首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that transforming growth factor-beta (TGF-beta) activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase, resulting in the stimulation of vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of stress-activated protein kinase/c- Jun N-terminal kinase (SAPK/JNK), another member of the MAP kinase superfamily, in TGF-beta-induced VEGF synthesis in these cells. TGF-beta markedly induced SAPK/JNK phosphorylation. SP600125, a specific inhibitor of SAPK/JNK, markedly reduced TGF-beta-induced VEGF synthesis. SP600125 suppressed TGF-beta-induced SAPK/JNK phosphorylation. PD98059, an inhibitor of upstream kinase of p44/p42 MAP kinase and SB203580, an inhibitor of p38 MAP kinase, each failed to reduce TGF-beta-induced SAPK/JNK phosphorylation. A combination of SP600125 and PD98059 or SP600125 and SB203580 suppressed TGF-beta-stimulated VEGF synthesis in an additive manner. These results strongly suggest that TGF-beta activates SAPK/JNK in osteoblasts, and that SAPK/JNK plays a role in addition to p42/p44 MAP kinase and p38 MAP kinase in TGF-beta-induced VEGF synthesis.  相似文献   

2.
Cigarette smoke extract induces endothelial cell injury via JNK pathway   总被引:5,自引:0,他引:5  
Cigarette smoking is the most crucial factor responsible for chronic obstructive pulmonary disease (COPD). The precise mechanisms of the development of the disease have, however, not been fully understood. Recently, impairment of pulmonary endothelial cells has been increasingly recognized as a critical pathophysiological process in COPD. To verify this hypothesis, we examined how cigarette smoke extract (CSE) damages human umbilical vein endothelial cells (HUVECs). CSE activated c-Jun N-terminal kinase (JNK), and treatment of HUVECs with SP600125, a specific inhibitor of the JNK pathway, significantly suppressed endothelial cell damage by CSE. In contrast, inhibition of the extracellular-regulated kinase or the p38 pathway did not affect the cytotoxicity of CSE. Furthermore, anti-oxidants superoxide dismutase and catalase reduced CSE-induced JNK phosphorylation and endothelial cell injury. These results indicate that CSE damages vascular endothelial cells through the JNK pathway activated, at least partially, by oxidative stress.  相似文献   

3.
We have demonstrated that ischemic neuronal death (apoptosis) of rat CA1 region of the hippocampus was prevented by infusing pituitary adenylate cyclase-activating polypeptide (PACAP) either intracerebroventricularly or intravenously. We have also demonstrated that the activity of mitogen-activated protein (MAP) kinase family members, including ERK (extracellular signal-regulated kinase), Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK) and p38, was increased in the hippocampus within 1-6 h after brain ischemia. The molecular mechanisms underlying the PACAP anti-apoptotic effect were demonstrated in this study. Ischemic stress had a strong influence on MAP kinase family, especially on JNK/SAPK and p38. PACAP inhibited the activation of JNK/SAPK and p38 after ischemic stress, while ERK is not suppressed. These findings suggest that PACAP inhibits the JNK/SAPK and p38 signaling pathways, thereby protecting neurons against apoptosis.  相似文献   

4.
We previously reported that basic fibroblast growth factor (FGF-2) activates stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p44/p42 mitogen-activated protein (MAP) kinase resulting in the stimulation of vascular endothelial growth factor (VEGF) release in osteoblast-like MC3T3-E1 cells and that FGF-2-activated p38 MAP kinase negatively regulates the VEGF release. In the present study, we investigated the effects of ciglitazone and pioglitazone, peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands, on the VEGF release by FGF-2 in MC3T3-E1 cells. The FGF-2-induced VEGF release was significantly enhanced by ciglitazone. The amplifying effect of ciglitazone was dose-dependent between 0.1 and 10 microM. Pioglitazone had a similar effect on the VEGF release. GW9662, an antagonist of PPAR-gamma, reduced the effects of ciglitazone and pioglitazone. Ciglitazone or pioglitazone markedly enhanced the phosphorylation of SAPK/JNK induced by FGF-2 without affecting both the FGF-2-induced phosphorylation of p44/p42 MAP kinase and p38 MAP kinase. GW9662 markedly reduced the amplification by ciglitazone of the SAPK/JNK phosphorylation. Taken together, these results strongly suggest that PPAR-gamma ligands up-regulate FGF-2-stimulated VEGF release resulting from amplifying activation of SAPK/JNK in osteoblasts.  相似文献   

