首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The accumulation of S-adenosylmethionine in adenine-requiring yeast cells grown in a culture medium containing dl-, l-, or d-methionine was much larger than that in cells grown in a methionine-free medium. The accumulation of S-adenosyl-d-methionine in the cells was significantly lower than that of S-adenosyl-l-methionine. When yeast cells containing a large amount of S-adenosyl-l-methionine were incubated in an adenine-free medium, adenosylmethionine was degraded, but poor and insignificant growth was observed indicating the meager nature of this compound as an adenine source. No degradation of accumulated S-adenosyl-d-methionine was detected. Isotopic experiment revealed that S-adenosyl-l-methionine in the yeast cells turned over at a considerable rate when the medium contained both adenine and l-methionine. Most of the l-methionine assimilated appears to be metabolized via S-adenosyl-l-methionine.  相似文献   

2.
In Thiobacillus ferrooxidans AP19-3, elemental sulfur is oxidized by the cooperation of three enzymes, namely, hydrogen sulfide: ferric ion oxidoreductase (SFORase), sulfite: ferric ion oxidoreductase, and iron oxidase. Sulfite ions are one of the products when elemental sulfur is oxidized by SFORase. Under the conditions in which sulfite ions are accumulated in the cells, use of sulfur as an energy source by this strain was strongly inhibited. So the mechanism of inhibition by sulfite ions in T. ferrooxidans AP19-3 was studied. The activities of SFORase and iron oxidase were completely inhibited by 0.8 mm and 1.5 mm NaHSO3, respectively. 14CO2 uptake into washed intact cells was also completely inhibited by 1mm NaHSO3 when ferrous ion or elemental sulfur was used as an energy source. However, the activities of ribulose-1,5-bisphosphate carboxylase, phosphoribulokinase, and ribosephosphate isomerase measured with a cell-free extract were not inhibited by NaHSO3 at 1 mm, indicating that sulfite ions didn’t inhibit key enzymes of the Calvin cycle. Since the activity of CO2 uptake into washed intact cells was absolutely dependent on Fe2 + - or S0-oxidation, mechanism of inhibition of sulfur use by sulfite ions is proposed as follows: sulfite ions inhibit SFORase and iron oxidase, as a result T. ferrooxidans AP19-3 can not obtain a carbon source for CO2 fixation and stops cell growth on sulfur-salts medium.  相似文献   

3.
A bacterial strain, NS671, which converts DL-5-(2-methylthioethyl)hydantoin stereospecifically to L-methionine, was isolated from soil and was classified into the genus Pseudomonas. With growing cells of Pseudomonas sp. strain NS671, DL-5-(2-methylthioethyl)hydantoin was effectively converted to L-methionine. Under adequate conditions, 34g of L-methionine per liter was produced with a molar yield of 93% from DL-5-(2-methylthioethyl)hydantoin added successively. In addition to L-methionine, other amino acids such as L-valine, L-leucine, L-isoleucine, and L-phenylalanine were also produced from the corresponding 5- substituted hydantoins, but these L-amino acids produced were partially consumed by strain NS671. The hydantoinase, by which 5-substituted hydantoin rings are opened, was ATP-dependent. The N-carbamylamino acid amidohydrolase was found to be strictly L-specific, and its activity was inhibited by high concentration of ATP.  相似文献   

4.
The cysteinyl residue at the active site of L-methionine γ-lyase from Pseudomonas putida (MGL_Pp) is highly conserved among the heterologous MGLs. To determine the role of Cys116, we constructed 19 variants of C116X MGL_Pp by saturation mutagenesis. The Cys116 mutants possessed little catalytic activity, while their affinity for each substrate was almost the same as that of the wild type. Especially, the C116S, C116A, and C116H variants composed active site catalytic function as measured by the kinetic parameter k cat toward L-methionine. Furthermore, the mutagenesis of Cys116 also affected the substrate specificity of MGL_Pp at the active center. Substitution of Cys116 for His led to a marked increase in activity toward L-cysteine and a decrease in that toward L-methionine. Propargylglycine inactivated the WT MGL, C116S, and C116A mutants. Based on these results, we postulate that Cys116 plays an important role in the γ-elimination reaction of L-methionine and in substrate recognition in the MGLs.  相似文献   

