首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The regioselectivity of β-galactosidase derived from Bacillus circulans ATCC 31382 (β-1,3-galactosidase) in transgalactosylation reactions using D-mannose as an acceptor was investigated. This D-mannose associated regioselectivity was found to be different from reactions using either GlcNAc or GalNAc as acceptors, not only for β-1,3-galactosidase but also for β-galactosidases of different origins. The relative hydrolysis rate of Galβ-pNP and D-galactosyl-D-mannoses, of various linkages, was also measured in the presence of β-1,3-galactosidase and was found to correlate well with the ratio of disaccharides formed by transglycosylation. The unexpected regioselectivity using D-mannose can therefore be explained by an anomalous specificity in the hydrolysis reaction. By utilizing the identified characteristics of both regioselectivity and hydrolysis specificity using D-mannose, an efficient method for enzymatic synthesis of β-1,3-, β-1,4- and β-1,6-linked D-galactosyl-D-mannose was subsequently established.  相似文献   

2.
D-Galactosyl-α-1,3-D-galactopyranose (1) was chemically prepared in a good yield by coupling phenyl 2,3,4,6-tetra-O-benzyl-1-thio-β-D-galactopyranoside (5) or 2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl bromide (8) with 1,2:5,6-di-O-cyclohexylidene-α-D-galactofuranose (3) with subsequent de-O-benzylation and de-O-cyclohexylidenation of the resulting protected α-1,3-disaccharide.  相似文献   

3.
The synthesis is reported of β-D-fructopyranosyl-(2→6)-D-glucopyranose that had previously been isolated from a fermented plant extract as a new saccharide. A disaccharide was predominately formed from an equal amount of D-glucose and D-fructose under melting conditions at 140 °C for 60 to 90 min. This saccharide was isolated from the reaction mixture by carbon-Celite column chromatography and preparative HPLC, and was confirmed to be β-D-fructopyranosyl-(2→6)-D-glucopyranose by TOF-MS and NMR analyses.  相似文献   

4.
D-Alanine-D-alanine ligase (Ddl) and its mutants maintain the biosynthesis of peptidoglycan, and the substrate specificity of Ddls partially affects the resistance mechanism of vancomycin-resistant enterococci. Through investigation of Ddls, Ddl from Thermotoga maritima ATCC 43589 showed novel characteristics, vis. thermostability up to 90 °C and broad substrate specificity toward 15 D-amino acids, particularly D-alanine, D-cysteine, and D-serine, in that order.  相似文献   

5.
We investigated in this study the effect of modified arabinoxylan from rice bran (MGN-3) and its fractions on D-galactosamine (D-GalN)-induced IL-18 expression and hepatitis in rats. Male Wistar rats were pretreated with MGN-3 or fractions of the MGN-3 hydrolysate, or with saline 1 h before administering D-GalN (400 mg/kg B.W.). The serum transaminase activities, IL-18 mRNA expression level in the liver and IL-18 concentration in the serum were determined 24 h after injecting D-GalN. Both the oral and intraperitoneal administration of MGN-3 (20 mg/kg B.W.) alleviated D-GalN-induced hepatic injury under these experimental conditions. The low-molecular-weight fraction (LMW) of MGN-3 showed the strongest protective effect on D-GalN-induced liver injury, its main sugar component being glucose. Moreover, the D-GalN-induced IL-18 expression was significantly reduced by treating with MGN-3 and LMW. The results suggest that MGN-3 and LMW could provide significant protection against D-GalN liver injury, and that IL-18 might be involved in their protective influence.  相似文献   

6.
A putative endo-β-1,4-D-galactanase gene of Thermotoga maritima was cloned and overexpressed in Escherichia coli. The recombinant enzyme hydrolyzed pectic galactans and produced D-galactose, β-1,4-D-galactobiose, β-1,4-D-galactotriose, and β-1,4-D-galactotetraose. The enzyme displayed optimum activity at 90 °C and pH 7.0. It was slowly inactivated above pH 8.0 and below pH 5.0 and stable at temperatures up to 80 °C.  相似文献   

