首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The importance of fungi in the trophic biology of the freshwater detritivores Gammarus pulex and Asellus aquaticus was investigated. Inspection of leaves used in feeding trials indicated that whereas A. aquaticus scrapes at the leaf surface, G. pulex bites through the leaf material. Both species discriminated between fungal mycelia, fungally colonized and uncolonized leaf material but, although A. aquaticus selectively consumed fungal mycelia, G. pulex fed preferentially on leaf material. Fungi appear to be an important food source for A. aquaticus and selection of food material was positively correlated with fungal biomass. In contrast, for G. pulex, fungi appear to be more important as modifiers of leaf material. However, no significant correlations were found between food preference and any of the leaf modifications measured.  相似文献   

2.
An important component of the interaction between macroinvertebrates and leaf litter in streams in the extent to which consumers can differentiate between undecomposed and decomposing leaves. The detritivores Gammarus pulex and Asellus aquaticus fed preferentially on conditioned rather on unconditioned leaf material. Growth in A. aquaticus was significantly reduced when unconditioned leaves were provided, but in G. pulex no significant effect of conditioning on growth was observed. The capacity of G. pulex to tolerate reductions in food quality seems to be a consequence of a compensatory system in which respiration rates change to compensate for reductions in food quality. In this way a constant growth rate is maintained. Increases in ingestion rates to compensate for low quality food were not observed.  相似文献   

3.
In this paper, we would like to show unexpected morphogenic potential of cell suspensions derived from seedling explants of Gentiana kurroo (Royle). Suspension cultures were established with the use of embryogenic callus derived from seedling explants (root, hypocotyl and cotyledons). Proembryogenic mass proliferated in liquid MS medium supplemented with 0.5 mg l−1 2,4-D and 1.0 mg l−1 Kin. The highest growth coefficient was achieved for root derived cell suspensions. The microscopic analysis showed differences in aggregate structure depending on their size. To assess the embryogenic capability of the particular culture, 100 mg of cell aggregates was implanted on MS agar medium supplemented with Kin (0.0–2.0 mg l−1), GA3 (0.0–2.0 mg l−1) and AS (80.0 mg l−1). The highest number of somatic embryos was obtained for cotyledon-derived cell suspension on GA3-free medium, but the best morphological quality of embryos was observed in the presence of 0.5–1.0 mg l−1 Kin, 0.5 mg l−1 GA3 and 80.0 mg l−1 AS. The morphogenic competence of cultures also depended on the size of the aggregate fraction and was lower when size of aggregates decreased. Flow cytometry analysis reveled luck of uniformity of regenerants derived from hypocotyl suspension and 100% of uniformity for cotyledon suspension.  相似文献   

4.
Gammarus pulex and Asellus aquaticus generally occupy different zones in rivers; the former occurs in upper reaches but is replaced by the latter in lower reaches. Microdistribution and life-history patterns of G. pulex and A. aquaticus in sympatry and allopatry, were analyzed. Both species exhibited similar patterns of microhabitat selection, with larger individuals associated predominantly with large-sized substratum particles, and juveniles with weed. Coexisting populations of G. pulex and A. aquaticus had similar densities and population dynamics. Within each species, differences in population dynamics of allopatric and sympatric populations were observed. Although variation in population dynamics of G. pulex may be explained in terms of competition between the two species, the evidence is weak and equivocal. Differences in the dynamics of the two A. aquaticus populations were possibly a consequence of coal-mine and organic pollution, reducing the survival of offspring in the allopatric population.  相似文献   

5.
Protoplasts were isolated from cell suspensions derived from cotyledon and hypocotyl Gentiana kurroo (Royle). Cell walls were digested with an enzyme cocktail containing cellulase, macerozyme, driselase, hemicellulase and pectolyase in CPW solution. Protoplast viability ranged from 88 to 96%. Three techniques of culture and six media were evaluated in terms of their efficiency in producing viable cultures and regenerating whole plants. With liquid culture, cell division occurred in only a low number of the protoplasts isolated, and no plant regeneration was successful. Cell division occurred within 2 or 3 days in case of agarose solidified media. After 10 days of culture, the number of dividing cells was the highest with modified MS medium in which NH4NO3 was replaced with 3.0 g l−1 glutamine. The best results were obtained with agarose bead cultures: plating efficiency was 68.7% and 58.1% for protoplasts isolated from cotyledon and hypocotyl derived suspensions, respectively. The results were achieved with using medium containing 0.5 mg l−1 2,4-D + 1.0 mg l−1 kinetin or 2.0 mg l−1 BAP + 1.0 mg l−1 dicamba + 0.1 mg l−1 NAA + 80 mg l−1 adenine sulfate. Protocalluses transferred on the following composition of plant growth regulators: 0.5 mg l−1 2,4-D + 1.0 mg l−1 kinetin or 1.0 mg l−1 kinetin + 0.5 mg l−1 GA3 + 80.0 mg l−1 adenine sulfate developed in embryogenic cultures. However, the best embryo production occurred with the first one. Later embryos were transferred to half-strength MS mineral salts to promote plants formation. Flow cytometry studies revealed increased amounts of DNA in about one third of the regenerants.  相似文献   