5.
Nitric oxide (NO) induces apoptotic cell death in murine RAW 264.7 macrophages. To elucidate the inhibitory effects of protein kinase C (PKC) on NO-induced apoptosis, we generated clones of RAW 264.7 cells that overexpress one of the PKC isoforms and explored the possible interactions between PKC and three structurally related mitogen-activated protein (MAP) kinases in NO actions. Treatment of RAW 264.7 cells with sodium nitroprusside (SNP), a NO-generating agent, activated both c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38 kinase, but did not activate extracellular signal-regulated kinase (ERK)-1 and ERK-2. In addition, SNP-induced apoptosis was slightly blocked by the selective p38 kinase inhibitor (SB203580) but not by the MAP/ERK1 kinase inhibitor (PD098059). PKC transfectants (PKC-beta II, -delta, and -eta) showed substantial protection from cell death induced by the exposure to NO donors such as SNP and S-nitrosoglutathione (GSNO). In contrast, in RAW 264.7 parent or in empty vector-transformed cells, these NO donors induced internucleosomal DNA cleavage. Moreover, overexpression of PKC isoforms significantly suppressed SNP-induced JNK/SAPK and p38 kinase activation, but did not affect ERK-1 and -2. We also explored the involvement of CPP32-like protease in the NO-induced apoptosis. Inhibition of CPP32-like protease prevented apoptosis in RAW 264.7 parent cells. In addition, SNP dramatically activated CPP32 in the parent or in empty vector-transformed cells, while slightly activated CPP32 in PKC transfectants. Therefore, we conclude that PKC protects NO-induced apoptotic cell death, presumably nullifying the NO-mediated activation of JNK/SAPK, p38 kinase, and CPP32-like protease in RAW 264.7 macrophages.  相似文献   

6.
Catechin, one of the major flavonoids presented in plants such as tea, reportedly suppresses bone resorption. We previously reported that prostaglandin F(2alpha) (PGF(2alpha)) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells. To clarify the mechanism of catechin effect on osteoblasts, we investigated the effect of (--)-epigallocatechin gallate (EGCG), one of the major green tea flavonoids, on the VEGF synthesis by PGF(2alpha) in MC3T3-E1 cells. The PGF(2alpha)-induced VEGF synthesis was significantly enhanced by EGCG. The amplifying effect of EGCG was dose dependent between 10 and 100 microM. EGCG did not affect the PGF(2alpha)-induced phosphorylation of p44/p42 MAP kinase. SB203580, a specific inhibitor of p38 MAP kinase, and SP600125, a specific inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), reduced the PGF(2alpha)-induced VEGF synthesis. EGCG markedly enhanced the phosphorylation of SAPK/JNK induced by PGF(2alpha) without affecting the PGF(2alpha)-induced phosphorylation of p38 MAP kinase. SP600125 markedly reduced the amplification by EGCG of the SAPK/JNK phosphorylation. In addition, the PGF(2alpha)-induced phosphorylation of c-Jun was amplified by EGCG. These results strongly suggest that EGCG upregulate PGF(2alpha)-stimulated VEGF synthesis resulting from amplifying activation of SAPK/JNK in osteoblasts.  相似文献   

7.
It is recognized that heat shock protein 27 (HSP27) is highly expressed in heart. In the present study, we investigated whether platelet-derived growth factor (PDGF) phosphorylates HSP27 in mouse myocytes, and the mechanism underlying the HSP27 phosphorylation. Administration of PDGF-BB induced the phosphorylation of HSP27 at Ser-15 and -85 in mouse cardiac muscle in vivo. In primary cultured myocytes, PDGF-BB time dependently phosphorylated HSP27 at Ser-15 and -85. PDGF-BB stimulated the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase, and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) among the MAP kinase superfamily. SB203580, a specific inhibitor of p38 MAP kinase, reduced the PDGF-BB-stimulated phosphorylation of HSP27 at both Ser-15 and -85, and phosphorylation of p38 MAP kinase. However, PD98059, a specific inhibitor of MEK, or SP600125, a specific inhibitor of SAPK/JNK, failed to affect the HSP27 phosphorylation. These results strongly suggest that PDGF-BB phosphorylates HSP27 at Ser-15 and -85 via p38 MAP kinase in cardiac myocytes.  相似文献   

