increased expression of PP1 (protein phosphatase 1). Weight loss in mice bearing the MAC16 tumour was associated with an increased amount of eIF4E bound to its binding protein 4E-BP1 (eIF4E-binding protein 1), and a progressive decrease in the active eIF4G-eIF4E complex due to hypophosphorylation of 4E-BP1. This may be due to a reduction in the phosphorylation of mTOR (mammalian target of rapamycin), which may also be responsible for the decreased phosphorylation of p70(S6k) (70 kDa ribosomal S6 kinase). There was also a 5-fold increase in the phosphorylation of eEF2 (eukaryotic elongation factor 2), which would also decrease protein synthesis through a decrease in translation elongation. Treatment with leucine increased phosphorylation of mTOR and p70(S6k), caused hyperphosphorylation of 4E-BP1, reduced the amount of 4E-BP1 associated with eIF4E and caused an increase in the eIF4G-eIF4E complex, together with a reduction in phosphorylation of eEF2. These changes would be expected to increase protein synthesis, whereas a reduction in the activation of PKR would be expected to attenuate the increased protein degradation.  相似文献   

5.
Leucine stimulates protein synthesis by modulating the mammalian target of rapamycin (mTOR) signaling pathway. We hypothesized that promotion of the branched-chain amino acid (BCAA) catabolism might influence the leucine-induced protein synthesis. Clofibric acid (an active metabolite of clofibrate) is known to promote the BCAA catabolism by activation of branched-chain alpha-keto acid dehydrogenase complex (BCKDC), the rate-limiting enzyme of the BCAA catabolism. In the present study, we examined the phosphorylation state of mTOR, eukaryotic initiation factor 4E-binding protein-1 (4E-BP1), and ribosomal protein S6 kinase 1 (S6K1) in liver of rats with or without activation of the BCKDC by clofibrate treatment. Clofibrate-treated rats were prepared by oral administration of clofibrate 5 h before sacrifice. In order to stimulate phosphorylation of components in the mTOR signaling pathway, rats were orally administered with leucine 1 h before sacrifice. Clofibrate treatment almost fully activated hepatic BCKDC and significantly decreased the plasma leucine concentration in rats without leucine administration, resulting in decreased mTOR and 4E-BP1 phosphorylation. Similarly, in rats administered with leucine, clofibrate treatment attenuated the predicted increase in plasma leucine concentration as well as the phosphorylation of mTOR, 4E-BP1, and S6K1. These results suggest that BCAA catabolism enhanced by clofibrate treatment has significant influences on the leucine-induced activation of translation initiation processes.  相似文献   

6.
mTOR, the mammalian target of rapamycin, has been widely implicated in signals that promote cell cycle progression and survival in cancer cells. Rapamycin, which inhibits mTOR with high specificity, has consequently attracted much attention as an anticancer therapeutic. Rapamycin suppresses phosphorylation of S6 kinase at nanomolar concentrations; however, at higher micro-molar doses, rapamycin induces apoptosis in several human cancer cell lines. While much is known about the effect of low-dose rapamycin treatment, the mechanistic basis for the apoptotic effects of high-dose rapamycin treatment is not understood. We report here that the apoptotic effects of high-dose rapamycin treatment correlate with suppressing phosphorylation of the mTOR complex 1 substrate, eukaryotic initiation factor 4E (eIF4E) binding protein-1 (4E-BP1). Consistent with this observation, ablation of eIF4E also resulted in apoptorsis in MDA-MB 231 breast cancer cells. We also provide evidence that the differential dose effects of rapamycin are correlated with partial and complete dissociation of Raptor from mTORC1 at low and high doses, respectively. In contrast with MDA-MB-231 cells, MCF-7 breast cancer cells survived rapamycin-induced suppression of 4E-BP1 phosphorylation. We show that survival correlated with a hyperphosphorylation of Akt at S473 at high rapamycin doses, the suppression of which conferred rapamycin sensitivity. This study reveals that the apoptotic effect of rapamycin requires doses that completely dissociate Raptor from mTORC1 and suppress that phosphorylation of 4E-BP1 and inhibit eIF4E.Key words: rapamycin, mTOR, 4E-BP1, eIF4E, Akt, apoptosis  相似文献   