6.
A protocol was developed for regeneration and Agrobacterium-mediated genetic transformation of Lesquerella fendleri. Calli were first induced from hypocotyls and cotyledons on MS plus 0.5 mg l−1 BA, 1 mg l−1 NAA and 1 mg l−1 2,4-D, then co-cultivated for 2–3 days in darkness on MS supplemented with 0.5 mg l−1 BA, 0.2 mg l−1 NAA and 100 μmol l−1As together with Agrobacterium tumefaciens strain EHA105/pCAMBIA1301 that harbored genes for uidA (GUS) and hygromycin resistance. Following co-cultivation, calli transfected by A. tumefaciens were transferred to MS with 0.5 mg l−1 BA, 0.2 mg l−1NAA, 500 mg l−1 Cef and 10 mg l−1 hygromycin and cultured for 10 days, then the hygromycin was increased to 20 mg l−1 on the same medium. After 4 weeks the resistant regenerants were transferred to MS with 0.5 mg l−1BA, 0.2 mg l−1 NAA, 500 mg l−1 Cef and 25 mg l−1 hygromycin for further selections. Transgenic plants were confirmed by polymerase chain reaction analysis, GUS histochemical assay and genomic Southern blot hybridization. With this approach, the average regeneration frequency from transfected calli was 22.70%, and the number of regenerated shoots per callus was 6–13. Overall results described in this study demonstrate that Agrobacterium-mediated transformation is a promising approach for improvement of this Lesquerella species.  相似文献   

7.
Biosurfactant production by Pseudomonas aeruginosa EBN-8 mutant was studied in shake flasks on separate wastes from canola, soybean and corn oil refineries. Of the substrates tested, canola oil refinery waste (COD=20 g l−1) supplemented with sodium nitrate (at COD/N=20) showed the best microbial growth (4.50 g l−1) and rhamnolipid production (8.50 g l−1), at 10 d of incubation with the specific growth rate of 0.316 h−1 and specific product yield of 0.597 g g−1 h. Its cell-free supernatant showed the critical micelle dilution (CMD) of 150 and surface tension (ST) of 28.5 mN m−1.  相似文献   

8.
Organic sediments in freshwaters are regularly subject to low concentrations of oxygen. The ability of detritivores to sustain their feeding in such conditions should therefore be of importance for the decomposition process. In the present study, aquaria were used to determine processing rates of five lake-dwelling shredders at three different oxygen concentrations; normoxic (9 mg O2 l–1) and two levels of hypoxia (1 and 2 mg O2 l–1). Discs of alder leaves (Alnus glutinosa (L.)) were used as food. Four species of caddisfly larvae (Trichoptera Limnephilidae) and the isopod, Asellus aquaticus (L.) were compared in the experiments. Significant differences in processing rates per g animal biomass were found both at normoxia and 2 mg oxygen l–1. At l mg O2 l–1 none of the invertebrates fed on leaf discs. The caddisfly larvae Halesus radiatus (Curtis), being one of the two most efficient shredders at normoxia, did not feed at 2 mg oxygen l–1. The other species fed at rates 15–50 of that at normoxia. The least efficient shredder at normoxia, A. aquaticus was similar to two of the trichopterans at 2 mg O2 l–1. This study shows that the importance of specific shredder species may shift in case of hypoxia. Species-specific traits regarding oxygen sensitivity may also be influential for distribution patterns of shredder species both within and between lakes.  相似文献   

9.
This paper continues to explore niche differentiation in Gammarus pulex and Asellus aquaticus by analysis of their food preferences. Individuals from both species discriminated between leaf discs colonized by different fungal species and exhibited strong preferences for Anguillospora longissima and Heliscus lugdunensis. Fungal preferences were not correlated with the relative abundance of fungi in the field and there was considerable intra-population variability in food preferences — both between individuals and for the same individual through time. Niche overlap between animals from all four study populations was high and there was no evidence of differences in the potential trophic niches of animals from sympatric and allopatric populations.  相似文献   

