首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The Chinese winter wheat cultivar Zhoumai 22 is highly resistant to powdery mildew. The objectives of this study were to map a powdery mildew resistance gene in Zhoumai 22 using molecular markers and investigate its allelism with Pm13. A total of 278 F2 and 30 BC1 plants, and 143 F3 lines derived from the cross between resistant cultivar Zhoumai 22 and susceptible cultivar Chinese Spring were used for resistance gene tagging. The 137 F2 plants from the cross Zhoumai 22/2761-5 (Pm13) were employed for the allelic test of the resistance genes. Two hundred and ten simple sequence repeat (SSR) markers were used to test the two parents, and resistant and susceptible bulks. Subsequently, seven polymorphic markers were used for genotyping the F2 and F3 populations. The results indicated that the powdery mildew resistance in Zhoumai 22 was conferred by a single dominant gene, designated PmHNK tentatively, flanked by seven SSR markers Xgwm299, Xgwm108, Xbarc77, Xbarc84, Xwmc326, Xwmc291 and Xwmc687 on chromosome 3BL. The resistance gene was closely linked to Xwmc291 and Xgwm108, with genetic distances of 3.8 and 10.3 cM, respectively, and located on the chromosome bin 3BL-7-0.63-1.0 in the test with a set of deletion lines. Seedling tests with seven isolates of Blumeria graminis f. sp. tritici (Bgt) and allellic test indicated that PmHNK is different from Pm13, and Pm41 seems also to be different from PmHNK due to its origin from T. dicoccoides and molecular evidence. These results indicate that PmHNK is likely to be a novel powdery mildew resistance gene in wheat.  相似文献   

2.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases worldwide in areas with cool or maritime climates. Wild emmer (Triticum turgidum var. dicoccoides) is an important potential donor of disease resistances and other traits for common wheat improvement. A powdery mildew resistance gene was transferred from wild emmer accession G-303-1M to susceptible common wheat by crossing and backcrossing, resulting in inbred line P63 (Yanda1817/G-303-1 M//3*Jing411, BC2F6). Genetic analysis of an F2 population and the F2:3 families developed from a cross of P63 and a susceptible common wheat line Xuezao showed that the powdery mildew resistance in P63 was controlled by a single recessive gene. Molecular markers and bulked segregant analysis were used to characterize and map the powdery mildew resistance gene. Nine genomic SSR markers (Xbarc7, Xbarc55, Xgwm148, Xgwm257, Xwmc35, Xwmc154, Xwmc257, Xwmc382, Xwmc477), five AFLP-derived SCAR markers (XcauG3, XcauG6, XcauG10, XcauG20, XcauG22), three EST–STS markers (BQ160080, BQ160588, BF146221) and one RFLP-derived STS marker (Xcau516) were linked to the resistance gene, designated pm42, in P63. pm42 was physically mapped on chromosome 2BS bin 0.75–0.84 using Chinese Spring nullisomic-tetrasomic, ditelosomic and deletion lines, and was estimated to be more than 30 cM proximal to Xcau516, a RFLP-derived STS marker that co-segregated with the wild emmer-derived Pm26 which should be physically located in 2BS distal bin 0.84–1.00. pm42 was highly effective against 18 of 21 differential Chinese isolates of B. graminis f. sp. tritici. The closely linked molecular markers will enable the rapid transfer of pm42 to wheat breeding populations thus adding to their genetic diversity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. W. Hua, Z. Liu, and J. Zhu contributed equally to this work.  相似文献   

3.
A single gene controlling powdery mildew resistance was identified in the North Carolina germplasm line NC96BGTD3 (NCD3) using genetic analysis of F2 derived lines from a NCD3 X Saluda cross. Microsatellite markers linked to this Pm gene were identified and their most likely order was Xcfd7, 10.3 cM, Xgdm43, 8.6 cM, Xcfd26, 11.9 cM, Pm gene. These markers and the Pm gene were assigned to chromosome 5DL by means of Chinese Spring Nullitetrasomic (Nulli5D-tetra5A) and ditelosomic (Dt5DL) lines. A detached leaf test showed a distinctive disease reaction to six pathogen isolates among the NCD3 Pm gene, Pm2 (5DS) and Pm34 (5DL). An allelism test showed independence between Pm34 and the NCD3 Pm gene. Together, the tests provided strong evidence for the presence of a novel Pm gene in NCD3, and this gene was designated Pm35.  相似文献   

