首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Experiments with black locust (Robinia pseudoacacia L.) seedlings grown under strictly controlled laboratory conditions indicated that the availability of nitrate has a marked impact on nitrogen fixation. When nitrate concentrations were very low, both nodulation and seedling growth were impaired, whereas nitrate concentrations high enough to promote plant growth strongly inhibited symbiotic nitrogen fixation. When nitrate was added to the growth medium after infection, nodulation and nitrogen fixation of the seedlings decreased. This effect was even more marked when nitrate was applied before infection with rhizobia. Higher nitrogen concentrations also reduced nodule number and nodule mass when applied simultaneously with the infecting bacteria. The contribution of symbiotic nitrogen fixation to black locust shoot mass by far exceeded its effects on shoot length and root mass. When nitrate availability was very low, specific nitrogen fixation (i. e. nitrogenase activity per nodule wet weight) was improved with increasing nitrogen supply, but rapidly decreased with higher nitrogen concentrations.  相似文献   

2.
The efficiency of twoRhizobium meliloti mutants for nodulation and nitrogen fixation (acetylene reduction) under three concentrations ofp-coumaric and ferulic acids, was evaluated using a sand-culture medium. The effect of the test concentrations of both acids on the growth of alfalfa was also determined. The results revealed that the test mutants showed considerable resistance to the higher concentration of the test phytotoxins in terms of nodulation and nitrogen fixation, whereas seedling growth was inhibited by increased phytotoxin concentrations. The possible advantages of mutants resistance to the phytotoxins under field conditions are briefly discussed.  相似文献   

3.
Field, greenhouse and laboratory investigations were conducted to determine the effect of four dinitroaniline herbicides on rhizobia, nodulation and nitrogen fixation of four groundnut cultivars. Benefin, dinitramine and nitralin used at recommended levels decreased nodule dry weight, nitrogenase activity and total nitrogen of groundnut tops and pod yield in three cultivars Kadiri 71-1, Kadiri-2, ICGS-11 and not for a fourth cultivar, Kadiri-3 of groundnut (Arachis hypogaea L.), but fluchloralin used at the recommended level increased the nodulation rate, nitrogenase activity and total nitrogen of groundnut tops and pod yield compared to untreated plants. Studies were conducted in vitro to determine the relative toxicity of the herbicides on four Rhizobium strains isolated from the nodules of four cultivars of groundnut. It was found that various strains of rhizobia differ in their sensitivity to different rates of the herbicides tested. Carbon dioxide exchange rate (CER) of all the cultivars which received herbicide treatment was measured at different time intervals to determine the relationship between photosynthesis and inhibition of nodulation. The lack of adverse effect on the CER of four cultivars when treated at recommended concentrations indicated that nitrogen fixation was affected in cultivars Kadiri 71-1, Kadiri-2 and ICGS-11 due to inhibition of nodulation.  相似文献   

4.
It is well established that nitrate is a potent inhibitor of nodulation and nitrogen fixation in legumes. The objective of this study was to demonstrate the relative insensitivity of these processes to nitrate with Calopogonium mucunoides, a tropical South American perennial legume, native to the cerrado (savannah) region. It was found that nodule number was reduced by about half in the presence of high levels of nitrate (15 mM) but nodule growth (total nodule mass per plant) and nitrogen fixation (acetylene reduction activity and xylem sap ureide levels) were not affected. Other sources of N (ammonium and urea) were also without effect at these concentrations. At even higher concentrations (30 mM), nitrate did promote significant inhibition (ca. 50%) of acetylene reduction activity, but no significant reduction in xylem sap ureides was found. The extraordinary insensitivity of nodulation and N2 fixation of C. mucunoides to nitrate suggests that this species should be useful in studies aimed at elucidating the mechanisms of nitrate inhibition of these processes.  相似文献   