7.
Depsipeptides are peptide-like polymers consisting of amino acids and hydroxy acids, and are expected to be new functional materials for drug-delivery systems and polymer science. In our previous study, D-alanyl-D-lactate, a type of depsipeptide, was enzymatically synthesized using D-alanine-D-alanine ligase from Thermotoga maritima ATCC 43589 (TmDdl) by Y207F substitution. Thereafter, in this study, further mutagenesis was introduced, based on structural comparison between TmDdl and a well-characterized D-alanine-D-alanine ligase from Escherichia coli. The S137A/Y207F mutant showed higher D-alanyl-D-lactate and lower D-alanyl-D-alanine synthesizing activity than the Y207F mutant. This suggests that substitution at the S137 residue contributes to product selectivity. Saturated mutagenesis on S137 revealed that the S137G/Y207F mutant showed the highest D-alanyl-D-lactate synthesizing activity. Moreover, the mutant showed broad substrate specificity toward D-amino acid and recognized D-lactate and D,L-isoserine as substrates. On the basis of these characteristics, various depsipeptides can be produced using S137G/Y207F-replaced TmDdl.  相似文献   

8.
The D-sorbitol dehydrogenase gene, sldA, and an upstream gene, sldB, encoding a hydrophobic polypeptide, SldB, of Gluconobacter suboxydans IFO 3255 were disrupted in a check of their biological functions. The bacterial cells with the sldA gene disrupted did not produce L-sorbose by oxidation of D-sorbitol in resting-cell reactions at pHs 4.5 and 7.0, indicating that the dehydrogenase was the main D-sorbitol-oxidizing enzyme in this bacterium. The cells did not produce D-fructose from D-mannitol or dihydroxyacetone from glycerol. The disruption of the sldB gene resulted in undetectable oxidation of D-sorbitol, D-mannitol, or glycerol, although the cells produced the dehydrogenase. The cells with the sldB gene disrupted produced more of what might be signal-unprocessed SldA than the wild-type cells did. SldB may be a chaperone-like component that assists signal processing and folding of the SldA polypeptide to form active D-sorbitol dehydrogenase.  相似文献   

9.
D-Galactosyl-β1→4-L-rhamnose (GalRha) was produced enzymatically from 1.1 M sucrose and 1.0 M L-rhamnose by the concomitant actions of four enzymes (sucrose phosphorylase, UDP-glucose-hexose 1-phosphate uridylyltransferase, UDP-glucose 4-epimerase, and D-galactosyl-β1→4-L-rhamnose phosphorylase) in the presence of 1.0 mM UDP-glucose and 30 mM inorganic phosphate. The accumulation of GalRha in 1 liter of the reaction mixture reached 230 g (the reaction yield was 71% from L-rhamnose). Sucrose and fructose in the reaction mixture were removed by yeast treatment, but isolation of GalRha by crystallization after yeast treatment was unsuccessful. Finally, 49 g of GalRha was isolated from part of the reaction mixture with yeast treatment by gel-filtration chromatography.  相似文献   

10.
The synthesis of glucooligosaccharides from α-D-glucose-1-phosphate by transglucosylation with sucrose phosphorylase from Leuconostoc mesenteroides was studied using the purified enzyme and high performance liquid chromatography. The enzyme had a rather broad acceptor specificity and transferred glucosyl residues to various acceptors such as sugars and sugar alcohols. Especially, 5-carbon sugar alcohols (pentitols), D- and L-arabitol were acceptors equal to D-fructose, which was known as a good acceptor. The transfer product of xylitol formed by the enzyme was investigated. The structure of the product was found to be 4-O-α-D-glucopyranosyl-xylitol (G-X) by acid hydrolysis and 13C-nuclear magnetic resonance analysis. G-X is a probable candidate for a preventive for dental caries because it reduced the synthesis of water-insoluble glucan by Streptococcus mutans and kept a neutral pH in the cell suspension.  相似文献   