4.
Powdery mildew is an important foliar disease in wheat, especially in areas with a cool or maritime climate. A dominant powdery mildew resistance gene transferred to the hexaploid germplasm line NC99BGTAG11 from T. timopheevii subsp. armeniacum was mapped distally on the long arm of chromosome 7A. Differential reactions were observed between the resistance gene in NC99BGTAG11 and the alleles of the Pm1 locus that is also located on chromosome arm 7AL. Observed segregation in F2:3 lines from the cross NC99BGTAG11 × Axminster (Pm1a) demonstrate that germplasm line NC99BGTAG11 carries a novel powdery mildew resistance gene, which is now designated as Pm37. This new gene is highly effective against all powdery mildew isolates tested so far. Analyses of the population with molecular markers indicate that Pm37 is located 16 cM proximal to the Pm1 complex. Simple sequence repeat (SSR) markers Xgwm332 and Xwmc790 were located 0.5 cM proximal and distal, respectively, to Pm37. In order to identify new markers in the region, wheat expressed sequence tags (ESTs) located in the distal 10% of 7AL that were orthologous to sequences from chromosome 6 of rice were targeted. The two new EST-derived STS markers were located distal to Pm37 and one marker was closely linked to the Pm1a region. These new markers can be used in marker-assisted selection schemes to develop wheat cultivars with pyramids of powdery mildew resistance genes, including combinations of Pm37 in coupling linkage with alleles of the Pm1 locus.  相似文献   

5.
Wheat powdery mildew is an economically important disease in cool and humid environments. Powdery mildew causes yield losses as high as 48% through a reduction in tiller survival, kernels per head, and kernel size. Race-specific host resistance is the most consistent, environmentally friendly and, economical method of control. The wheat (Triticum aestivum L.) germplasm line NC06BGTAG12 possesses genetic resistance to powdery mildew introgressed from the AAGG tetraploid genome Triticum timopheevii subsp. armeniacum. Phenotypic evaluation of F3 families derived from the cross NC06BGTAG12/‘Jagger’ and phenotypic evaluation of an F2 population from the cross NC06BGTAG12/‘Saluda’ indicated that resistance to the ‘Yuma’ isolate of powdery mildew was controlled by a single dominant gene in NC06BGTAG12. Bulk segregant analysis (BSA) revealed simple sequence repeat (SSR) markers specific for chromosome 7AL segregating with the resistance gene. The SSR markers Xwmc273 and Xwmc346 mapped 8.3 cM distal and 6.6 cM proximal, respectively, in NC06BGTAG12/Jagger. The multiallelic Pm1 locus maps to this region of chromosome 7AL. No susceptible phenotypes were observed in an evaluation of 967 F2 individuals in the cross NC06BGTAG12/‘Axminster’ (Pm1a) which indicated that the NC06BGTAG12 resistance gene was allelic or in close linkage with the Pm1 locus. A detached leaf test with ten differential powdery mildew isolates indicated the resistance in NC06BGTAG12 was different from all designated alleles at the Pm1 locus. Further linkage and allelism tests with five other temporarily designated genes in this very complex region will be required before giving a permanent designation to this gene. At this time the gene is given the temporary gene designation MlAG12.  相似文献   

6.
The common wheat genotype ‘RL6077’ was believed to carry the gene Lr34/Yr18 that confers slow-rusting adult plant resistance (APR) to leaf rust and stripe rust but located to a different chromosome through inter-chromosomal reciprocal translocation. However, haplotyping using the cloned Lr34/Yr18 diagnostic marker and the complete sequencing of the gene indicated Lr34/Yr18 is absent in RL6077. We crossed RL6077 with the susceptible parent ‘Avocet’ and developed F3, F4 and F6 populations from photoperiod-insensitive F3 lines that were segregating for resistance to leaf rust and stripe rust. The populations were characterized for leaf rust resistance at two Mexican sites, Cd. Obregon during the 2008–2009 and 2009–2010 crop seasons, and El Batan during 2009, and for stripe rust resistance at Toluca, a third Mexican site, during 2009. The F3 population was also evaluated for stripe rust resistance at Cobbitty, Australia, during 2009. Most lines had correlated responses to leaf rust and stripe rust, indicating that either the same gene, or closely linked genes, confers resistance to both diseases. Molecular mapping using microsatellites led to the identification of five markers (Xgwm165, Xgwm192, Xcfd71, Xbarc98 and Xcfd23) on chromosome 4DL that are associated with this gene(s), with the closest markers being located at 0.4 cM. In a parallel study in Canada using a Thatcher × RL6077 F3 population, the same leaf rust resistance gene was designated as Lr67 and mapped to the same chromosomal region. The pleiotropic, or closely linked, gene derived from RL6077 that conferred stripe rust resistance in this study was designated as Yr46. The slow-rusting gene(s) Lr67/Yr46 can be utilized in combination with other slow-rusting genes to develop high levels of durable APR to leaf rust and stripe rust in wheat.  相似文献   

