首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metaphase-anaphase transition during mitosis is carefully regulated in order to assure high-fidelity transmission of genetic information to the daughter cells. A surveillance mechanism known as the metaphase checkpoint (or spindle-assembly checkpoint) monitors the attachment of kinetochores to the spindle microtubules, and inhibits anaphase onset until all chromosomes have achieved a proper bipolar orientation on the spindle. Defects in this checkpoint lead to premature anaphase onset, and consequently to greatly increased rates of aneuploidy. Here we show that the Drosophila kinetochore components Rough deal (Rod) and Zeste-White 10 (Zw10) are required for the proper functioning of the metaphase checkpoint in flies. Drosophila cells lacking either ROD or Zw10 exhibit a phenotype that is similar to that of bub1 mutants - they do not arrest in metaphase in response to spindle damage, but instead separate sister chromatids, degrade cyclin B and exit mitosis. These are the first checkpoint components to be identified that do not have obvious homologues in budding yeast.  相似文献   

2.
Chromosome bipolar attachment is achieved when sister kinetochores are attached by microtubules emanating from opposite spindle poles, and this process is essential for faithful chromosome segregation during anaphase. A fundamental question in cell biology is how cells ensure that chromosome segregation only occurs after bipolar attachment. It is well documented that unattached kinetochores activate the spindle assembly checkpoint (SAC) to delay chromosome segregation. Therefore, the silencing of the SAC is thought to trigger anaphase onset, but how correct chromosome attachment is coupled with SAC silencing and the subsequent anaphase onset is poorly understood. The establishment of chromosome bipolar attachment not only results in the occupancy of kinetochores by microtubules but also applies tension on sister kinetochores. A long-standing debate is whether the kinetochore attachment (occupancy) or the tension silences the SAC. Recent work in budding yeast reveals the SAC silencing network SSN that prevents SAC silencing prior to tension generation at kinetochores. Therefore, this signaling pathway ensures that SAC silencing and the subsequent anaphase onset occur only after chromosome bipolar attachment applies tension on chromosomes. This review will summarize the recent advances in the understanding of the SAC silencing process.  相似文献   

3.
Merotelic kinetochore attachment is a major source of aneuploidy in mammalian tissue cells in culture. Mammalian kinetochores typically have binding sites for about 20-25 kinetochore microtubules. In prometaphase, kinetochores become merotelic if they attach to microtubules from opposite poles rather than to just one pole as normally occurs. Merotelic attachments support chromosome bi-orientation and alignment near the metaphase plate and they are not detected by the mitotic spindle checkpoint. At anaphase onset, sister chromatids separate, but a chromatid with a merotelic kinetochore may not be segregated correctly, and may lag near the spindle equator because of pulling forces toward opposite poles, or move in the direction of the wrong pole. Correction mechanisms are important for preventing segregation errors. There are probably more than 100 times as many PtK1 tissue cells with merotelic kinetochores in early mitosis, and about 16 times as many entering anaphase as the 1% of cells with lagging chromosomes seen in late anaphase. The role of spindle mechanics and potential functions of the Ndc80/Nuf2 protein complex at the kinetochore/microtubule interface is discussed for two correction mechanisms: one that functions before anaphase to reduce the number of kinetochore microtubules to the wrong pole, and one that functions after anaphase onset to move merotelic kinetochores based on the ratio of kinetochore microtubules to the correct versus incorrect pole.  相似文献   