11.
Tyrosol β-d-fructofuranoside and hydroxytyrosol β-d-fructofuranoside have been synthesized as new compounds in 27.6 and 19.5% respective yields through transfructosylation of tyrosol and hydroxytyrosol. Yeast β-galactosidase Lactozym 3000?L comprising invertase activity was used as catalyst. Besides the main monofructosides, an equimolar mixture of tyrosol β-d-fructofuranosyl-((2→1)-β-d-fructofuranoside and tyrosol β-d-fructofuranosyl-(2→6)-β-d-fructofuranoside was isolated as additional product fraction in 14.3% yield.  相似文献   

12.
The surface lipids of Nicotiana benthamiana contained novel glycerolipids and several varieties of glycolipids. As glycerolipids, the triacylglycerol, 1,3-diacylglycerol, and 1,2-diacylglycerol types of glycerolipids were isolated and identified. Each lipid contained acetyl, 16–methylheptadecanoyl, and 18–methylnonadecanoyl moieties. The acetylated position of each lipid was determined by 2D-NMR, using the HMBC technique. The structures were 1,3-di-O-acetyl-2-O-acylglycerol, 1-O-acetyl-3-O-acylglycerol, and 1-O-acetyl-2-O-acylglycerol. As glycolipids, one glucose ester and four types of sucrose esters were isolated and identified. These glycolipids contained acetic acid and such branched short-chain fatty acids as 5-methylhexanoic, 4-methylhexanoic, 6-methylheptanoic, and 5-methylheptanoic acids. The structure of the glucose ester was 3,4-di-O-acyl-α-D-glucopyranose. The structures of the sucrose esters were 6-O-acetyl-4-O-acyl-α-D-glucopyranosyl-(3-O-acyl)-β-D-fructofuranoside, 4-O-acyl-α-D-glucopyranosyl-(3-O-acyl)-β-D-fructofuranoside, 3,4-di-O-acyl-α-D-glucopyranosyl-β-D-fructofuranoside, and 6-O-acetyl-α-D-glucopyranosyl-β-D-fructofuranoside.  相似文献   

13.
Two new alcoholic aroma precursors, cis- and trans-linalool 3,7-oxides 6-O-β-D-apiofuranosyl-β-D-glucopyranosides (1 and 2), as well as two already known compounds, (Z)-3-hexenyl β-D-glucopyranoside (3) and methyl salicylate 6-O-β-D-xylopyranosyl-β-D-glucopyranoside (β-primeveroside: 4), and another new monoterpendiol glycoside, 8-hydroxygeranyl β-primeveroside (5) have recently been isolated as aroma precursors in tea leaves (Camellia sinensis var. sinensis cv. Maoxie) ready for oolong tea processing.  相似文献   

14.
l-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert l-psicose and d-tagatose to l-allose and d-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce l-allose and d-talose. Conversion reaction was performed with the reaction mixture containing 10% l-psicose or d-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of l-allose and d-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert l-psicose to l-allose without remarkable decrease in the enzyme activity over 7 times use and d-tagatose to d-talose over 37 times use. After separation and concentration, the mixture solution of l-allose and d-talose was concentrated up to 70% and crystallized by keeping at 4 °C. l-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% l-allose and 7.30% d-talose that were obtained from l-psicose and d-tagatose, respectively.  相似文献   

15.
The L-rhamnose isomerase gene (rhi) of Mesorhizobium loti was cloned and expressed in Escherichia coli, and then characterized. The enzyme exhibited activity with respect to various aldoses, including D-allose and L-talose. Application of it in L-talose production from galactitol was achieved by a two-step reaction, indicating that it can be utilized in the large-scale production of L-talose.  相似文献   