7.
Skeletal muscle protein synthesis is elevated in neonates in part due to an enhanced response to the rise in insulin and amino acids after eating. In vitro studies suggest that glucose plays a role in protein synthesis regulation. To determine whether glucose, independently of insulin and amino acids, is involved in the postprandial rise in skeletal muscle protein synthesis, pancreatic-substrate clamps were performed in neonatal pigs. Insulin secretion was inhibited with somatostatin and insulin was infused to reproduce fasting or fed levels, while glucose and amino acids were clamped at fasting or fed levels. Fractional protein synthesis rates and translational control mechanisms were examined. Raising glucose alone increased protein synthesis in fast-twitch glycolytic muscles but not in other tissues. The response in muscle was associated with increased phosphorylation of protein kinase B (PKB) and enhanced formation of the active eIF4E.eIF4G complex but no change in phosphorylation of AMP-activated protein kinase (AMPK), tuberous sclerosis complex 2 (TSC2), mammalian target of rapamycin (mTOR), 4E-binding protein-1 (4E-BP1), ribosomal protein S6 kinase (S6K1), or eukaryotic elongation factor 2 (eEF2). Raising glucose, insulin, and amino acids increased protein synthesis in most tissues. The response in muscle was associated with phosphorylation of PKB, mTOR, S6K1, and 4E-BP1 and enhanced eIF4E.eIF4G formation. The results suggest that the postprandial rise in glucose, independently of insulin and amino acids, stimulates protein synthesis in neonates, and this response is specific to fast-twitch glycolytic muscle and occurs by AMPK- and mTOR-independent pathways.  相似文献   

8.
Endotoxin (i.e., lipopolysaccharide, LPS) impairs skeletal muscle protein synthesis. Although this impairment is not acutely associated with a decreased plasma concentration of total amino acids, LPS may blunt the anabolic response to amino acids. To examine this hypothesis, rats were injected intraperitoneally with LPS or saline (Sal) and 4 h thereafter were orally administered either leucine (Leu) or Sal. The gastrocnemius was removed 20 min later to assess signaling components important in the translational control of protein synthesis. In the Sal-Leu group phosphorylation of 4E-BP1 in muscle was markedly increased, compared to values from time-matched saline-treated control rats. This change was associated with a redistribution of eukaryotic initiation factor (eIF) 4E from the inactive eIF4E x 4E-BP1 complex to the active eIF4E x eIF4G complex. In LPS-treated rats, the Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E distribution were partially or completely abrogated. LPS also antagonized the Leu-induced increase in phosphorylation of S6K1, ribosomal protein S6 and mTOR. Neither LPS nor leu altered the total amount or phosphorylation of TSC2 in muscle. The ability of LPS to blunt the anabolic effects of Leu could not be attributed to differences in the plasma concentrations of insulin or Leu between groups. Furthermore, the replacement of plasma insulin-like growth factor (IGF)-I in LPS-treated rats to basal levels also did not ameliorate the defect in leucine-induced phosphorylation of S6K1 or S6, although it did reverse the LPS-induced decrease in the constitutive phosphorylation of mTOR, S6 and 4E-BP1. Pretreatment with the glucocorticoid receptor antagonist RU486 was unable to prevent the LPS-induced leucine resistance. In contrast, to the abovementioned results with leucine, LPS did not prevent the ability of pharmacological levels of IGF-I to phosphorylate 4E-BP1, S6K1, mTOR or alter the availability of eIF4E. Hence, LPS working via a glucocorticoid-independent mechanism produces a leucine resistance in skeletal muscle that might be expected to impair the ability of this amino acid to stimulate translation initiation and protein synthesis.  相似文献   

9.
Leucine is unique among the amino acids in its ability to promote protein synthesis by activating translation initiation via the mammalian target of rapamycin (mTOR) pathway. Previously, we showed that leucine infusion acutely stimulates protein synthesis in fast-twitch glycolytic muscle of neonatal pigs but this response cannot be maintained unless the leucine-induced fall in amino acids is prevented. To determine whether leucine can stimulate protein synthesis in muscles of different fiber types and in visceral tissues of the neonate in the long-term if baseline amino acid concentrations are maintained, overnight fasted neonatal pigs were infused for 24 h with saline, leucine (400 μmol kg−1 h−1), or leucine with replacement amino acids to prevent the leucine-induced hypoaminoacidemia. Changes in the fractional rate of protein synthesis and activation of mTOR, as determined by eukaryotic initiation factor 4E binding protein (4E-BP1) and S6 kinase 1 (S6K1) phosphorylation, in the gastrocnemius and masseter muscles, heart, liver, jejunum, kidney, and pancreas were measured. Leucine increased mTOR activation in the gastrocnemius and masseter muscles, liver, and pancreas, in both the absence and presence of amino acid replacement. However, protein synthesis in these tissues was increased only when amino acids were infused to maintain baseline levels. There were no changes in mTOR signaling or protein synthesis in the other tissues we examined. Thus, long-term infusion of leucine stimulates mTOR signaling in skeletal muscle and some visceral tissues but the leucine-induced stimulation of protein synthesis in these tissues requires sustained amino acid availability.  相似文献   