4.
《The Journal of cell biology》1995,129(5):1195-1204
The transition from metaphase to anaphase is regulated by a checkpoint system that prevents chromosome segregation in anaphase until all the chromosomes have aligned at the metaphase plate. We provide evidence indicating that a kinetochore phosphoepitope plays a role in this checkpoint pathway. The 3F3/2 monoclonal antibody recognizes a kinetochore phosphoepitope in mammalian cells that is expressed on chromosomes before their congression to the metaphase plate. Once chromosomes are aligned, expression is lost and cells enter anaphase shortly thereafter. When microinjected into prophase cells, the 3F3/2 antibody caused a concentration-dependent delay in the onset of anaphase. Injected antibody inhibited the normal dephosphorylation of the 3F3/2 phosphoepitope at kinetochores. Microinjection of the antibody eliminated the asymmetric expression of the phosphoepitope normally seen on sister kinetochores of chromosomes during their movement to the metaphase plate. Chromosome movement to the metaphase plate appeared unaffected in cells injected with the antibody suggesting that asymmetric expression of the phosphoepitope on sister kinetochores is not required for chromosome congression to the metaphase plate. In antibody-injected cells, the epitope remained expressed at kinetochores throughout the prolonged metaphase, but had disappeared by the onset of anaphase. When normal cells in metaphase, lacking the epitope at kinetochores, were treated with agents that perturb microtubules, the 3F3/2 phosphoepitope quickly reappeared at kinetochores. Immunoelectron microscopy revealed that the 3F3/2 epitope is concentrated in the middle electronlucent layer of the trilaminar kinetochore structure. We propose that the 3F3/2 kinetochore phosphoepitope is involved in detecting stable kinetochore-microtubule attachment or is a signaling component of the checkpoint pathway regulating the metaphase to anaphase transition.  相似文献   

5.
The spindle checkpoint prevents errors in chromosome segregation by inhibiting anaphase onset until all chromosomes have aligned at the spindle equator through attachment of their sister kinetochores to microtubules from opposite spindle poles. A key checkpoint component is the mitotic arrest-deficient protein 2 (Mad2), which localizes to unattached kinetochores and inhibits activation of the anaphase-promoting complex (APC) through an interaction with Cdc20. Recent studies have suggested a catalytic model for kinetochore function where unattached kinetochores provide sites for assembling and releasing Mad2-Cdc20 complexes, which sequester Cdc20 and prevent it from activating the APC. To test this model, we examined Mad2 dynamics in living PtK1 cells that were either injected with fluorescently labeled Alexa 488-XMad2 or transfected with GFP-hMAD2. Real-time, digital imaging revealed fluorescent Mad2 localized to unattached kinetochores, spindle poles, and spindle fibers depending on the stage of mitosis. FRAP measurements showed that Mad2 is a transient component of unattached kinetochores, as predicted by the catalytic model, with a t(1/2) of approximately 24-28 s. Cells entered anaphase approximately 10 min after Mad2 was no longer detectable on the kinetochores of the last chromosome to congress to the metaphase plate. Several observations indicate that Mad2 binding sites are translocated from kinetochores to spindle poles along microtubules. First, Mad2 that bound to sites on a kinetochore was dynamically stretched in both directions upon microtubule interactions, and Mad2 particles moved from kinetochores toward the poles. Second, spindle fiber and pole fluorescence disappeared upon Mad2 disappearance at the kinetochores. Third, ATP depletion resulted in microtubule-dependent depletion of Mad2 fluorescence at kinetochores and increased fluorescence at spindle poles. Finally, in normal cells, the half-life of Mad2 turnover at poles, 23 s, was similar to kinetochores. Thus, kinetochore-derived sites along spindle fibers and at spindle poles may also catalyze Mad2 inhibitory complex formation.  相似文献   

6.
The spindle checkpoint monitors microtubule attachment and tension at kinetochores to ensure proper chromosome segregation. Previously, PtK1 cells in hypothermic conditions (23 degrees C) were shown to have a pronounced mitotic delay, despite having normal numbers of kinetochore microtubules. At 23 degrees C, we found that PtK1 cells remained in metaphase for an average of 101 min, compared with 21 min for cells at 37 degrees C. The metaphase delay at 23 degrees C was abrogated by injection of Mad2 inhibitors, showing that Mad2 and the spindle checkpoint were responsible for the prolonged metaphase. Live cell imaging showed that kinetochore Mad2 became undetectable soon after chromosome congression. Measurements of the stretch between sister kinetochores at metaphase found a 24% decrease in tension at 23 degrees C, and metaphase kinetochores at 23 degrees C exhibited higher levels of 3F3/2, Bub1, and BubR1 compared with 37 degrees C. Microinjection of anti-BubR1 antibody abolished the metaphase delay at 23 degrees C, indicating that the higher kinetochore levels of BubR1 may contribute to the delay. Disrupting both Mad2 and BubR1 function induced anaphase with the same timing as single inhibitions, suggesting that these checkpoint genes function in the same pathway. We conclude that reduced tension at kinetochores with a full complement of kinetochore microtubules induces a checkpoint dependent metaphase delay associated with elevated amounts of kinetochore 3F3/2, Bub1, and BubR1 labeling.  相似文献   