8.
Emphysema is one of the characteristic features of chronic obstructive pulmonary disease, which is caused mainly by cigarette smoking. Recent data have suggested that apoptosis and cell cycle arrest may contribute to the development of emphysema. In this study, we addressed the question of whether and how cigarette smoke affected Akt, which plays a critical role in cell survival and proliferation. In normal human lung fibroblasts, cigarette smoke extract (CSE) caused cell death, accompanying degradation of total and phosphorylated Akt (p-Akt), which was inhibited by MG132. CSE exposure resulted in preferential ubiquitination of the active Akt (myristoylated), rather than the inactive (T308A/S473A double mutant) Akt. Consistent with cytotoxicity, CSE induced a progressive decrease of phosphorylated human homolog of mouse double minute homolog 2 (p-HDM2) and phosphorylated apoptosis signal regulating kinase 1 (p-ASK1) with concomitant elevation of p53, p21, and phosphorylated p38 MAPK. Forced expression of the active Akt reduced both CSE-induced cytotoxicity and alteration in HDM2/p53/p21 and ASK1/p38 MAPK, compared with the inactive Akt. Of note, CSE induced expression of the tetratrico-peptide repeat domain 3 (TTC3), known as a ubiquitin ligase for active Akt. TTC3 siRNAs suppressed not only CSE-induced Akt degradation but also CSE-induced cytotoxicity. Accordingly, rat lungs exposed to cigarette smoke for 3 months showed elevated TTC3 expression and reduced Akt and p-Akt. Taken together, these data suggest that cigarette smoke induces cytotoxicity, partly through Akt degradation via the ubiquitin-proteasome system, in which TTC3 acts as a ubiquitin ligase for active Akt.  相似文献   

9.
We previously reported that prostaglandin D2 (PGD2) stimulates heat shock protein 27 (HSP27) induction through p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and p44/p42 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether (-)-epigallocatechin gallate (EGCG), the major polyphenol found in green tea, affects the induction of HSP27 in these cells and the mechanism. EGCG significantly reduced the HSP27 induction stimulated by PGD2 without affecting the levels of HSP70. The PGD2-induced phosphorylation of p38 MAP kinase or SAPK/JNK was not affected by EGCG. On the contrary, EGCG markedly suppressed the PGD2-induced phosphorylation of p44/p42 MAP kinase and MEK1/2. However, the PGD2-induced phosphorylation of Raf-1 was not inhibited by EGCG. These results strongly suggest that EGCG suppresses the PGD2-stimulated induction of HSP27 at the point between Raf-1 and MEK1/2 in osteoblasts.  相似文献   

10.
11.
Previous studies demonstrated that in vitro the protein kinase TAO2 activates MAP/ERK kinases (MEKs) 3, 4, and 6 toward their substrates p38 MAP kinase and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK). In this study, we examined the ability of TAO2 to activate stress-sensitive MAP kinase pathways in cells and the relationship between activation of TAO2 and potential downstream pathways. Over-expression of TAO2 activated endogenous JNK/SAPK and p38 but not ERK1/2. Cotransfection experiments suggested that TAO2 selectively activates MEK3 and MEK6 but not MEKs 1, 4, or 7. Coimmunoprecipitation demonstrated that endogenous TAO2 specifically associates with MEK3 and MEK6 providing one mechanism for preferential recognition of MEKs upstream of p38. Sorbitol, and to a lesser extent, sodium chloride, Taxol, and nocodazole increased TAO2 activity toward itself and kinase-dead MEKs 3 and 6. Activation of endogenous TAO2 during differentiation of C2C12 myoblasts paralleled activation of p38 but not JNK/SAPK, consistent with the idea that TAO2 is a physiological regulator of p38 under certain circumstances.  相似文献   