7.
Huang XQ  Röder MS 《Genetica》2011,139(9):1179-1187
Genetic maps of wheat chromosome 1D consisting of 57 microsatellite marker loci were constructed using Chinese Spring (CS) × Chiyacao F2 and the International Triticeae Mapping Initiative (ITMI) recombinant inbred lines (RILs) mapping populations. Marker order was consistent, but genetic distances of neighboring markers were different in two populations. Physical bin map of 57 microsatellite marker loci was generated by means of 10 CS 1D deletion lines. The physical bin mapping indicated that microsatellite marker loci were not randomly distributed on chromosome 1D. Nineteen of the 24 (79.2%) microsatellite markers were mapped in the distal 30% genomic region of 1DS, whereas 25 of the 33 (75.8%) markers were assigned to the distal 59% region of 1DL. The powdery mildew resistance gene Pm24, originating from the Chinese wheat landrace Chiyacao, was previously mapped in the vicinity of the centromere on the short arm of chromosome 1D. A high density genetic map of chromosome 1D was constructed, consisting of 36 markers and Pm24, with a total map length of 292.7 cM. Twelve marker loci were found to be closely linked to Pm24. Pm24 was flanked by Xgwm789 (Xgwm603) and Xbarc229 with genetic distances of 2.4 and 3.6 cM, respectively, whereas a microsatellite marker Xgwm1291 co-segregated with Pm24. The microsatellite marker Xgwm1291 was assigned to the bin 1DS5-0.70-1.00 of the chromosome arm 1DS. It could be concluded that Pm24 is located in the ‘1S0.8 gene-rich region’, a highly recombinogenic region of wheat. The results presented here would provide a start point for the map-based cloning of Pm24.  相似文献   

8.
Powdery mildew, caused by Blumeria graminis f.sp. tritici, is one of the most important wheat diseases in many regions of the world. Triticum turgidum var. dicoccoides (2n=4x=AABB), the progenitor of cultivated wheats, shows particular promises as a donor of useful genetic variation for several traits, including disease resistances. The wild emmer accession MG29896, resistant to powdery mildew, was backcrossed to the susceptible durum wheat cultivar Latino, and a set of backcross inbred lines (BC(5)F(5)) was produced. Genetic analysis of F(3) populations from two resistant introgression lines (5BIL-29 x Latino and 5BIL-42 x Latino) indicated that the powdery mildew resistance is controlled by a single dominant gene. Molecular markers and the bulked segregant analysis were used to characterize and map the powdery mildew resistance. Five AFLP markers (XP43M32((250)), XP46M31((410)), XP41M37((100)), XP41M39((250)), XP39M32((120))), three genomic SSR markers (Xcfd07, Xwmc75, Xgwm408) and one EST-derived SSR marker (BJ261635) were found to be linked to the resistance gene in 5BIL-29 and only the BJ261635 marker in 5BIL-42. By means of Chinese Spring nullisomic-tetrasomic, ditelosomic and deletion lines, the polymorphic markers and the resistance gene were assigned to chromosome bin 5BL6-0.29-0.76. These results indicated that the two lines had the same resistance gene and that the introgressed dicoccoides chromosome segment was longer (35.5 cM) in 5BIL-29 than that introgressed in 5BIL-42 (less than 1.5 cM). As no powdery mildew resistance gene has been reported on chromosome arm 5BL, the novel resistance gene derived from var. dicoccoides was designated Pm36. The 244 bp allele of BJ261635 in 5BIL-42 can be used for marker-assisted selection during the wheat resistance breeding process for facilitating gene pyramiding.  相似文献   