7.
8.
GJ Kops  JV Shah 《Chromosoma》2012,121(5):509-525
With the goal of creating two genetically identical daughter cells, cell division culminates in the equal segregation of sister chromatids. This phase of cell division is monitored by a cell cycle checkpoint known as the spindle assembly checkpoint (SAC). The SAC actively prevents chromosome segregation while one or more chromosomes, or more accurately kinetochores, remain unattached to the mitotic spindle. Such unattached kinetochores recruit SAC proteins to assemble a diffusible anaphase inhibitor. Kinetochores stop production of this inhibitor once microtubules (MTs) of the mitotic spindle are bound, but productive attachment of all kinetochores is required to satisfy the SAC, initiate anaphase, and exit from mitosis. Although mechanisms of kinetochore signaling and SAC inhibitor assembly and function have received the bulk of attention in the past two decades, recent work has focused on the principles of SAC silencing. Here, we review the mechanisms that silence SAC signaling at the kinetochore, and in particular, how attachment to spindle MTs and biorientation on the mitotic spindle may turn off inhibitor generation. Future challenges in this area are highlighted towards the goal of building a comprehensive molecular model of this process.  相似文献   

9.
Kinetochores can be thought of as having three major functions in chromosome segregation: (a) moving plateward at prometaphase; (b) participating in spindle checkpoint control; and (c) moving poleward at anaphase. Normally, kinetochores cooperate with opposed sister kinetochores (mitosis, meiosis II) or paired homologous kinetochores (meiosis I) to carry out these functions. Here we exploit three- and four-dimensional light microscopy and the maize meiotic mutant absence of first division 1 (afd1) to investigate the properties of single kinetochores. As an outcome of premature sister kinetochore separation in afd1 meiocytes, all of the chromosomes at meiosis II carry single kinetochores. Approximately 60% of the single kinetochore chromosomes align at the spindle equator during prometaphase/metaphase II, whereas acentric fragments, also generated by afd1, fail to align at the equator. Immunocytochemistry suggests that the plateward movement occurs in part because the single kinetochores separate into half kinetochore units. Single kinetochores stain positive for spindle checkpoint proteins during prometaphase, but lose their staining as tension is applied to the half kinetochores. At anaphase, approximately 6% of the kinetochores develop stable interactions with microtubules (kinetochore fibers) from both spindle poles. Our data indicate that maize meiotic kinetochores are plastic, redundant structures that can carry out each of their major functions in duplicate.  相似文献   

10.
Through a functional genomic screen for mitotic regulators, we identified hepatoma up-regulated protein (HURP) as a protein that is required for chromosome congression and alignment. In HURP-depleted cells, the persistence of unaligned chromosomes and the reduction of tension across sister kinetochores on aligned chromosomes resulted in the activation of the spindle checkpoint. Although these defects transiently delayed mitotic progression, HeLa cells initiated anaphase without resolution of these deficiencies. This bypass of the checkpoint arrest provides a tumor-specific mechanism for chromosome missegregation and genomic instability. Mechanistically, HURP colocalized with the mitotic spindle in a concentration gradient increasing toward the chromosomes. HURP binds directly to microtubules in vitro and enhances their polymerization. In vivo, HURP stabilizes mitotic microtubules, promotes microtubule polymerization and bipolar spindle formation, and decreases the turnover rate of the mitotic spindle. Thus, HURP controls spindle stability and dynamics to achieve efficient kinetochore capture at prometaphase, timely chromosome congression to the metaphase plate, and proper interkinetochore tension for anaphase initiation.  相似文献   