5.
The contents of plasma free amino acids, the amounts of urinary excreted amino acids and urea, and the activities of liver serine dehydratase, glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase were determined in weanling rats fed ad libitum a 10% casein diet (control), a 10% casein diet containing 7% glycine and 10% casein diets containing 7% glycine supplemented with 1.4% L-arginine and/or 0.9% L-methionine for 14 days.

The remarkable increase of glycine and the moderate increase of serine in the plasma of animals fed excess glycine diets were observed. The amount of excreted glycine in the urine of animals fed the excess glycine diet supplemented with L-arginine and L-methionine was much greater than that of animals given the excess glycine diet. Urinary excreted urea of rats fed the excess glycine diet was a little greater and that of rats fed the excess glycine diet supplemented with L-arginine and L-methionine was much greater than the control. Liver serine dehydratase activity of animals given the excess glycine diets with or without L-arginine was higher than the control and the highest activity was observed in the liver of animals fed the excess glycine diet containing L-arginine and L-methionine. The activity of liver glutamic-oxalacetic transaminase of rats fed the excess glycine diet containing L-arginine and L-methionine was a little higher than that of rats given the other diets. Liver glutamic-pyruvic transaminase activity was a little higher in animals given the excess glycine diets with or without L-arginine and further higher in animals fed the excess glycine diet containing L-arginine and L-methionine than the control.  相似文献   

6.
Culture conditions for the preparation of cells containing high tyrosine phenol lyase activity were studied with Erwinia herbicola ATCC 21434. Adding pyridoxine to the medium enhanced enzyme formation, suggesting that it was utilized as a precursor of the coenzyme, pyridoxal phosphate. Glycerol plus succinic acid; amino acids, such as, DL-methionine, DL-alanine and glycine; and metallic ion, ferrous ion promoted enzyme formation as well as cell growth. Adding L-tyrosine, as inducer, to the culture medium was essential for enzyme formation. However, when large amounts of L-tyrosine were added, the enzyme formation was repressed by the phenol liberated from L-tyrosine. In fact, formation of the enzyme was enhanced by removing phenol during cultivation. L(D)-Phenylalanine or phenylpyruvic acid had a synergistic effect on the induction of enzyme by L-tyrosine.

Cells with high enzyme activity were prepared by growing cells at 28°C for 28 hr in a medium containing 0.2% L-tyrosine, 0.2% KH2PO4, 0.1% MgSO47H2O, 0.001% FeSO7H2O, 0.01% pyridoxine-HC1, 0.6% glycerol, 0.5% succinic acid, 0.1% DL-methionine, 0.2% DL-alanine, 0.05% glycine, 0.1% L-phenylalanine and 120 ml/liter hydrolyzed soybean protein in tap water with the pH controlled at 7.5 throughout cultivation.  相似文献   

7.
p-Fluorophenylalanine (PFP) and m-fluorophenylalanine were the most effective inhibitors on the growth of Corynebacterium glutamicum ATCC 13032 among the analogs of phenylalanine and tyrosine tested. Their inhibitory effects were released by L-phenylalanine, and slightly by L-tyrosine and L-tryptophan. 3-Aminotyrosine (3AT), p-aminophenylalanine, o-fluorophenylalanine, and β-2-thienylalanine were weak inhibitors.