9.
Powdery mildew caused by Blumeria graminis f. sp. tritici is an important wheat disease in China and other parts of the world. Wild emmer (Triticum turgidum var. dicoccoides) is the immediate progenitor of cultivated tetraploid and hexaploid wheats and thus an important resource for wheat improvement. Wild emmer accession IW2 collected from Mount Hermon, Israel, is highly resistant to powdery mildew at the seedling and adult plant stages. Genetic analysis using an F2 segregating population and F2:3 families, derived from a cross between susceptible durum cultivar Langdon and wild emmer accession IW2, indicated that a single dominant gene was responsible for the resistance of IW2. Bulked segregant and molecular marker analyses detected that six polymorphic SSR, one ISBP, and three EST-STS markers on chromosome 3BL bin 0.63–1.00 were linked to the resistance gene. Allelic variations of resistance-linked EST-STS marker BE489472 revealed that the allele was present only in wild emmer but absent in common wheat. Segregation distortion was observed for the powdery mildew resistance allele and its linked SSR markers with preferential transmission of Langdon alleles over IW2 alleles. The resistance gene was introgressed into common wheat by backcrossing and marker-assisted selection. Since no designated powdery mildew resistance gene has been found on chromosome 3BL, the resistance gene derived from wild emmer accession IW2 appears to be new one and was consequently designated Pm41. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is an important foliar disease of wheat worldwide. Wild emmer (Triticum turgidum var. dicoccoides) is a valuable genetic resource for improving disease resistance in common wheat. A powdery mildew resistance gene conferring resistance to B. graminis f. sp. tritici isolate E09 at the seedling and adult stages was identified in wild emmer accession IW170 introduced from Israel. An incomplete dominant gene, temporarily designated MlIW170, was responsible for the resistance. Through molecular marker and bulked segregant analyses of an F2 population and F3 families derived from a cross between susceptible durum wheat line 81086A and IW170, MlIW170 was located in the distal chromosome bin 2BS3-0.84-1.00 and flanked by SSR markers Xcfd238 and Xwmc243. MlIW170 co-segregated with Xcau516, an STS marker developed from RFLP marker Xwg516 that co-segregated with powdery mildew resistance gene Pm26 on 2BS. Four EST–STS markers, BE498358, BF201235, BQ160080, and BF146221, were integrated into the genetic linkage map of MlIW170. Three AFLP markers, XPaacMcac, XPagcMcta, XPaacMcag, and seven AFLP-derived SCAR markers, XcauG2, XcauG3, XcauG6, XcauG8, XcauG10, XcauG20, and XcauG25, were linked to MlIW170. XcauG3, a resistance gene analog (RGA)-like sequence, co-segregated with MlIW170. The non-glaucousness locus Iw1 was 18.77 cM distal to MlIW170. By comparative genomics of wheat–Brachypodium–rice genomic co-linearity, four EST–STS markers, CJ658408, CJ945509, BQ169830, CJ945085, and one STS marker XP2430, were developed and MlIW170 was mapped in an 2.69 cM interval that is co-linear with a 131 kb genomic region in Brachypodium and a 105 kb genomic region in rice. Four RGA-like sequences annotated in the orthologous Brachypodium genomic region could serve as chromosome landing target regions for map-based cloning of MlIW170.  相似文献   

11.
Wheat is prone to strawbreaker foot rot (eyespot), a fungal disease caused by Oculimacula yallundae and O. acuformis. The most effective source of genetic resistance is Pch1, a gene derived from Aegilops ventricosa. The endopeptidase isozyme marker allele Ep-D1b, linked to Pch1, has been shown to be more effective for tracking resistance than DNA-based markers developed to date. Therefore, we sought to identify a candidate gene for Ep-D1 as a basis for a DNA-based marker. Comparative mapping suggested that the endopeptidase loci Ep-D1 (wheat), enp1 (maize), and Enp (rice) were orthologous. Since the product of the maize endopeptidase locus enp1 has been shown to exhibit biochemical properties similar to oligopeptidase B purified from E. coli, we reasoned that Ep-D1 may also encode an oligopeptidase B. Consistent with this hypothesis, a sequence-tagged-site (STS) marker, Xorw1, derived from an oligopeptidase B-encoding wheat expressed-sequence-tag (EST) showed complete linkage with Ep-D1 and Pch1 in a population of 254 recombinant inbred lines (RILs) derived from a cross between wheat cultivars Coda and Brundage. Two other STS markers, Xorw5 and Xorw6, and three microsatellite markers (Xwmc14, Xbarc97, and Xcfd175) were also completely linked to Pch1. On the other hand, Xwmc14, Xbarc97, and Xcfd175 showed recombination in the W7984 × Opata85 RIL population suggesting that recombination near Pch1 is reduced in the Coda/Brundage population. In a panel of 44 wheat varieties with known eyespot reactions, Xorw1, Xorw5, and Xorw6 were 100% accurate in predicting the presence or absence of Pch1 whereas Xwmc14, Xbarc97, and Xcfd175 were less effective. Thus, linkage mapping and a germplasm survey suggest that the STS markers identified here should be useful for indirect selection of Pch1.  相似文献   