11.
During mitosis in Ptk1 cells anaphase is not initiated until, on average, 23 +/- 1 min after the last monooriented chromosome acquires a bipolar attachment to the spindle--an event that may require 3 h (Rieder, C. L., A. Schultz, R. W. Cole, and G. Sluder. 1994. J. Cell Biol. 127:1301-1310). To determine the nature of this cell-cycle checkpoint signal, and its site of production, we followed PtK1 cells by video microscopy prior to and after destroying specific chromosomal regions by laser irradiation. The checkpoint was relieved, and cells entered anaphase, 17 +/- 1 min after the centromere (and both of its associated sister kinetochores) was destroyed on the last monooriented chromosome. Thus, the checkpoint mechanism monitors an inhibitor of anaphase produced in the centromere of monooriented chromosomes. Next, in the presence of one monooriented chromosome, we destroyed one kinetochore on a bioriented chromosome to create a second monooriented chromosome lacking an unattached kinetochore. Under this condition anaphase began in the presence of the experimentally created monooriented chromosome 24 +/- 1.5 min after the nonirradiated monooriented chromosome bioriented. This result reveals that the checkpoint signal is not generated by the attached kinetochore of a monooriented chromosome or throughout the centromere volume. Finally, we selectively destroyed the unattached kinetochore on the last monooriented chromosome. Under this condition cells entered anaphase 20 +/- 2.5 min after the operation, without congressing the irradiated chromosome. Correlative light microscopy/elctron microscopy of these cells in anaphase confirmed the absence of a kinetochore on the unattached chromatid. Together, our data reveal that molecules in or near the unattached kinetochore of a monooriented PtK1 chromosome inhibit the metaphase-anaphase transition.  相似文献   

12.
In mitotic vertebrate tissue cells, chromosome congression to the spindle equator in prometaphase and segregation to the poles in anaphase depend on the movements of kinetochores at their kinetochore microtubule attachment sites. To test if kinetochores sense tension to control their states of movement poleward (P) and away from the pole (AP), we applied an external force to the spindle in preanaphase newt epithelial cells by stretching chromosome arms with microneedles. For monooriented chromosomes (only one kinetochore fiber), an abrupt stretch of an arm away from the attached pole induced the single attached kinetochore to persist in AP movement at about 2 μm/min velocity, resulting in chromosome movement away from the pole. When the stretch was reduced or the needle removed, the kinetochore switched to P movement at about 2 μm/min and pulled the chromosome back to near the premanipulation position within the spindle. For bioriented chromosomes (sister kinetochores attached to opposite poles) near the spindle equator, stretching one arm toward a pole placed the kinetochore facing away from the direction of stretch under tension and the sister facing toward the stretch under reduced tension or compression. Kinetochores under increased tension exhibited prolonged AP movement while kinetochores under reduced tension or compression exhibited prolonged P movement, moving the centromeres at about 2 μm/min velocities off the metaphase plate in the direction of stretch. Removing the needle resulted in centromere movement back to near the spindle equator at similar velocities. These results show that tension controls the direction of kinetochore movement and associated kinetochore microtubule assembly/disassembly to position centromeres within the spindle of vertebrate tissue cells. High tension induces persistent AP movement while low tension induces persistent P movement. The velocity of P and AP movement appears to be load independent and governed by the molecular mechanisms which attach kinetochores to the dynamic ends of kinetochore microtubules.  相似文献   

13.
Summary We have found that a brief treatment of either PtK2 cells or stamen hair cells ofTradescantia virginiana during metaphase with okadaic acid, a potent protein phosphatase inhibitor, results in asynchronous entry into anaphase. After this treatment, the interval for the separation of sister chromatids can be expanded from a few seconds to approximately 5 min. We have performed a series of immunolocalizations of cells with anti-tubulin antibodies and CREST serum, asking whether okadaic acid induces asynchronous entry into anaphase through changes in the organization of the spindle microtubules or through a loss in the attachment of spindle microtubules to the kinetochores. Our experiments clearly indicate that asynchronous entry into anaphase after phosphatase inhibitor treatment is not the result of either altered spindle microtubule organization or the long-term loss of microtubule attachment to kinetochores. The kinetochore fiber bundles for all of the separating chromosomes are normally of uniform length throughout anaphase, but after asynchronous entry into anaphase, different groups of kinetochore fiber bundles have distinctly different lengths. The reason for this difference in length is that once split apart, the daughter chromosomes begin their movement toward the spindle poles, with normal shortening of the kinetochore fiber bundle microtubules. Thus, okadaic acid treatment during metaphase does not affect anaphase chromosome movement once it has begun. Our results suggest that one or more protein phosphatases appear to play an important role during metaphase in the regulatory cascade that culminates in synchronous sister chromatid separation.  相似文献   