10.
We have previously shown that a physiological increase in plasma leucine for 60 and 120 min increases translation initiation factor activation in muscle of neonatal pigs. Although muscle protein synthesis is increased by leucine at 60 min, it is not maintained at 120 min, perhaps because of the decrease in plasma amino acids (AA). In the present study, 7- and 26-day-old pigs were fasted overnight and infused with leucine (0 or 400 micromol.kg(-1).h(-1)) for 120 min to raise leucine within the postprandial range. The leucine was infused in the presence or absence of a replacement AA mixture (without leucine) to maintain baseline plasma AA levels. AA administration prevented the leucine-induced reduction in plasma AA in both age groups. At 7 days, leucine infusion alone increased eukaryotic initiation factor (eIF) 4E binding protein-1 (4E-BP1) phosphorylation, decreased inactive 4E-BP1.eIF4E complex abundance, and increased active eIF4G.eIF4E complex formation in skeletal muscle; leucine infusion with replacement AA also stimulated these, as well as 70-kDa ribosomal protein S6 kinase, ribosomal protein S6, and eIF4G phosphorylation. At 26 days, leucine infusion alone increased 4E-BP1 phosphorylation and decreased the inactive 4E-BP1.eIF4E complex only; leucine with AA also stimulated these, as well as 70-kDa ribosomal protein S6 kinase and ribosomal protein S6 phosphorylation. Muscle protein synthesis was increased in 7-day-old (+60%) and 26-day-old (+40%) pigs infused with leucine and replacement AA but not with leucine alone. Thus the ability of leucine to stimulate eIF4F formation and protein synthesis in skeletal muscle is dependent on AA availability and age.  相似文献   

11.
mTOR, the mammalian target of rapamycin, has been widely implicated in signals that promote cell cycle progression and survival in cancer cells. Rapamycin, which inhibits mTOR with high specificity, has consequently attracted much attention as an anti-cancer therapeutic. Rapamycin suppresses phosphorylation of S6 kinase at nano-molar concentrations, however at higher micro-molar doses, rapamycin induces apoptosis in several human cancer cell lines. While much is known about the effect of low dose rapamycin treatment, the mechanistic basis for the apoptotic effects of high-dose rapamycin treatment is not understood. We report here that the apoptotic effects of high-dose rapamycin treatment correlate with suppressing phosphorylation of the mTOR complex 1 substrate, eukaryotic initiation factor 4E (eIF4E) binding protein-1 (4E-BP1). Consistent with this observation, ablation of eIF4E also resulted in apoptorsis in MDA-MB 231 breast cancer cells. We also provide evidence that the differential dose effects of rapamycin are correlated with partial and complete dissociation of Raptor from mTORC1 at low and high doses, respectively. In contrast with MDA-MB-231 cells, MCF-7 breast cancer cells survived rapamycin-induced suppression of 4E-BP1 phosphorylation. We show that survival correlated with a hyper-phosphorylation of Akt at S473 at high rapamycin doses, the suppression of which conferred rapamycin sensitivity. This study reveals that the apoptotic effect of rapamycin requires doses that completely dissociate Raptor from mTORC1 and suppress that phosphorylation of 4E-BP1 and inhibit eIF4E.  相似文献   

12.
Insulin acutely activates protein synthesis in ventricular cardiomyocytes from adult rats. In this study, we have established the methodology for studying the regulation of the signaling pathways and translation factors that may be involved in this response and have examined the effects of acute insulin treatment on them. Insulin rapidly activated the 70-kDa ribosomal S6 kinase (p70 S6k), and this effect was inhibited both by rapamycin and by inhibitors of phosphatidylinositol 3-kinase. The activation of p70 S6k is mediated by a signaling pathway involving the mammalian target of rapamycin (mTOR), which also modulates other translation factors. These include the eukaryotic initiation factor (eIF) 4E binding proteins (4E-BPs) and eukaryotic elongation factor 2 (eEF2). Insulin caused phosphorylation of 4E-BP1 and induced its dissociation from eIF4E, and these effects were also blocked by rapamycin. Concomitant with this, insulin increased the binding of eIF4E to eIF4G. Insulin also activated protein kinase B (PKB), which may lie upstream of p70 S6k and 4E-BP1, with the activation of the different isoforms being in the order alpha>beta>gamma. Insulin also caused inhibition of glycogen synthase kinase 3, which lies downstream of PKB, and of eEF2 kinase. The phosphorylation of eEF2 itself was also decreased by insulin, and this effect and the inactivation of eEF2 kinase were attenuated by rapamycin. The activation of overall protein synthesis by insulin in cardiomyocytes was substantially inhibited by rapamycin (but not by inhibitors of other specific signaling pathways, e.g., mitogen-activated protein kinase), showing that signaling events linked to mTOR play a major role in the control of translation by insulin in this cell type.  相似文献   