12.

Key message

A novel powdery mildew-resistance gene, designated Pm58, was introgressed directly from Aegilops tauschii to hexaploid wheat, mapped to chromosome 2DS, and confirmed to be effective under field conditions. Selectable KASP? markers were developed for MAS.

Abstract

Powdery mildew caused by Blumeria graminis (DC.) f. sp. tritici (Bgt) remains a significant threat to wheat (Triticum aestivum L.) production. The rapid breakdown of race-specific resistance to Bgt reinforces the need to identify novel sources of resistance. The d-genome species, Aegilops tauschii, is an excellent source of disease resistance that is transferrable to T. aestivum. The powdery mildew-resistant Ae. tauschii accession TA1662 (2n?=?2x?=?DD) was crossed directly with the susceptible hard white wheat line KS05HW14 (2n?=?6x?=?AABBDD) followed by backcrossing to develop a population of 96 BC2F4 introgression lines (ILs). Genotyping-by-sequencing was used to develop a genome-wide genetic map that was anchored to the Ae. tauschii reference genome. A detached-leaf Bgt assay was used to screen BC2F4:6 ILs, and resistance was found to segregate as a single locus (χ?=?2.0, P value?=?0.157). The resistance gene, referred to as Pm58, mapped to chromosome 2DS. Pm58 was evaluated under field conditions in replicated trials in 2015 and 2016. In both years, a single QTL spanning the Pm58 locus was identified that reduced powdery mildew severity and explained 21% of field variation (P value?<?0.01). KASP? assays were developed from closely linked GBS-SNP markers, a refined genetic map was developed, and four markers that cosegregate with Pm58 were identified. This novel source of powdery mildew-resistance and closely linked genetic markers will support efforts to develop wheat varieties with powdery mildew resistance.
  相似文献   

13.
Powdery mildew, caused by Erysiphe graminis DM f. sp. tritici (Em. Marchal), is one of the most important diseases of common wheat world-wide. Chinese wheat variety 'Fuzhuang 30' carries the powdery mildew resistance gene Pm5e and has proven to be a valuable resistance source of powdery mildew for wheat breeding. Microsatellite markers were employed to identify the gene Pm5e in a F(2) progeny from the cross 'Nongda 15' (susceptible) x 'Fuzhuang 30' (resistant). The gene Pm5e was mapped in the distal region of chromosome 7BL. Seven microsatellite markers were found to be linked to the gene Pm5e, of which two codominant markers Xgwm783 and Xgwm1267 were relatively close to Pm5e with a linkage distance of 11.0 cM and 6.6 cM, respectively. It is possible to use the 136-bp allele of Xgwm1267 in 'Fuzhuang 30' for marker-assisted selection during the wheat resistance breeding process for facilitation of gene pyramiding. The mapping information in the present study provides a starting point for fine mapping of the Pm5 locus and map-based cloning to clarify the molecular structure and function of the different alleles at the Pm5 locus. A microsatellite linkage map of chromosome 7B was constructed with 20 microsatellite loci, nine on the short arm and 11 on the long arm. This information will be very useful for further mapping of agronomically important genes of interest on chromosome 7B.  相似文献   