Resistant mutants of C. glutamicum isolated on the medium containing both PFP and 3AT or PFP and L-tyrosine were found to accumulate both L-tyrosine and L-phenylalanine, while resistant mutants isolated on the medium containing only PFP were found to produce only L-phenylalanine. Resistant mutants from other glutamic acid producing bacteria isolated on the medium containing both PFP and 3AT or both PFP and L-tyrosine were found to accumulate L-tyrosine and L-phenylalanine.  相似文献   

8.
The enzyme involved in the reduction of Δ 1-piperideine-6-carboxylate (P6C) to L-pipecolic acid (L-PA) has never been identified. We found that Escherichia coli JM109 transformed with the lat gene encoding L-lysine 6-aminotransferase (LAT) converted L-lysine (L-Lys) to L-PA. This suggested that there is a gene encoding “P6C reductase” that catalyzes the reduction of P6C to L-PA in the genome of E. coli. The complementation experiment of proC32 in E. coli RK4904 for L-PA production clearly shows that the expression of both lat and proC is essential for the biotransformation of L-Lys to L-PA. Further, We showed that both LAT and pyrroline-5-carboxylate (P5C) reductase, the product of proC, were needed to convert L-Lys to L-PA in vitro. These results demonstrate that P5C reductase catalyzes the reduction of P6C to L-PA. Biotransformation of L-Lys to L-PA using lat-expressing E. coli BL21 was done and L-PA was accumulated in the medium to reach at an amount of 3.9 g/l after 159 h of cultivation. It is noteworthy that the ee-value of the produced pipecolic acid was 100%.  相似文献   

9.
A correlation between the quantitative changes in L-methionine analogs, the ratio of D-serine/L-serine during the pupal stage, and metamorphosis was observed. The glycoside appearing at low blood sugar values during the pupal stage was isolated and characterized as D-glucosyl-L-tyrosine. 1H-NMR indicated the appearance and increase of this glycoside, and Mirrorcle Ray CV4 equipment was used to take X-ray pictures of the pupal bodies. The results indicate that γ-cyclic di-L-glutamate and L-methionine sulfone might be concerned with ammonia assimilation in the pupae, and that D-glucosyl-L-tyrosine served as a switch for the fatty acid (pupal oil) dissimilation hybrid system.  相似文献   

10.
Acidithiobacillus ferrooxidans AP19-3, ATCC 23270, and MON-1 are mercury-sensitive, moderately mercury-resistant, and highly mercury-resistant strains respectively. It is known that 2,3,5,6-tetramethyl-p-phenylendiamine (TMPD) and reduced cytochrome c are used as electron donors specific for cytochrome c oxidase. Resting cells of strain MON-1 had TMPD oxidase activity and volatilized metal mercury with TMPD as an electron donor. Cytochrome c oxidase purified from strain MON-1 reduced mercuric ions to metalic mercury with reduced mammalian cytochrome c as well as TMPD. These mercury volatilization activities with reduced cytochrome c and TMPD were completely inhibited by 1 mM NaCN. These results indicate that cytochrome c oxidase is involved in mercury reduction in A. ferrooxidans cells. The cytochrome c oxidase activities of strains AP19-3 and ATCC 23270 were completely inhibited by 1 μM and 5 μM of mercuric chloride respectively. In contrast, the activity of strain MON-1 was inhibited 33% by 5 μM, and 70% by 10 μM of mercuric chloride, suggesting that the levels of mercury resistance in A. ferrooxidans strains correspond well with the levels of mercury resistance of cytochrome c oxidase.  相似文献   

11.
L-Methionine γ-lyase (EC 4.4.1.11) catalyzes α,γ-elimination of O-substituted L-homoserines (i.e., ROCH2CH2CH(NH2)COOH; R = acetyl, succinyl, or ethyl) to produce α-ketobutyrate, ammonia, and the corresponding carboxylate or alcohol, and also their γ-replacement reactions with various thiols to produce the corresponding S-substituted L-homocysteines. The reactivities of O-substituted L-homoserines in α,γ-elimination relative to that of L-methionine were as follows: O-acetyl, 140%; O-succinyl, 17%; and O-ethyl-L-homoserine, 99%. However, the enzyme does not catalyze the synthesis of O-substituted L-homoserines from alcohol or carboxylic acids in a γ-replacement reaction. We have analyzed the α,γ-elimination of O-acetyl-L-homoserine in deuterium oxide by 1H-NMR. The [β-2H, γ-2H]-species of α-ketobutyrate was exclusively formed from O-acetyl-L-homoserine. The enzyme catalyzes deamination of L-vinylglycine to give the identically labeled α-ketobutyrate species. Incubation of the enzyme with O-acetyl-L-homoserine resulted in the appearance of a new absorption band at 480 nm, which was observed also with L-vinylglycine. These results strongly suggest that the α,γ-elimination and γ-replacement reactions of O-acetyl-L-homoserine proceed through the stabilized α-carbanion of a Schiff base between pyridoxal 5'-phosphate and vinylglycine, which has been suggested as the key intermediate of L-methionine γ-lyase-caralyzed reactions of S-substituted L-homocysteines [N. Esaki, T. Suzuki, H. Tanaka, K. Soda and R. R. Rando, FEBS Lett., 84, 309 (1977).  相似文献   