10.
We studied the response of Brachionus patulus to different concentrations of the heavy metal Pb in the presence and absence of sediments. We conducted acute (LC50) and chronic (life table demography and population growth) toxicity tests using sediment levels of 0, 30 and 280 mg l−1 (=0, 17 and 170 NTU) and Pb at 0, 0.06 and 0.6 mg l−1. Experiments were conducted at 20 ± 1°C on a horizontal shaker and algal food (Chlorella vulgaris) was added at a density of 1.0 × 106 cells ml−1. The median lethal concentration (LC50 ± 95% Confidence intervals) of PbCl2 for B. patulus was 6.15 ± 1.08 mg l−1. Age-specific survivorship and fecundity curves showed increase in turbidity level resulted in decreased survival and offspring production of the rotifers. Increase in Pb concentration too had a negative effect on the survival and reproductive output of B. patulus. Statistically, average lifespan, life expectancy at birth, gross and net reproductive rates and the rate of population increase were all significantly influenced by the concentration of Pb, turbidity level as well as the interaction of Pb concentration × turbidity level. Rotifers exposed to 170 NTU did not grow regardless of the heavy metal concentration in the medium. Similarly, B. patulus exposed to 0.6 mg l−1 Pb did not survive beyond 10 days regardless of the turbidity level in the medium. The rate of population increase of B. patulus derived from the growth experiments was negative in all treatments containing Pb as low as 0.06 mg l−1 or turbidity level as low as 17 NTU. In treatments containing Pb or sediments, there existed no relation between the egg ratio and the population density. Guest editors: S. S. S. Sarma, R. D. Gulati, R. L. Wallace, S. Nandini, H. J. Dumont and R. Rico-Martínez Advances in Rotifer Research  相似文献   

11.
Extracellular human granulocyte-macrophage colony stimulating factor (hGM-CSF) expression was studied under the control of the GAP promoter in recombinant Pichia pastoris in a series of continuous culture runs (dilution rates from 0.025 to 0.2 h−1). The inlet feed concentration was also varied and the steady state biomass concentration increased proportionally demonstrating efficient substrate utilization and constancy of the biomass yield coefficient (Yx/s) for a given dilution rate. The specific product formation rate (qP) showed a strong correlation with dilution rates demonstrating growth associated product formation of hGM-CSF. The volumetric product concentration achieved at the highest feed concentration (4×) and a dilution rate of 0.2 h−1 was 82 mg l−1 which was 5-fold higher compared to the continuous culture run with 1× feed concentration at the lowest dilution rate thus translating to a 40 fold increase in the volumetric productivity. The specific product yield (YP/X) increased slightly from 2 to 2.5 mg g−1, with increasing dilution rates, while it remained fairly invariant, for all feed concentrations demonstrating negligible product degradation or feed back inhibition. The robust nature of this expression system would make it easily amenable to scale up for industrial production.  相似文献   

12.
Lee S  Kim J  Shin SG  Hwang S 《Biotechnology letters》2008,30(6):1011-1016
The biokinetics of glucose metabolism were evaluated in Aeromonas hydrophila during growth in an anaerobic biosystem. After approx 34 h growth, A. hydrophila metabolized 5,000 mg glucose l−1 into the end-products ethanol, acetate, succinate and formate. The maximum growth rate, μ m, half saturation coefficients, K s, microbial yield coefficient, Y, cell mass decay rate coefficient, k d, and substrate inhibition coefficient, K si were 0.25 ± 0.03 h−1, 118 ± 31 mg glucose l−1, 0.12 μg DNA mg glucose−1, 0.01 h−1, and 3,108 ± 1,152 mg glucose l−1, respectively. These data were used to predict the performance of a continuous growth system with an influent glucose concentration of 5,000 mg l−1. Results of the analysis suggest that A. hydrophila will metabolize glucose at greater than 95% efficiency when hydraulic retention times (HRTs) exceed 7 h, whereas the culture is at risk of washing out at an HRT of 6.7 h.  相似文献   

13.
Paclitaxel and 10-deacetylbaccatin III (10-DAB III) were produced in suspension cultures of Taxus × media var. Hicksii grown in shake-flasks and in a 7-l bioreactor reaching, in the bioreactor, 4.4 mg l−1 (on day 14) and 37.5 mg l−1 (on day 11). In shake-flasks the highest total content of paclitaxel and 10-DAB III was 7.3 mg l−1 (on day 4) and 8.8 mg l−1 (on day 18). Phenylalanine, at 0.05 mM, increased paclitaxel accumulation in cells cultivated in bioreactor and flasks 30-fold and 9-fold (from 0.02 mg l−1 to 0.6 mg l−1 and to 0.2 mg l−1, respectively). The 10-DAB III content in cells from flasks was increased from 0.4 mg l−1 to 1.6 mg l−1.  相似文献   