14.
Merotelic kinetochore orientation is a kinetochore-microtubule mis-attachment in which a single kinetochore binds microtubules to both spindle poles, rather than just one. Merotelic attachments occur frequently in early mitosis and can induce anaphase lagging chromosomes and aneuploidy if not corrected before anaphase onset. Merotelic kinetochore orientation does not interfere with chromosome alignment at the metaphase plate and does not activate the mitotic spindle checkpoint. However, a correction mechanism for merotelic attachment reduces the number of merotelic kinetochores entering anaphase, thus preventing chromosome mis-segregation. Result from many different studies support the idea that Aurora B kinase plays a critical role in this merotelic correction mechanism by phosphorylating key substrates at the kinetochore and promoting turnover of kinetochore microtubules. In addition, recent studies are starting to identify the possible ‘sensors’ of the system that would be able to detect the mis-attachment and communicate this to Aurora B. Here, I review these studies and discuss a model for how merotelic kinetochore orientation could be detected and corrected before anaphase onset.  相似文献   

15.
The proper segregation of sister chromatids in mitosis depends on bipolar attachment of all chromosomes to the mitotic spindle. We have identified the small molecule Hesperadin as an inhibitor of chromosome alignment and segregation. Our data imply that Hesperadin causes this phenotype by inhibiting the function of the mitotic kinase Aurora B. Mammalian cells treated with Hesperadin enter anaphase in the presence of numerous monooriented chromosomes, many of which may have both sister kinetochores attached to one spindle pole (syntelic attachment). Hesperadin also causes cells arrested by taxol or monastrol to enter anaphase within <1 h, whereas cells in nocodazole stay arrested for 3-5 h. Together, our data suggest that Aurora B is required to generate unattached kinetochores on monooriented chromosomes, which in turn could promote bipolar attachment as well as maintain checkpoint signaling.  相似文献   

16.
Cleavage of the cohesin subunit Scc1p/Mcd1p/Rad21 permits sister chromatid separation and is considered to trigger anaphase onset. It has also been suggested that the cohesin complex is essential for chromosome condensation and for assembling fully functional kinetochores. Here, we used vertebrate cells conditionally deficient in Scc1 to probe cohesin function in mitosis. Cells lacking cohesin arrest in prometaphase, with many chromosomes failing to align at a metaphase plate and high levels of the spindle assembly checkpoint protein, BubR1, at all kinetochores. We show that the structural integrity of chromosomes is normal in the absence of Scc1. Furthermore, specific inhibition of topoisomerase II, which is required for decatenation of replicated chromosomes, can bypass the cohesin requirement for metaphase chromosome alignment and spindle checkpoint silencing. Since the kinetochore effects of Scc1 deficiency can be compensated for by topoisomerase II inhibition, we conclude that Scc1 is not absolutely required for kinetochore assembly or function, and that its principal role in allowing the onset of anaphase is the establishment of sufficient inter-sister tension to allow biorientation.  相似文献   