12.
An N-carbamyl-L-amino acid amidohydrolase was purified from cells of Escherichia coli in which the gene for N-carbamyl-L-amino acid amidohydrolase of Pseudomonas sp. strain NS671 was expressed. The purified enzyme was homogeneous by the criterion of SDS–polyacrvlamide gel electrophoresis. The results of gel filtration chromatography and SDS–polyacrylamide gel electrophoresis suggested that the enzyme was a dimeric protein with 45-kDa identical subunits. The enzyme required Mn2+ ion (above 1 mM) for the activity. The optimal pH and temperature were 7.5 and around 40°C, respectively, with N-carbamyl-L-methionine as the substrate. The enzyme activity was inhibited by ATP and was iost completely with p-chloromercuribenzoate (1 mM). The enzyme was strictly L-specific and showed a broad substrate specificity for N-carbamyl-L-α-amino acids.  相似文献   

13.
Ethionine-resistant mutants derived from Corynebacterium glutamicum KY 9276 (Thr?) were found to accumulate l-methionine in culture media. One of the mutants, ER-107-4, which produced 250 μg/ml of l-methionine was subjected to further mutagenesis to obtain better l-methionine producers. l-Methionine production increased stepwise by successive endowing such markers as selenomethionine, 1,2,4-triazole, trifluoromethionine and methionine hydroxamate resistance. Thus, a mutant multi-resistant to ethionine, selenomethionine and methionine hydroxamate, ESLMR-724, produced 2 mg/ml of l-methionine in a medium containing 10% glucose.

Increase of l-methionine production was accompanied by increased levels and reduced repressibility of methionine-forming enzymes. The levels of methionine enzymes in ESLMR-724 increased to 2.5~4.2 fold of those in KY9276, In addition, homoserine-O-trans-acetylase and cystathionine γ-synthase which were strongly repressed by l-methionine in KY 9276 were stimulated by exogenous l-methionine in ESLMR-724. Implications of these results were discussed in relation to the productivity of l-methionine and the regulation of l-methionine biosynthesis.  相似文献   

14.
An isoleucine leaky auxotroph of Arthrobacter paraffineus, which was isolated by Takayama et al.3) as a mutant producing L-threonine and L-valine from n-paraffin, was subjected to further mutagenesis in an attempt to obtain better L-threonine producers. Some of the double auxotrophs derived from the isoleucine auxotroph and some of their revertants with respect to isoleucine requirement produced more L-threonine than the original isoleucine auxotroph. In contrast to the original isoleucine auxotroph, a revertant derived from a methionine plus isoleucine double auxotroph, KY7135, produced an increased amount of L-threonine and a decreased amount of L-valine. The optimum level of L-methionine for L-threonine production in KY7135 was much higher (1000 ~ 2000 μg/ml) with n-paraffin medium than with sorbitol or mannitol medium (10 ~ 50 μg/ml). L-Threonine production reached a maximum level (11.5 mg/ml) in 7 days incubation with the medium containing 10% n-paraffin (C12 ~ C14 rich). Several mutants which produce L-threonine more than 12 mg/ml were obtained from KY 7135 by monocolony isolation procedure.  相似文献   