14.
Gene tagging is the basis of marker-assisted selection and map-based cloning. To develop PCR-based markers for Pm4a, a dominant powdery mildew resistance gene of wheat, we surveyed 46 group 2 microsatellite markers between Pm4a near-isogenic line (NIL) CI 14124 and the recurrent parent Chancellor (Cc). One of the markers, gwm356, detected polymorphism and was used for genotyping an F2 population of 85 plants derived from CI 14124 × Cc. Linkage mapping indicated that Xgwm356 was linked to Pm4a at a distance of 4.8 cM. To identify more PCR-based markers for Pm4a, we also converted the restriction fragment length polymorphism marker BCD1231 linked to it into a sequence-tagged site (STS) marker. The STS primer designed based on the end sequences of BCD1231 amplified an approximately 1.6-kb monomorphic band in both parents. Following digestion of the products with the four-cutter enzymes HaeIII and MspI, it was discovered that the band from CI 14124 consisted of at least two products, one of which had a digestion pattern different from the band from Cc. In the F2 population, the cleaved polymorphism revealed by the STS marker between the parents co-segregated with powdery mildew resistance. To design Pm4a-specific PCR markers, the 1.6-kb band from Cc and the fragment associated with Pm4a in CI 14124 were sequenced and compared. Based on these sequences a new PCR marker was identified, which detected a 470-bp product only in the Pm4a-containing lines. These PCR-based markers provide a cost-saving option for marker-assisted selection of Pm4a.Communicated by F. Salamini  相似文献   

15.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a very destructive wheat (Triticum aestivum) disease. Resistance was transferred from Elytrigia intermedium to common wheat by crossing and backcrossing, and line GRY19, that was subsequently selected, possessed a single dominant gene for seedling resistance. Five polymorphic microsatellite markers, Xgwm297, Xwmc335, Xwmc364, Xwmc426 and Xwmc476, on chromosome arm 7BS, were mapped relative to the powdery mildew resistance locus in an F2 population of Mianyang 11/GRY19. The loci order Xwmc426Xwmc335Pm40Xgwm297Xwmc364Xwmc476, with 5.9, 0.2, 0.7, 1.2 and 2.9 cM genetic distances, was consistent with published maps. The resistance gene transferred from Elytrigia intermedium into wheat line GRY19 was novel, and was designated Pm40. The close flanking markers will enable marker assisted transfer of this gene into wheat breeding populations. P.G. Luo and H.Y. Luo contributed equally to the work.  相似文献   

16.
The leaf rust resistance gene Lr25, transferred from Secale cereale L. into wheat and located on chromosome 4B, imparts resistance to all pathotypes of leaf rust in South-East Asia. In an F2-derived F3 population, created by crossing TcLr25 that carries the gene Lr25 for leaf rust resistance with leaf rust-susceptible parent Agra Local, three microsatellite markers located on the long arm of chromosome 4B were found to be linked to the Lr25 locus. The donor parent TcLr25 is a near-isogenic line derived from the variety Thatcher. The most virulent pathotype of leaf rust in the South-East Asian region, designated 77–5 (121R63-1), was used for challenging the population under artificially controlled conditions. The marker Xgwm251 behaved as a co-dominant marker placed 3.8 cM away from the Lr25 locus on 4BL. Two null allele markers, Xgwm538 and Xgwm6, in the same linkage group were located at a distance of 3.8 cM and 16.2 cM from the Lr25 locus, respectively. The genetic sequence of Xgwm251, Lr25, Xgwm538, and Xgwm6 covered a total length of 20 cM on 4BL. The markers were validated for their specificity to Lr25 resistance in a set of 43 wheat genetic stocks representing 43 other Lr genes.  相似文献   

17.
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most important wheat diseases worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, the tetraploid ancestor (AABB) of domesticated bread and durum wheat, harbors many important alleles for resistance to various diseases, including powdery mildew. In the current study, two tetraploid wheat mapping populations, derived from a cross between durum wheat (cv. Langdon) and wild emmer wheat (accession G-305-3M), were used to identify and map a novel powdery mildew resistance gene. Wild emmer accession G-305-3M was resistant to all 47 Bgt isolates tested, from Israel and Switzerland. Segregation ratios of F2 progenies and F6 recombinant inbred line (RIL) mapping populations, in their reactions to inoculation with Bgt, revealed a Mendelian pattern (3:1 and 1:1, respectively), indicating the role of a single dominant gene derived from T. dicoccoides accession G-305-3M. This gene, temporarily designated PmG3M, was mapped on chromosome 6BL and physically assigned to chromosome deletion bin 6BL-0.70-1.00. The F2 mapping population was used to construct a genetic map of the PmG3M gene region consisted of six simple sequence repeats (SSR), 11 resistance gene analog (RGA), and two target region amplification polymorphism (TRAP) markers. A second map, constructed based on the F6 RIL population, using a set of skeleton SSR markers, confirmed the order of loci and distances obtained for the F2 population. The discovery and mapping of this novel powdery mildew resistance gene emphasize the importance of the wild emmer wheat gene pool as a source for crop improvement.  相似文献   