5.
We have analysed the growth and symbiotic performance of actinorhizal Discaria trinervis at various Ca supply regimes. We aimed at discriminating between specific, if any, effects on nodulation and general growth stimulation by Ca. The hypothesis that a high Ca supply would interfere with nodulation by Frankia was also tested. Results showed that plant growth increased with Ca supply. Nodulation was stimulated by moderate levels of Ca, but inhibited by Ca higher than 0.77 mM. Growth of nodules was less affected by Ca than shoot and root growth. Ca concentration of symbiotic plants increased with Ca supply, but nitrogen concentration was independent of Ca at concentrations which did not impair plant growth. All together, these results show that Ca has a positive effect on the establishment and functioning of the symbiosis between Discaria trinervis and Frankia. However, the positive influence of Ca was more likely due to a promotion of plant growth rather than a direct effect on nodule growth and nitrogen fixation itself. At high levels of Ca supply nodulation was impaired. Given the intercellular infection pathway in Discaria trinervis, we suggest that the increment of Ca availability would strengthen its root cell walls, thus decreasing Frankia penetration of the root.  相似文献   

6.
Summary The effect of aldrin on nodulation (nodule number and their dry weight) in bengal gram (Cicer arietinum) was not very clear. Aldrin decreased nitrogen fixation and yield at the concentration of 1, 5 and 10 ppm in soil. The application of farm yard manure eliminated completely the adverse effects on yield and partially, the adverse effects on nitrogen fixation. There was an increase in yield with the application of aldrin along with farm yard manure. Nodulation and nitrogen fixation at 1 ppm level of aldrin were more than control in presence of FYM. re]19760102  相似文献   

7.
8.
Jasmonic acid (JA) and methyl jasmonate, collectively known as jasmonates, are naturally occurring in plants; they are important signal molecules involved in induced disease resistance and mediate many physiological activities in plants. We studied the effect of JA and its methyl ester, methyl jasmonate (MeJA), on the induction of nod genes in Bradyrhizobium japonicum GG4 (USDA3) carrying a plasmid with a translational fusion between B. japonicum nodY and lacZ of Escherichia coli, and the expression activity was measured by β-galactosidase activity. Both JA and MeJA strongly induced the expression of nod genes. They have little or no deleterious effects on the growth of B. japonicum cells, while genistein (Gen) showed inhibitory effects. We further studied the effect of JA- and MeJA-induced B. japonicum on soybean nodulation and nitrogen fixation under optimal (25°C) and suboptimal (17°C) root zone temperature (RZT) conditions. B. japonicum cells were grown in liquid yeast extract mannitol media and induced with a range of Gen, JA, and MeJA concentrations, including a treatment control with no inducer added. Soybean seedlings were grown at 25 or 17°C RZT with a constant air temperature (25°C) and inoculated, at the vegetative cotyledonary stage, with various B. japonicum induction treatments. Addition of Gen or jasmonates to B. japonicum, prior to inoculation, enhanced nodulation, nitrogen fixation, and plant growth at suboptimal RZT conditions. A higher concentration of Gen was inhibitory at 25°C, while this same concentration was stimulatory at 17°C. Interestingly, pre-incubation of B. japonicum with JA and MeJA enhanced soybean nodulation and nitrogen fixation under both optimal and suboptimal RZTs. We show that jasmonates are thus a new class of signaling molecules in the B. japonicum-soybean symbiosis and that pre-induction of B. japonicum with jasmonates can be used to enhance soybean nodulation, nitrogen fixation, and early plant growth.  相似文献   

9.
Nodulation and nitrogen fixation in extreme environments   总被引:6,自引:0,他引:6  
Biological nitrogen fixation is a phenomenon occurring in all known ecosystems. Symbiotic nitrogen fixation is dependent on the host plant genotype, theRhizobium strain, and the interaction of these symbionts with the pedoclimatic factors and the environmental conditions. Extremes of pH affect nodulation by reducing the colonization of soil and the legume rhizosphere by rhizobia. Highly acidic soils (pH<4.0) frequently have low levels of phosphorus, calcium, and molybdenum and high concentrations of aluminium and manganese which are often toxic for both partners; nodulation is more affected than host-plant growth and nitrogen fixation. Highly alkaline soils (pH>8.0) tend to be high in sodium chloride, bicarbonate, and borate, and are often associated with high salinity which reduce nitrogen fixation. Nodulation and N-fixation are observed under a wide range of temperatures with optima between 20–30°C. Elevated temperatures may delay nodule initiation and development, and interfere with nodule structure and functioning in temperate Iegumes, whereas in tropical legumes nitrogen fixation efficiency is mainly affected. Furthermore, temperature changes affect the competitive ability ofRhizobium strains. Low temperatures reduce nodule formation and nitrogen fixation in temperate legumes; however, in the extreme environment of the high arctic, native legumes can nodulate and fix nitrogen at rates comparable to those observed with legumes in temperate climates, indicating that both the plants and their rhizobia have successfully adapted to arctic conditions. In addition to low temperatures, arctic legumes are exposed to a short growing season, a long photoperiod, low precipitation and low soil nitrogen levels. In this review, we present results on a number of structural and physiological characteristics which allow arctic legumes to function in extreme environments.  相似文献   