15.
An Escherichia coli mutant (MX-5) deficient in d-xylose utilization was isolated. The d-xylose uptake and d-xylose isomerase activities of the mutant were much lower than those of the parental strain (C600). The genes responsible for the d-xylose uptake by E. coli were cloned onto vector plasmid pBR322, and the resultant hybrid plasmid was designated as pXP5. Hybrid plasmid pXP5 improved the growth rate of the mutant (MX-5) on d-xylose, and also both the d-xylose uptake and d-xylose isomerase activities of the mutant were recovered when pXP5 was introduced into the mutant cells. Based on these results, it was suggested that one (xyl T) of the d-xylose transport genes could be closely linked to the d-xylose isomerase gene (xylA) known to be present at 80 min on E. coli chromosomal DNA.  相似文献   

16.
Rats were fed diets supplemented with 1% L-methionine with and without 2.5% various amino acids for 7 d to determine what amino acids other than glycine, serine, and cystine can suppress methionine-induced hyperhomocysteinemia. L-Glutamic acid, L-histidine, and L-arginine significantly suppressed methionine-induced enhancement of plasma homocysteine concentrations, but the mechanisms underlying the effect of these amino acids are thought not to be identical.  相似文献   

17.
Certain strains of Streptomyces were found to convert l-methionine into 3-methylthio-propylamine (MTPA), but not d-methionine. Now, optical resolution of DL-methionine was attempted using this phenomenon. Streptomyces sp. K37 was cultured in a medium containing DL-methionine (10 mg/ml). The culture filtrate was applied to a column of Diaion SA-21A (OH form). MTPA was recovered from the effluent by ether exraction. The Diaion SA-21A was eluted with 1N HCl and the eluate was applied to a column of Diaion SK-1 (H form). d-Methionine was eluted from the column with 1N NH4OH and recovered after concentration, decolorization with active carbon, and precipitation with ethanol. The yields of MTPA and d-methionine from the broth were 69.5% and 89.5%, respectively.  相似文献   

18.
L-Pipecolic acid is a chiral pharmaceutical intermediate. An enzymatic system for the synthesis of L-pipecolic acid from L-lysine by commercial L-lysine α-oxidase from Trichoderma viride and an extract of recombinant Escherichia coli cells coexpressing Δ1-piperideine-2-carboxylate reductase from Pseudomonas putida and glucose dehydrogenase from Bacillus subtilis is described. A laboratory-scale process provided 27 g/l of L-pipecolic acid in 99.7% e.e.  相似文献   

19.
D- and L-3′-Deoxy-3′-C-hydroxymethyl thymidine substituted with exocyclic methylene at 2′-position were synthesized, starting from D- and L-xylose as potential ribonucleotide reductase inhibitor, respectively, but they were found to be inactive against several tumor cell lines.  相似文献   

20.
Two genes of Pseudomonas putida (IFO 12996) which code for enzymes participating in amino acid metabolism, were cloned in Escherichia coli C600 using pBR322 as a vector. pST7549 is a 7.9 kb hybrid plasmid DNA which is composed of four SalI fragments (0.3, 1.4, 1.9 and 4.3 kb), and codes for β-isopropylmalate dehydrogenase (EC 1.1.1.85) in l-leucine biosynthesis. The enzyme activity in the crude extract from E. coli C600 bearing pST7549 was 80 ~ 90% lower than that of E. coli K12 or P. putida. When the foreign SalI fragments derived from P. putida were subcloned, a 1.9 kb SalI fragment was found to encode β-isopropylmalate dehydrogenase and it did not contain the promoter of P. putida DNA. Plasmid pST6961 has a 1.8 kb insert derived from the P. putida DNA in the SalI site of pBR322. E. coli cells carrying this recombinant plasmid show no leucine racemase activity and no d-leucine transaminase activity, but five-times higher d-leucine oxidation activity than the host strain, E. coli. Enzymological studies have suggested that plasmid pST6961 codes for d-amino acid dehydrogenase, a key enzyme in d-amino acid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号