14.
We evaluated the combined effects of algal (Chlorella vulgaris) food levels (low, 0.5 × 106 (or 2.9 μg C ml−1); and high, 1 × 106 cells ml−1 (or 5.8 μg C ml−1)) and zinc concentrations (0, 0.125, and 0.250 mg l−1 of ZnCl2) on the competition between two common planktonic rotifers Anuraeopsis fissa and Brachionus rubens using their population growth. Median lethal concentration data (LC50) (mean ± 95% confidence intervals) showed that B. rubens was more resistant to zinc (0.554 ± 0.08 mg l−1) than A. fissa (0.315 ± 0.07 mg l−1). A. fissa when grown alone or with Zn was always numerically more abundant than B. rubens. When grown in the absence of zinc, under low- and high-food levels, the peak abundances of A. fissa varied from 251 ± 24 to 661 ± 77 ind. ml−1, respectively, and the corresponding maxima for B. rubens were 52 ± 3 and 102 ± 18 ind. ml−1. At a given food level, competition for food reduced the peak abundances of both rotifers considerably. Increase in Zn concentration also lowered the rotifer abundances. The impact of zinc on competition between the two-rotifer species was evident at low-food level, mainly for A. fissa. At zinc concentrations of 0 and 0.125 mg l−1, the populations of both rotifers continued to grow for about 10 days, but thereafter B. rubens began to decline. Role of zinc on the competitive outcome of the two species is discussed in relation to the changing algal densities in natural water bodies.  相似文献   

15.
Candida utiilis NRRL Y-900 was grown on pineapple cannery waste as the sole carbon and energy source in a chemostat at dilution rates ranging between 0.05 and 0.65 h−1 to determine the growth kinetics. The cell yield coefficient varied with dilution rate and a maximum value of 0.662 ± 0.002 gx/gcarb was obtained at a dilution rate of 0.4 h−1. At steady state, the concentrations of carbohydrate, reducing sugar, and chemical oxygen demand (COD) appeared to follow Monod kinetics. At maximum specific growth rate (μmax) 0.65 h−1, the saturation constants for carbohydrate, reducing sugar and COD were 0.51 ± 0.02 gcarb/1, 0.046 ± 0.003 grs/1, and 1.036 ± 0.001 gCOD/1, respectively. Maximum biomass productivity (Q x max) 2.8 ± 0.03 gx/1 h was obtained at a dilution rate of 0.5 h−1. At this dilution rate, only 71.0 ± 0.41% COD was removed whereas at a dilution rate of 0.1 h−1, 98.2 ± 0.35% reduction in COD was achieved. At a dilution rate of 0.4 h−1, the optimal yeast productivity and reduction in COD were 2.7 ± 0.13 gp/1 h, and 84.2 ± 0.42%, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The effects of dilution rate and substrate feed concentration on continuous glycerol fermentation by Clostridium butyricum VPI 3266, a natural 1,3-propanediol producer, were evaluated in this work. A high and constant 1,3-propanediol yield (around 0.65 mol/mol), close to the theoretical value, was obtained irrespective of substrate feed concentration or dilution rate. Improvement of 1,3-propanediol volumetric productivity was achieved by increasing the dilution rate, at a fixed feed substrate concentration of 30, 60 or 70 g l−1. Higher 1,3-propanediol final concentrations and volumetric productivities were also obtained when glycerol feed concentration was increased from 30 to 60 g l−1, at D=0.05–0.3 h−1, and from 60–70 g l−1, at D=0.05 and 0.1 h−1·30 g l−1 of 1,3-propanediol and the highest reported value of productivity, 10.3 g l−1 h−1, was achieved at D=0.30 h−1 and 60 g l−1 of feed glycerol. A switch to an acetate/butyrate ratio higher than one was observed for 60 g l−1 of feed glycerol and a dilution rate higher than 0.10 h−1; moreover, at D=0.30 h−1 3-hydroxypropionaldehyde accumulation was observed for the first time in the fermentation broth of C. butyricum.  相似文献   