10.
E. Jacobsen 《Plant and Soil》1984,82(3):427-438
Summary In pea (Pisum sativum L.), mutants could be induced, modified in the symbiotic interaction withRhizobium leguminosarum. Among 250 M2-families, two nodulation resistant mutants (K5 and K9) were obtained. In mutant K5 the nodulation resistance was monogenic recessive and not Rhizobium strain specific. Out of 220 M2-families one mutant nod3 was found which could form nodules at high nitrate concentrations (15 mM KNO3). This mutant nodulated abundantly with severalRhizobium strains, both in the absence and presence of nitrate. Probably as the result of a pleiotropic effect, its root morphology was also changed. Among 1800 M2-families, five nitrate reductase deficient mutants were obtained and one of them (mutant E1) was used to study the inhibitory effect of nitrate on nodulation and nitrogen fixation.The results of the present investigation show that pea mutants which are modified in their symbiosis withRhizobium leguminosarum, can readily be obtained. The significance of such mutants for fundamental studies of the legume-Rhizobium symbiosis and for applications in plant breeding is discussed.  相似文献   

11.
Fungicide residues in soils may affect nitrogen fixation by legumes. Effects of nine systemic fungicides, used against cereal pathogens, on Rhizobium trifolii and white clover were measured. Fenarimol and oxycarboxin inhibited growth of R. trifolii in vitro. The weight of clover plants after 10 weeks' growth in soil containing carboxin, oxycarboxin, benodanil, tridemorph and pyracarbolid was reduced. Symbiotic nitrogen fixation was decreased by carboxin, oxycarboxin and tridemorph present in soil at concentrations somewhat greater than that likely to result from several applications of the fungicide. Only tridemorph reduced nodulation. None of the compounds seems likely to affect nitrogen fixation in the field if applied at the recommended rate.  相似文献   

12.
Potassium (K) is reported to improve plant's resistance against environmental stress. A frequently experienced stress for plants in the tropics is water shortage. It is not known if sufficient K supply would help plants to partially overcome the effects of water stress, especially that of symbiotic nitrogen fixation which is often rather low in the tropics when compared to that of temperate regions. Thus, the impact of three levels of fertilizer potassium (0.1, 0.8 and 3.0 mM K) on symbiotic nitrogen fixation was evaluated with two legumes under high (field capacity to 25% depletion) and low (less than 50% of field capacity) water regimes. Plants were grown in single pots in silica sand under controlled conditions with 1.5 mM N (15N enriched NH4NO3). The species were faba bean (Vicia faba L.), a temperate, amide producing legume and common bean (Phaseolus vulgaris L.), a tropical, ureide producing species. In both species, 0.1 mM K was insufficient for nodulation at both moisture regimes, although plant growth was observed. The supply of 0.8 or 3.0 mM K allowed nodulation and subsequent nitrogen fixation which appeared to be adequate for respective plant growth. High potassium supply had a positive effect on nitrogen fixation, on shoot and root growth and on water potential in both water regimes. Where nodulation occurred, variations caused by either K or water supply had no consequences on the percentage of nitrogen derived from the symbiosis. The present data indicate that K can apparently alleviate water shortage to a certain extent. Moreover it is shown that the symbiotic system in both faba bean and common bean is less tolerant to limiting K supply than plants themselves. However, as long as nodulation occurs, N assimilation from the symbiotic source is not selectively affected by K as opposed to N assimilation from fertilizer.  相似文献   