13.
Branched chain amino acids modulate various cellular functions in addition to providing substrates for the production of proteins. We examined the mechanism underlying the stimulation by leucine of hepatocyte growth factor (HGF) production by hepatic stellate cells. Both p70 S6 kinase activity and phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) were up-regulated rapidly after leucine treatment of a rat hepatic stellate cell clone. No such activation was observed following treatment with valine or isoleucine. Rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), suppressed leucine-induced activation of p70 S6 kinase and 4E-BP1 and negated the stimulatory effect of leucine on HGF production. An mTOR-dependent signaling pathway mediates the stimulatory effect of leucine on the production of HGF by hepatic stellate cells.  相似文献   

14.
Hydrogen sulfide, a signaling gas, affects several cell functions. We hypothesized that hydrogen sulfide modulates high glucose (30 mm) stimulation of matrix protein synthesis in glomerular epithelial cells. High glucose stimulation of global protein synthesis, cellular hypertrophy, and matrix laminin and type IV collagen content was inhibited by sodium hydrosulfide (NaHS), an H(2)S donor. High glucose activation of mammalian target of rapamycin (mTOR) complex 1 (mTORC1), shown by phosphorylation of p70S6 kinase and 4E-BP1, was inhibited by NaHS. High glucose stimulated mTORC1 to promote key events in the initiation and elongation phases of mRNA translation: binding of eIF4A to eIF4G, reduction in PDCD4 expression and inhibition of its binding to eIF4A, eEF2 kinase phosphorylation, and dephosphorylation of eEF2; these events were inhibited by NaHS. The role of AMP-activated protein kinase (AMPK), an inhibitor of protein synthesis, was examined. NaHS dose-dependently stimulated AMPK phosphorylation and restored AMPK phosphorylation reduced by high glucose. Compound C, an AMPK inhibitor, abolished NaHS modulation of high glucose effect on events in mRNA translation as well as global and matrix protein synthesis. NaHS induction of AMPK phosphorylation was inhibited by siRNA for calmodulin kinase kinase β, but not LKB1, upstream kinases for AMPK; STO-609, a calmodulin kinase kinase β inhibitor, had the same effect. Renal cortical content of cystathionine β-synthase and cystathionine γ-lyase, hydrogen sulfide-generating enzymes, was significantly reduced in mice with type 1 diabetes or type 2 diabetes, coinciding with renal hypertrophy and matrix accumulation. Hydrogen sulfide is a newly identified modulator of protein synthesis in the kidney, and reduction in its generation may contribute to kidney injury in diabetes.  相似文献   

15.
Insulin and amino acids act independently to stimulate protein synthesis in skeletal muscle of neonatal pigs, and the responses decrease with development. The purpose of this study was to compare the separate effects of fed levels of INS and AA on the activation of signaling components leading to translation initiation and how these responses change with development. Overnight-fasted 6- (n = 4/group) and 26-day-old (n = 6/ group) pigs were studied during 1) euinsulinemic-euglycemiceuaminoacidemic conditions (controls), 2) euinsulinemic-euglycemichyperaminoacidemic clamps (AA), and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps (INS). INS, but not AA, increased the phosphorylation of protein kinase B (PKB) and tuberous sclerosis 2 (TSC2). Both INS and AA increased protein synthesis and the phosphorylation of mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase-1, and eukaryotic initiation factor (eIF)4E-binding protein 1 (4E-BP1), and these responses were higher in 6-day-old compared with 26-day-old pigs. Both INS and AA decreased the binding of 4E-BP1 to eIF4E and increased eIF4E binding to eIF4G; these effects were greater in 6-day-old than in 26-day-old pigs. Neither INS nor AA altered the composition of mTORC1 (raptor, mTOR, and GbetaL) or mTORC2 (rictor, mTOR, and GbetaL) complexes. Furthermore, neither INS, AA, nor age had any effect on the abundance of Rheb and the phosphorylation of AMP-activated protein kinase and eukaryotic elongation factor 2. Our results suggest that the activation by insulin and amino acids of signaling components leading to translation initiation is developmentally regulated and parallels the developmental decline in protein synthesis in skeletal muscle of neonatal pigs.  相似文献   