17.
Simplified clonal multiplication of mulberry using liquid shake culture   总被引:4,自引:0,他引:4  
Organogenesis was induced in callus derived from mature zygotic embryos of six families of loblolly pine (Pinus taeda L.) within 24 weeks of culture. Elongation of adventitious buds was achieved on TE medium supplemented with 0.5 mg l−1 indole-3-butyric acid (IBA) and 2 mg l−1 6-benzyladenine (BA). The most suitable medium for root formation proved to be TE medium supplemented with 0.1 mg l−1 IBA, 1 mg l−1 BA, and 0.5 mg l−1 gibberellic acid (GA3). One hundred and sixty-nine regenerated plantlets were transferred to a perlite:peatmoss:vermiculite (1:1:1) soil mixture, and 98 plantlets survived in the field. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Aerobic granules are cultivated by a single bacterial strain, Acinetobacter calcoaceticus, in a sequencing batch reactor (SBR). This strain presents as a good phenol reducer and an efficient auto coagulator in the presence of phenol, mediated by heat-sensitive adhesins proteins. Stable 2.3-mm granules were formed in the SBR following a 7-week cultivation. These granules exhibit excellent settling attributes and degrade phenol efficiently at concentrations of 250–2,000 mg l−1. The corresponding phenol degradation rate reached 993.6 mg phenol g−1 volatile suspended solids (VSS) day−1 at 250 mg l−1 phenol and 519.3 mg phenol g−1 VSS day−1 at 2,000 mg l−1 phenol concentration. Meanwhile, free A. calcoaceticus cells were fully inhibited at phenol >1,500 mg l−1. Denaturing gradient gel electrophoresis fingerprint profile demonstrated no genetic modification in the strain during aerobic granulation. The present single-strain granules showed long-term structural stability and performed high phenol degrading capacity and high phenol tolerance. The confocal laser scanning microscopic test revealed that live A. calcoaceticus cells principally distributed at 200–250 μm beneath the outer surface, with an extracellular polymeric substance layer covering them to defend phenol toxicity. Autoaggregation assay tests demonstrated the possibly significant role of secreted proteins on the formation of single-culture A. calcoaceticus granules.  相似文献   

19.
The present study investigates the effect of soil amended with sugarcane straw leachate and its constituents on root elongation of weed and crop plants. The influence of soil biotic and abiotic factors on plant growth were also evaluated through assays in both autoclaved soil and sand. In unsterile soil, straw leachates stimulated root growth of some test plants at 6 g dry straw ls−1 and inhibited root elongation at higher concentrations. A bioassay guided process of the bioactive leachate constituents led to the isolation of vanillic, syringic and ferulic acids. These compounds were also assayed on the test plants in the three mentioned substrates. In unsterile soil, phenolics stimulated the growth of some species at 19 mg l−1. Higher phenolics concentrations were inhibitory. The concentration needed to inhibit 25% root elongation (EC25) was calculated from the dose–response curves. The concentration of phenolics in the leachate (64 g dry straw l−1) was estimated to be 187 mg l−1 (ferulic acid), 131 mg l−1 (vanillic acid) and 20 mg l−1 (Syringic acid). In general, these concentrations were below the EC25 values determined in unsterile soil indicating that these compounds cannot completely explain the strong inhibitory activity of sugarcane straw leachates. The role of soil factors on phytotoxicity of sugarcane straw leachate and its identified growth regulators is also discussed.  相似文献   

20.
Broussonetia papyrifera is well-known for its bark fibers, which are used for making paper, cloth, rope etc. This is the first report of a successful genetic transformation protocol for B. papyrifera using Agrobacterium tumefaciens. Callus was initiated at a frequency of about 100% for both leaf and petiole explants. Shoots formed on these calli with a success rate of almost 100%, with 14.08 and 8.36 shoots regenerating from leave-derived and petiole-derived callus, respectively. For genetic transformation, leaf explants of B. papyrifera were incubated with A. tumefaciens strain LBA4404 harboring the binary vector pCAMBIA 1301 which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene (gus-int) as a reporter gene. Following co-cultivation, leaf explants were cultured on Murashige and Skoog (Physiol Plant 15:473, 1962) (MS) medium supplemented with 1.5 mg l−1 benzyladenine (BA) and 0.05 mg l−1 indole-3-butyric acid (IBA) (CI medium) containing 5 mg l−1 hygromycin and 500 mg l−1 cefotaxime, in the dark. Hygromycin-resistant calli were induced from leaf explants 3 weeks thereafter. Regenerating shoots were obtained after transfer of the calli onto MS medium supplemented with 1.5 mg l−1 BA, 0.05 mg l−1 IBA, and 0.5 mg l−1 gibberellic acid (GA3) (SI medium), 5 mg l−1 hygromycin and 250 mg l−1 cefotaxime under fluorescent light. Finally, shoots were rooted on half strength MS medium (1/2 MS) supplemented with 10 mg l−1 hygromycin. Transgene incorporation and expression was confirmed by PCR, Southern hybridisation and histochemical GUS assay. Using this protocol, transgenic B. papyrifera plants containing desirable new genes can be obtained in approximately 3 months with a transformation frequency as high as 44%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号