12.
AMP-activated protein kinase (AMPK) is recognized as a regulator of energy homeostasis. We have previously reported that basic fibroblast growth factor (FGF-2) stimulates vascular endothelial growth factor (VEGF) release through the activation of p44/p42 mitogen-activated protein (MAP) kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of AMPK in FGF-2-stimulated VEGF release in these cells. FGF-2 time-dependently induced the phosphorylation of AMPK α-subunit (Thr-172). Compound C, an AMPK inhibitor, which suppressed the FGF-2-induced phosphorylation of AMPK, significantly inhibited the VEGF release stimulated by FGF-2. The AMPK inhibitor also reduced the mRNA expression of VEGF induced by FGF-2. The FGF-2-induced phosphorylation of both p44/p42 MAP kinase and SAPK/JNK was attenuated by compound C. These results strongly suggest that AMPK positively regulates the FGF-2-stimulated VEGF synthesis via p44/p42 MAP kinase and SAPK/JNK in osteoblasts.  相似文献   

13.
The cytokine tumor necrosis factor alpha (TNF-alpha) stimulates the NF-kappaB, SAPK/JNK, and p38 mitogen-activated protein (MAP) kinase pathways by recruiting RIP1 and TRAF2 proteins to the tumor necrosis factor receptor 1 (TNFR1). Genetic studies have revealed that RIP1 links the TNFR1 to the IkappaB kinase (IKK) complex, whereas TRAF2 couples the TNFR1 to the SAPK/JNK cascade. In transfection studies, RIP1 and TRAF2 stimulate p38 MAP kinase activation, and dominant-negative forms of RIP1 and TRAF2 inhibit TNF-alpha-induced p38 MAP kinase activation. We found TNF-alpha-induced p38 MAP kinase activation and interleukin-6 (IL-6) production impaired in rip1(-/-) murine embryonic fibroblasts (MEF) but unaffected in traf2(-/-) MEF. Yet, both rip1(-/-) and traf2(-/-) MEF exhibit a normal p38 MAP kinase response to inducers of osmotic shock or IL-1alpha. Thus, RIP1 is a specific mediator of the p38 MAP kinase response to TNF-alpha. These studies suggest that TNF-alpha-induced activation of p38 MAP kinase and SAPK/JNK pathways bifurcate at the level of RIP1 and TRAF2. Moreover, endogenous RIP1 associates with the MAP kinase kinase kinase (MAP3K) MEKK3 in TNF-alpha-treated cells, and decreased TNF-alpha-induced p38 MAP kinase activation is observed in Mekk3(-/-) cells. Taken together, these studies suggest a mechanism whereby RIP1 may mediate the p38 MAP kinase response to TNF-alpha, by recruiting the MAP3K MEKK3.  相似文献   

14.
We have reported that prostaglandin F2(alpha) (PGF2(alpha)) activates p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells, and that p44/p42 MAP kinase plays a role in the PGF2(alpha)-induced heat shock protein 27 (HSP27). In the present study, we investigated the involvement of stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), a member of the MAP kinase superfamily, in PGF2(alpha)-induced HSP27 in MC3T3-E1 cells. PGF2(alpha) time dependently induced the phosphorylation of SAPK/JNK. SP600125, a specific inhibitor of SAPK/JNK, markedly reduced the PGF2(alpha)-stimulated HSP27 accumulation. The inhibitory effect of SP600125 was dose dependent in the range between 0.1 and 30 microM. SP600125 reduced the PGF2(alpha)-increased level of HSP27 mRNA. SP600125 suppressed the phosphorylation of SAPK/JNK induced by PGF2(alpha), but did not affect the PGF2(alpha)-induced phosphorylation of p44/p42 MAP kinase. On the other hand, PD98059, a specific inhibitor of the upstream kinase of p44/p42 MAP kinase, which reduced the phosphorylation of p44/p42 MAP kinase stimulated by PGF2(alpha), had little effect on the PGF2(alpha)-induced phosphorylation of SAPK/JNK. These results strongly suggest that SAPK/JNK plays a part in PGF2(alpha)-induced HSP27 in addition to p44/p42 MAP kinase in osteoblasts.  相似文献   