16.
Acute alcohol (EtOH) intoxication impairs skeletal muscle protein synthesis. Although this impairment is not associated with a decrease in the total plasma amino acid concentration, EtOH may blunt the anabolic response to amino acids. To examine this hypothesis, rats were administered EtOH or saline (Sal) and 2.5 h thereafter were orally administered either leucine (Leu) or Sal. The gastrocnemius was removed 20 min later to assess protein synthesis and signaling components important in translational control of protein synthesis. Oral Leu increased muscle protein synthesis by the same magnitude in Sal- and EtOH-treated rats. However, the increase in the latter group was insufficient to overcome the suppressive effect of EtOH, and the rate of synthesis remained lower than that observed in rats from the Sal-Sal group. Leu markedly increased phosphorylation of Thr residues 36, 47, and 70 on 4E-binding protein (BP)1 in muscle from rats not receiving EtOH, and this response was associated with a redistribution of eukaryotic initiation factor (eIF) 4E from the inactive eIF4E. 4E-BP1 to the active eIF4E. eIF4G complex. In EtOH-treated rats, the Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E availability were partially abrogated. EtOH also prevented the Leu-induced increase in phosphorylation of eIF4G, the serine/threonine protein kinase S6K1, and the ribosomal protein S6. Moreover, EtOH attenuated the Leu-induced phosphorylation of the mammalian target of rapamycin (mTOR). The ability of EtOH to blunt the anabolic effects of Leu could not be attributed to differences in the plasma concentrations of insulin, insulin-like growth factor I, or Leu. Finally, although EtOH increased the plasma corticosterone concentration, inhibition of glucocorticoid action by RU-486 was unable to prevent EtOH-induced defects in the ability of Leu to stimulate 4E-BP1, S6K1, and mTOR phosphorylation. Hence, ethanol produces a leucine resistance in skeletal muscle, as evidenced by the impaired phosphorylation of 4E-BP1, eIF4G, S6K1, and mTOR, that is independent of elevations in endogenous glucocorticoids.  相似文献   

17.
Enhanced protein synthesis in skeletal muscle after ingestion of a balanced meal in postabsorptive rats is mimicked by oral leucine administration. To assess the contribution of insulin to the protein synthetic response to leucine, food-deprived (18 h) male rats (approximately 200 g) were intravenously administered a primed-constant infusion of somatostatin (60 microg + 3 microg.kg(-1).h(-1)) or vehicle beginning 1 h before administration of leucine (1.35 g L-leucine/kg) or saline (control). Rats were killed 15, 30, 45, 60, or 120 min after leucine administration. Compared with controls, serum insulin concentrations were elevated between 15 and 45 min after leucine administration but returned to basal values by 60 min. Somatostatin maintained insulin concentrations at basal levels throughout the time course. Protein synthesis was increased between 30 and 60 min, and this effect was blocked by somatostatin. Enhanced assembly of the mRNA cap-binding complex (composed of eukaryotic initiation factors eIF4E and eIF4G) and hyperphosphorylation of the eIF4E-binding protein 1 (4E-BP1), the 70-kDa ribosomal protein S6 kinase (S6K1), and the ribosomal protein S6 (rp S6) were observed as early as 15 min and persisted for at least 60 min. Somatostatin attenuated the leucine-induced changes in 4E-BP1 and S6K1 phosphorylation and completely blocked the change in rp S6 phosphorylation but had no effect on eIF4G small middle dot eIF4E assembly. Overall, the results suggest that the leucine-induced enhancement of protein synthesis and the phosphorylation states of 4E-BP1 and S6K1 are facilitated by the transient increase in serum insulin. In contrast, assembly of the mRNA cap-binding complex occurs independently of increases in insulin and, by itself, is insufficient to stimulate rates of protein synthesis in skeletal muscle after leucine administration.  相似文献   