18.
Three genes, er1, er2 and Er3, conferring resistance to powdery mildew (Erysiphe pisi) in pea have been described so far. Because single gene-controlled resistance tends to be overcome by evolution of pathogen virulence, accumulation of several resistance genes into a single cultivar should enhance the durability of the resistance. Molecular markers linked to genes controlling resistance to E. pisi may facilitate gene pyramiding in pea breeding programs. Molecular markers linked to er1 and er2 are available. In the present study, molecular markers linked to Er3 have been obtained. A segregating F2 population derived from the cross between a breeding line carrying the Er3 gene, and the susceptible cultivar ‘Messire’ was developed and genotyped. Bulk Segregant Analysis (BSA) was used to identify Random Amplified Polymorphic DNA (RAPD) markers linked to Er3. Four RAPD markers linked in coupling phase (OPW04_637, OPC04_640, OPF14_1103, and OPAH06_539) and two in repulsion phase (OPAB01_874 and OPAG05_1240), were identified. Two of these, flanking Er3, were converted to Sequence Characterized Amplified Region (SCAR) markers. The SCAR marker SCW4637 co-segregated with the resistant gene, allowing the detection of all the resistant individuals. The SCAR marker SCAB1874, in repulsion phase with Er3, was located at 2.8 cM from the gene and, in combination with SCW4637, was capable to distinguish homozygous resistant individuals from heterozygous with a high efficiency. In addition, the validation for polymorphism in different genetic backgrounds and advanced breeding material confirmed the utility of both markers in marker-assisted selection.  相似文献   

19.
The aim of this study was to investigate the inheritance of powdery mildew disease and to tag it with a DNA marker to utilize for the marker-assisted selection (MAS) breeding program. The powdery mildew resistant genotype Fallon er and susceptible genotype 11760-3 ER were selected from 177 genotypes by heavy infestation of germplasm with Erysiphe pisi through artificial inoculation The F1 plants of the cross Fallon/11760-3 indicated the dominance of the susceptible allele, while F2 plants segregated in 3: 1 ratio (susceptible: resistant) that fit for goodness of fitness by χ2 (P > 0.07), indicating monogenic recessive inheritance for powdery mildew resistance in Pisum sativum. A novel RAPD marker OPB18 (5′-CCACAGCAGT-3′) was linked to the er-1 gene with 83% probability with a LOD score of 4.13, and was located at a distance of 11.2 cM from the er-1 gene.  相似文献   

20.
Powdery mildew is one of the most devastating diseases of wheat in areas with cool and maritime climates. Chinese wheat landrace Baihulu confers a high level of resistance against a wide range of Blumeria graminis DC f. sp. tritici (Bgt) races, especially those currently prevailing in Shaanxi. The objectives of this study were to determine the chromosome bin location of the mlbhl gene from Baihulu and its allelism with Pm24. To investigate the inheritance of powdery mildew resistance and detect adjacent molecular markers, we constructed a segregating population of 301 F2 plants and corresponding F2:3 families derived from Baihulu/Shaanyou 225. Genetic analysis revealed that a single dominant gene was responsible for seedling stage powdery mildew resistance in Baihulu. A genetic map comprising Xgwm106, Xgwm337, Xgwm1675, Xgwm603, Xgwm789, Xbarc229, Xgpw4503, Xcfd72, Xcfd83, Xcfd59, Xcfd19, and mlbhl spanned 28.2?cM on chromosome 1D. Xgwm603/Xgwm789 and Xbarc229 were flanking markers tightly linked to mlbhl at genetic distances of 1.5 and 1.0?cM, respectively. The mlbhl locus was located in chromosome bin 1DS 0.59–1.00 delimited by the SSR markers Xgwm337 and Xbarc229. When tested with a differential array of 23 Bgt isolates Baihulu displayed a response pattern that was clearly distinguishable from that of Chiyacao and varieties or lines possessing documented Pm genes. Allelism analysis indicated that mlbhl is a new gene, either allelic or closely linked with Pm24. The new gene was designated Pm24b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号