15.
Up-regulation of cytosolic phospholipase A(2) (cPLA(2)) by cigarette smoke extract (CSE) may play a critical role in airway inflammatory diseases. However, the mechanisms underlying CSE-induced cPLA(2) expression in human tracheal smooth muscle cells (HTSMCs) were not completely understood. Here, we demonstrated that CSE-induced cPLA(2) protein and mRNA expression was inhibited by pretreatment with the inhibitors of AP-1 (tanshinone IIA) and p300 (garcinol) or transfection with siRNAs of c-Jun, c-Fos, and p300. Moreover, CSE also induced c-Jun and c-Fos expression, which were inhibited by pretreatment with the inhibitors of NADPH oxidase (diphenyleneiodonium chloride and apocynin) and the ROS scavenger (N-acetyl-L-cysteine) or transfection with siRNAs of p47(phox) and NADPH oxidase (NOX)2. CSE-induced c-Fos expression was inhibited by pretreatment with the inhibitors of MEK1 (U0126) and p38 MAPK (SB202190) or transfection with siRNAs of p42 and p38. CSE-induced c-Jun expression and phosphorylation were inhibited by pretreatment with the inhibitor of JNK1/2 (SP600125) or transfection with JNK2 siRNA. CSE-stimulated p300 phosphorylation was inhibited by pretreatment with the inhibitors of NADPH oxidase and JNK1/2. Furthermore, CSE-induced p300 and c-Jun complex formation was inhibited by pretreatment with diphenyleneiodonium chloride, apocynin, N-acetyl-L-cysteine or SP600125. These results demonstrated that CSE-induced cPLA(2) expression was mediated through NOX2-dependent p42/p44 MAPK and p38 MAPK/c-Fos and JNK1/2/c-Jun/p300 pathways in HTSMCs.  相似文献   

16.
Although it is known that transforming growth factor (TGF)-beta induces vascular endothelial growth factor (VEGF) synthesis in vascular smooth muscle cells, the underlying mechanisms are still poorly understood. In the present study, we examined whether the mitogen-activated protein (MAP) kinase superfamily is involved in TGF-beta-stimulated VEGF synthesis in aortic smooth muscle A10 cells. TGF-beta stimulated the phosphorylation of p42/p44 MAP kinase and p38 MAP kinase, but not that of SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase). The VEGF synthesis induced by TGF-beta was not affected by PD98059 or U0126, specific inhibitors of the upstream kinase that activates p42/p44 MAP kinase. We confirmed that PD98059 or U0126 did actually suppress the phosphorylation of p42/p44 MAP kinase by TGF-beta in our preparations. PD169316 and SB203580, specific inhibitors of p38 MAP kinase, significantly reduced the TGF-beta-stimulated synthesis of VEGF (each in a dose-dependent manner). PD169316 or SB203580 attenuated the TGF-beta-induced phosphorylation of p38 MAP kinase. These results strongly suggest that p38 MAP kinase plays a part in the pathway by which TGF-beta stimulates the synthesis of VEGF in aortic smooth muscle cells.  相似文献   

17.
It is recognized that Wnt3a affects bone metabolism via the canonical Wnt/β-catenin signalling pathway. We have previously shown that transforming growth factor-β (TGF-β) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of Wnt3a on TGF-β-stimulated VEGF synthesis in these cells. Wnt3a, which alone had little effect on the VEGF levels, significantly enhanced the TGF-β-stimulated VEGF release. Lithium chloride and SB216763, inhibitors of glycogen synthase kinase 3β, markedly amplified the TGF-β-stimulated VEGF release. Wnt3a failed to affect the TGF-β-induced phosphorylation of Smad2, p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. Wnt3a and lithium chloride strengthened the VEGF mRNA expression induced by TGF-β. These results strongly suggest that Wnt3a upregulates VEGF synthesis stimulated by TGF-β via activation of the canonical pathway in osteoblasts.  相似文献   