18.
We have examined the effects of widely used stress-inducing agents on protein synthesis and on regulatory components of the translational machinery. The three stresses chosen, arsenite, hydrogen peroxide and sorbitol, exert their effects in quite different ways. Nonetheless, all three rapidly ( approximately 30 min) caused a profound inhibition of protein synthesis. In each case this was accompanied by dephosphorylation of the eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) and increased binding of this repressor protein to eIF4E. Binding of 4E-BP1 to eIF4E correlated with loss of eIF4F complexes. Sorbitol and hydrogen peroxide each caused inhibition of the 70-kDa ribosomal protein S6 kinase, while arsenite activated it. The effects of stresses on the phosphorylation of eukaryotic elongation factor 2 also differed: oxidative stress elicited a marked increase in eEF2 phosphorylation, which is expected to contribute to inhibition of translation, while the other stresses did not have this effect. Although all three proteins (4E-BP1, p70 S6 kinase and eEF2) can be regulated through the mammalian target of rapamycin (mTOR), our data imply that stresses do not interfere with mTOR function but act in different ways on these three proteins. All three stresses activate the p38 MAP kinase pathway but we were able to exclude a role for this in their effects on 4E-BP1. Our data reveal that these stress-inducing agents, which are widely used to study stress-signalling in mammalian cells, exert multiple and complex inhibitory effects on the translational machinery.  相似文献   

19.
Elevations in free fatty acids (FFAs) impair glucose uptake in skeletal muscle. However, there is no information pertaining to the effect of elevated circulating lipids on either basal protein synthesis or the anabolic effects of leucine and insulin-like growth factor I (IGF-I). In chronically catheterized conscious rats, the short-term elevation of plasma FFAs by the 5-h infusion of heparin plus Intralipid decreased muscle protein synthesis by approximately 25% under basal conditions. Lipid infusion was associated with a redistribution of eukaryotic initiation factor (eIF)4E from the active eIF4E.eIF4G complex to the inactive eIF4E.4E-BP1 complex. This shift was associated with a decreased phosphorylation of eIF4G but not 4E-BP1. Lipid infusion did not significantly alter either the total amount or phosphorylation state of mTOR, TSC2, S6K1, or the ribosomal protein S6 under basal conditions. In control rats, oral leucine increased muscle protein synthesis. This anabolic response was not impaired by lipid infusion, and no defects in signal transduction pathways regulating translation initiation were detected. In separate rats that received a bolus injection of IGF-I, lipid infusion attenuated the normal redistribution of eIF4E from the active to inactive complex and largely prevented the increased phosphorylation of 4E-BP1, eIF4G, S6K1, and S6. This IGF-I resistance was associated with enhanced Ser(307) phosphorylation of insulin receptor substrate-1 (IRS-1). These data indicate that the short-term elevation of plasma FFAs impairs basal protein synthesis in muscle by altering eIF4E availability, and this defect may be related to impaired phosphorylation of eIF4G, not 4E-BP1. Moreover, hyperlipidemia impairs IGF-I action but does not produce leucine resistance in skeletal muscle.  相似文献   

20.
Protein synthesis is repressed in both skeletal muscle and liver after a short-term fast and is rapidly stimulated in response to feeding. Previous studies in rats and pigs have shown that the feeding-induced stimulation of protein synthesis is associated with activation of the 70-kDa ribosomal protein S6 kinase (S6K1) as well as enhanced binding of eukaryotic initiation factor eIF4E to eIF4G to form the active eIF4F complex. In cells in culture, hormones and nutrients regulate both of these events through a protein kinase termed the mammalian target of rapamycin (mTOR). In the present study, the involvement of mTOR in the feeding-induced stimulation of protein synthesis in skeletal muscle and liver was examined. Pigs at 7 days of age were fasted for 18 h, and then one-half of the animals were fed. In addition, one-half of the animals in each group were administered rapamycin (0.75 mg/kg) 2 h before feeding. The results reveal that treating 18-h fasted pigs with rapamycin, a specific inhibitor of mTOR, before feeding prevented the activation of S6K1 and the changes in eIF4F complex formation observed in skeletal muscle and liver after feeding. Rapamycin also ablated the feeding-induced stimulation of protein synthesis in liver. In contrast, in skeletal muscle, rapamycin attenuated, but did not prevent, the stimulation of protein synthesis in response to feeding. The results suggest that feeding stimulates hepatic protein synthesis through an mTOR-dependent process involving enhanced eIF4F complex formation and activation of S6K1. However, in skeletal muscle, these two processes may account for only part of the stimulation of protein synthesis, and thus additional steps may be involved in the response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号