16.
L-Tartrate in wines and grapes was enzymatically quantified by using the secondary activity of D-malate dehydrogenase (D-MDH). NADH formed by the D-MDH reaction was monitored spectrophotometrically. Under the optimal conditions, L-tartrate (a 1.0 mM sample solution) was fully oxidized by D-MDH in 30 min. A linear relationship was obtained between the absorbance difference and the L-tartrate concentration in the range of a 0.02-1.0 mM sample solution with a correlation coefficient of 0.9991. The relative standard deviation from ten measurements was 1.71% at the 1.0 mM sample solution level. The proposed method was compared with HPLC, and the values determined by both methods were in good agreement.  相似文献   

17.
The transesterification of D-allose (the C-3 epimer of D-glucose) with vinyl octanoate using Candida antarctica lipase in tetrahydrofuran proceeded with high regioselectivity to produce 6-O-octanoyl-D-allose with nearly complete conversion. The growth-inhibiting activity of 6-O-octanoyl-D-allose on lettuce seedlings was about 6-fold greater than that of D-allose.  相似文献   

18.
As a constituent of polysaccharides and glycoconjugates, β-d-galactofuranose (Galf) exists in several pathogenic microorganisms. Although we recently identified a β-d-galactofuranosidase (Galf-ase) gene, ORF1110, in the Streptomyces strain JHA19, very little is known about the Galf-ase gene. Here, we characterized a strain, named JHA26, in the culture supernatant of which exhibited Galf-ase activity for 4-nitrophenyl β-d-galactofuranoside (pNP-β-d-Galf) as a substrate. Draft genome sequencing of the JHA26 strain revealed a putative gene, termed ORF0643, that encodes Galf-ase containing a PA14 domain, which is thought to function in substrate recognition. The recombinant protein expressed in Escherichia coli showed the Galf-specific Galf-ase activity and also released galactose residue of the polysaccharide galactomannan prepared from Aspergillus fumigatus, suggesting that this enzyme is an exo-type Galf-ase. BLAST searches using the amino acid sequences of ORF0643 and ORF1110 Galf-ases revealed two types of Galf-ases in Actinobacteria, suggesting that Galf-specific Galf-ases may exhibit discrete substrate specificities.  相似文献   

19.
Carbohydrate isomerases/epimerases are essential in carbohydrate metabolism, and have great potential in industrial carbohydrate conversion. Cellobiose 2-epimerase (CE) reversibly epimerizes the reducing end d-glucose residue of β-(1→4)-linked disaccharides to d-mannose residue. CE shares catalytic machinery with monosaccharide isomerases and epimerases having an (α/α)6-barrel catalytic domain. Two histidine residues act as general acid and base catalysts in the proton abstraction and addition mechanism. β-Mannoside hydrolase and 4-O-β-d-mannosyl-d-glucose phosphorylase (MGP) were found as neighboring genes of CE, meaning that CE is involved in β-mannan metabolism, where it epimerizes β-d-mannopyranosyl-(1→4)-d-mannose to β-d-mannopyranosyl-(1→4)-d-glucose for further phosphorolysis. MGPs form glycoside hydrolase family 130 (GH130) together with other β-mannoside phosphorylases and hydrolases. Structural analysis of GH130 enzymes revealed an unusual catalytic mechanism involving a proton relay and the molecular basis for substrate and reaction specificities. Epilactose, efficiently produced from lactose using CE, has superior physiological functions as a prebiotic oligosaccharide.  相似文献   

20.
D-Ins(1,3,4,5)P4 and unnatural L-Ins(1,3,4,5)P4 were prepared in gram-quantities from D- and L-2,6-di-O-benzyl-myo-inositol by a chemical phosphorylation and deprotection step in high yield and purity without extensive purification. The optically pure benzyl derivatives were obtained by enzyme-catalyzed resolution of racemic 2,6-di-O-benzyl-myo-inositol under acyl-transfer conditions in vinyl acetate as the acyl donor. The lipase of Candida antarctica only acetylated regio- and enantio-selectively the L-enantiomer, providing exclusively L-5-acetyl-2,6-di-O-benzyl-myo-inositol, whereas the D-enantiomer remained unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号