18.
We previously reported that prostaglandin D(2) (PGD(2)) stimulates the induction of heat shock protein 27 (HSP27) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether PGD(2) stimulates the phosphorylation of HSP27 in MC3T3-E1 cells exposed to heat shock. In the cultured MC3T3-E1 cells, PGD(2) markedly stimulated the phosphorylation of HSP27 at Ser-15 and Ser-85 in a time-dependent manner. Among the mitogen-activated protein (MAP) kinase superfamily, p44/p42 MAP kinase and p38 MAP kinase were phosphorylated by PGD(2) which had little effect on the phosphorylation of stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). The PGD(2)-induced phosphorylation of HSP27 was attenuated by PD169316, an inhibitor of p38 MAP kinase or PD98059, a MEK inhibitor. SP600125, a SAPK/JNK inhibitor did not affect the HSP27 phosphorylation. In addition, PD169316 suppressed the PGD(2)-induced phosphorylation of MAPKAP kinase 2. These results strongly suggest that PGD(2) stimulates HSP27 phosphorylation via p44/p42 MAP kinase and p38 MAP kinase but not SAPK/JNK in osteoblasts.  相似文献   

19.
Apoptosis was induced in human glioma cell lines by exposure to 100 nM calphostin C, a specific inhibitor of protein kinase C. Calphostin C-induced apoptosis was associated with synchronous down-regulation of Bcl-2 and Bcl-xL as well as activation of caspase-3 but not caspase-1. The exposure to calphostin C led to activation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) and p38 kinase and concurrent inhibition of extracellular signal-regulated kinase (ERK). Upstream of ERK, Shc was shown to be activated, but its downstream Raf1 and ERK were inhibited. The pretreatment with acetyl-Tyr-Val-Ala-Asp-aldehyde, a relatively selective inhibitor of caspase-3, or benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD.fmk), a broad spectrum caspase inhibitor, similarly inhibited calphostin C-induced activation of SAPK/JNK and p38 kinase as well as apoptotic nuclear damages (chromatin condensation and DNA fragmentation) and cell shrinkage, suggesting that caspase-3 functions upstream of SAPK/JNK and p38 kinase, but did not block calphostin C-induced surface blebbing and cell death. On the other hand, the inhibition of SAPK/JNK by transfection of dominant negative SAPK/JNK and that of p38 kinase by SB203580 induced similar effects on the calphostin C-induced apoptotic phenotypes and cell death as did z-VAD.fmk and acetyl-Tyr-Val-Ala-Asp-aldehyde, but the calphostin C-induced PARP cleavage was not changed, suggesting that SAPK/JNK and p38 kinase are involved in the DNA fragmentation pathway downstream of caspase-3. The present findings suggest, therefore, that the activation of SAPK/JNK and p38 kinase is dispensable for calphostin C-mediated and z-VAD.fmk-resistant cell death.  相似文献   

20.
We previously reported that transforming growth factor-beta (TGF-beta) stimulates heat shock protein 27 (HSP27) induction through p38 mitogen-activated protein (MAP) kinase and extracellular signal-regulated kinase 1/2 (ERK1/2) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether (-)-epigallocatechin gallate (EGCG), the major polyphenol found in green tea, affects the TGF-beta-stimulated induction of HSP27 in these cells, and its underlying mechanism. EGCG significantly suppressed the HSP27 induction stimulated by TGF-beta in a dose-dependent manner between 10 and 30 microM without affecting the HSP70 levels. TGF-beta with or without EGCG did not affect the advanced oxidation protein products. The TGF-beta-induced phosphorylation of p38 MAP kinase and ERK1/2 was not affected by EGCG. SP600125, a specific inhibitor of stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), markedly reduced the HSP27 expression induced by TGF-beta. EGCG significantly suppressed the TGF-beta-induced phosphorylation of SAPK/JNK without affecting the phosphorylation of Smad2. EGCG attenuated the phosphorylation of both MKK4 and TAK1 induced by TGF-beta. These results strongly suggest that EGCG suppresses the TGF-beta-stimulated induction of HSP27 via the attenuation of the SAPK/JNK pathway in osteoblasts, and that this effect is exerted at a point upstream from TAK1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号