13.
  Rhizobium meliloti proved to be sensitive to low concentrations of the herbicide phosphinothricintripeptide (PTT) and its active ingredient phosphinothricin (PT), which was formerly assumed to be non-toxic for most of the bacteria analysed. Growth was more strongly reduced in sterile synthetic media and less reduced in sterile soil; in unsterile soil only a transient growth reduction was detectable. Sensitivity was also observed in five out of eight other species analysed. In all sensitive species tested, spontaneous resistances to PT occurred. Under sterile conditions, PTT and PT reduced rhizobial nodulation rates of PT-resistant alfalfa plants drastically; however, nitrogen fixation in the few nodules that arose was unaffected. Because of the small number of nodules, the overall fixation rate was strongly diminished. In unsterile soil, nodulation and nitrogen fixation rates were not changed, possibly because of the rapid degradation of PTT and PT in the soil. Using a herbicide as model substance it could be demonstrated that the sensitivity of R. meliloti to chemical additives in the soil can be detected by analysing its growth rate, and that even a weak impact can influence its nodulation capacity. R. meliloti has proven to be a fast, easy and sensitive detection system for bacteriostatic components present in the soil. Received: 12 April 1996 / Received revision: 15 July 1996 / Accepted: 18 July 1996  相似文献   

14.
The effects of the herbicide methabenzthiazuron (175 and 220 g ha-1) on vegetative and reproductive growth, nodulation and nitrogenase activity of Vicia faba were studied in the field under Mediterranean conditions. Nitrogenase activity of excised nodules was estimated using the acetylene reduction assay four times during the developmental period. Leaf area index, dry weight and nitrogen content of the different parts of the plants were measured. Methabenzthiazuron-treated plants showed an increase in nodulation, nitrogenase activity and vegetative growth at early pod fill. Methabenzthiazuron also caused an increase in leaf N content and fruits. These were transient effects found during early and mid pot fill. Nevertheless, plants treated with these sublethal doses of herbicide improved seed production and nitrogen content of seeds at harvest time. The stimulatory effect of methabenzthiazuron on N2 fixation and vegetative growth seems not be related with the transient stimulatory effect on photosynthetic capacity, also caused by the herbicide, since the stimulatory effect on N2 fixation was apparent during pod fill, when photosynthetic capacity declined and was not modified by methabenzthiazuron.  相似文献   

15.
Summary Experiments were performed to measure the pH-sensitive steps in nodulation and symbiotic fixation byPisum sativum and isolate RP-212-1 ofRhizobium leguminosarum. An aeroponic system with rigorous pH control was used to obtain numerous effective nodules. After exposure to various pH levels, the following responses were measured: (1) legume root growth and development, (2) survival and growth rate of a single effective bacterial isolate, (3) degree of nodulation, (4) rate of nitrogen fixation, (5) plant biomass, and (6) nitrogen content of plants. Both bacterial growth and root development were adequate at all pH levels from 4.4 to 6.6, but efficient nodulation and nitrogen fixation did not occur at pH 4.8 and below. The processes required for symbiosis were about 10 times as sensitive to acidity as either bacterial growth or root growth alone. Nodulation was the most acid-sensitive step.  相似文献   

16.
The aim of this study was to evaluate the effect of five methods of Rhizobium inoculum application on nodulation and nitrogen fixation in Leucaena leucocephala seedlings cultivated for 6 months in the greenhouse. Plants inoculated with alginate beads were significantly more developed and more nodulated than plants inoculated with the other methodologies used.  相似文献   