17.
We used laser microsurgery to cut between the two sister kinetochores on bioriented prometaphase chromosomes to produce two chromosome fragments containing one kinetochore (CF1K). Each of these CF1Ks then always moved toward the spindle pole to which their kinetochores were attached before initiating the poleward and away-from-the-pole oscillatory motions characteristic of monooriented chromosomes. CF1Ks then either: (a) remained closely associated with this pole until anaphase (50%), (b) moved (i.e., congressed) to the spindle equator (38%), where they usually (13/19 cells) remained stably positioned throughout the ensuing anaphase, or (c) reoriented and moved to the other pole (12%). Behavior of congressing CF1Ks was indistinguishable from that of congressing chromosomes containing two sister kinetochores. Three-dimensional electron microscopic tomographic reconstructions of CF1Ks stably positioned on the spindle equator during anaphase revealed that the single kinetochore was highly stretched and/or fragmented and that numerous microtubules derived from the opposing spindle poles terminated in its structure. These observations reveal that a single kinetochore is capable of simultaneously supporting the function of two sister kinetochores during chromosome congression and imply that vertebrate kinetochores consist of multiple domains whose motility states can be regulated independently.  相似文献   

18.
In mitotic cells, an error in chromosome segregation occurs when a chromosome is left near the spindle equator after anaphase onset (lagging chromosome). In PtK1 cells, we found 1.16% of untreated anaphase cells exhibiting lagging chromosomes at the spindle equator, and this percentage was enhanced to 17.55% after a mitotic block with 2 microM nocodazole. A lagging chromosome seen during anaphase in control or nocodazole-treated cells was found by confocal immunofluorescence microscopy to be a single chromatid with its kinetochore attached to kinetochore microtubule bundles extending toward opposite poles. This merotelic orientation was verified by electron microscopy. The single kinetochores of lagging chromosomes in anaphase were stretched laterally (1.2--5.6-fold) in the directions of their kinetochore microtubules, indicating that they were not able to achieve anaphase poleward movement because of pulling forces toward opposite poles. They also had inactivated mitotic spindle checkpoint activities since they did not label with either Mad2 or 3F3/2 antibodies. Thus, for mammalian cultured cells, kinetochore merotelic orientation is a major mechanism of aneuploidy not detected by the mitotic spindle checkpoint. The expanded and curved crescent morphology exhibited by kinetochores during nocodazole treatment may promote the high incidence of kinetochore merotelic orientation that occurs after nocodazole washout.  相似文献   

19.
The movement of chromosomes during mitosis occurs on a bipolar, microtubule-based protein machine, the mitotic spindle. It has long been proposed that poleward chromosome movements that occur during prometaphase and anaphase A are driven by the microtubule motor cytoplasmic dynein, which binds to kinetochores and transports them toward the minus ends of spindle microtubules. Here we evaluate this hypothesis using time-lapse confocal microscopy to visualize, in real time, kinetochore and chromatid movements in living Drosophila embryos in the presence and absence of specific inhibitors of cytoplasmic dynein. Our results show that dynein inhibitors disrupt the alignment of kinetochores on the metaphase spindle equator and also interfere with kinetochore- and chromatid-to-pole movements during anaphase A. Thus, dynein is essential for poleward chromosome motility throughout mitosis in Drosophila embryos.  相似文献   

20.
Li Y  Yu W  Liang Y  Zhu X 《Cell research》2007,17(8):701-712
For proper chromosome segregation, all kinetochores must achieve bipolar microtubule (MT) attachment and subsequently align at the spindle equator before anaphase onset. The MT minus end-directed motor dynein/dynactin binds kinetoehores in prometaphase and has long been implicated in chromosome congression. Unfortunately, inactivation of dynein usually disturbs spindle organization, thus hampering evaluation of its kinetochore roles. Here we specifically eliminated kinetochore dynein/dynactin by RNAi-mediated depletion of ZW10, a protein essential for kinetochore localization of the motor. Time-lapse microscopy indicated markedly-reduced congression efficiency, though congressing chromosomes displayed similar velocities as in control cells. Moreover, cells frequently failed to achieve full chromosome alignment, despite their normal spindles. Confocal microcopy revealed that the misaligned kinetochores were monooriented or unattached and mostly lying outside the spindle, suggesting a difficulty to capture MTs from the opposite pole. Kinetoehores on monoastral spindles were dispersed farther away from the pole and exhibited only mild oscillation. Furthermore, inactivating dynein by other means generated similar phenotypes. Therefore, kinetochore dynein produces on monooriented kinetochores a poleward pulling force, which may contribute to efficient bipolar attachment by facilitating their proper microtubule captures to promote congression as well as full chromosome alignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号