17.
Nitrogen-fixing symbiosis between photosynthetic bacteria and legumes   总被引:4,自引:0,他引:4  
Rhizobia having photosynthetic systems form nitrogen-fixing nodules on the stem and/or root of some species of the legumes Aeschynomene and Lotononis. This review is focused on the recent knowledge about the physiology, genetics and role of the photosystem in these bacteria. Photosynthetic electron transport seems to involve reaction centers, soluble cytochrome c2 and cytochrome bc1. Anaerobically, the electron transport system becomes over-reduced. The photosynthesis genes have been partially characterized; their organization is classical but their regulation is unusual as it is activated by far-red light via a bacteriophytochrome. This original mechanism of regulation seems well adapted to promote photosynthesis during stem symbiosis. Photosynthesis plays a major role in the efficiency of stem nodulation. It is also observed that infrared light stimulates nitrogen fixation in nodules containing photosynthetic bacteroids, suggesting that photosynthesis may additionally provides energy for nitrogen fixation, allowing for more efficient plant growth. Other aspects of these bacteria are discussed, in particular their taxonomic position and nodulation ability, the role of carotenoids and the potential for application of photosynthetic rhizobia in rice culture. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Legume plants adapt to low nitrogen by developing an endosymbiosis with nitrogen‐fixing soil bacteria to form a new specific organ: the nitrogen‐fixing nodule. In the Medicago truncatula model legume, the MtCRE1 cytokinin receptor is essential for this symbiotic interaction. As three other putative CHASE‐domain containing histidine kinase (CHK) cytokinin receptors exist in M. truncatula, we determined their potential contribution to this symbiotic interaction. The four CHKs have extensive redundant expression patterns at early nodulation stages but diverge in differentiated nodules, even though MtCHK1/MtCRE1 has the strongest expression at all stages. Mutant and knock‐down analyses revealed that other CHKs than MtCHK1/CRE1 are positively involved in nodule initiation, which explains the delayed nodulation phenotype of the chk1/cre1 mutant. In addition, cre1 nodules exhibit an increased growth, whereas other chk mutants have no detectable phenotype, and the maintained nitrogen fixation capacity in cre1 requires other CHK genes. Interestingly, an AHK4/CRE1 genomic locus from the aposymbiotic Arabidopsis plant rescues nodule initiation but not the nitrogen fixation capacity. This indicates that different CHK cytokinin signalling pathways regulate not only nodule initiation but also later developmental stages, and that legume‐specific determinants encoded by the MtCRE1 gene are required for later nodulation stages than initiation.  相似文献   

19.
Summary Nitrogen fixing trees and shrubs may be useful in revegetation efforts. Speculation that insufficient endophyte populations in surface soils may limit non-leguminous symbiotic nitrogen fixation in marginal land was explored.Purshia tridentata andP. glandulosa seedlings were grown in greenhouse trials using ten soils from nativePurshia sites. Treatments include a control, an inoculated treatment, and six mmole nitrogen amendment. When inoculated with aP.tridentata crushed nodule inoculum, two of five non-nodulating soils and three sparsely nodulating soils produced well nodulated plants. Inoculation also increased nodule mass, total nitrogen, nitrogen content and shoot dry mass in plants from some of the soils. Of the three soils failing to produce nodulated plants when inoculated, one produced plants that responded well to nitrogen additions but failed to nodulate under low nitrogen conditions; another produced severely stunted plants indicating nutritional limitations on the host; and the third produced plants that were not nitrogen deficient. An application of nitrogen completely suppressed nodulation in all but one soil. The twoPurshia species were similar in nodulation, nitrogen fixation and growth, although important exceptions exist that indicate species may differ in adaptability to certain soil conditions.  相似文献   

20.
Seeds of three species of lupine (Lupinus termis, L. triticale andL. albus) were tested to determine if the seed contains diffusable substances toxic to bradyrhizobia.L. albus seeds were less toxic to bradyrhizobia, followed byL. triticale. Six strains ofBradyrhizobium were evaluated for their resistance to the toxic substances in lupine seeds. Zones of growth inhibition were determined on yeast-mannitol-agar medium surrounding surface-sterilized seed. The effect of surface sterilization of seeds by different chemical treatments on seed toxicity was assessed. Seeds soaked in water for 1 h before placing on agar surface significantly decreased the inhibition zone. Also, the effect of soaking seeds in water for 4 h before planting and inoculation on nodulation, nitrogen fixation and plant growth were investigated. Addition of seed diffusate to soaked seeds significantly decreased nodulation and plant growth. Autoclaving the seed diffusate had no effect on the toxicity of the seed diffusate. Addition of the absorbent polyvinylpolypyrrolidone (PVPP) to seed diffusates significantly decreased the inhibitory effect of seed diffusate on nodulation and plant growth. Seed diffusate substances were water-soluble, heat-stable and partially bound to PVPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号