首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
There is considerable current interest in coenzyme Q10 (CoQ10) from a medical perspective. CoQ10 has been shown to alleviate the side effects of statin drugs, for instance, and so there is a push to find naturally high producers of the compound. Sporidiobolus johnsonii (S. johnsonii) has been reported to produce CoQ10 in studies that used only standards on thin‐layer chromatography (TLC) and also suggested the production of coenzyme Q9 (CoQ9). This work set out to verify CoQ9/CoQ10 production in S. johnsonii and quantify as appropriate. We show that S. johnsonii produces CoQ10 but found no evidence for CoQ9 biosynthesis. The specific production of CoQ10 was noted at 10 mg/g dry cell weight (DCW) in media supplemented with 4‐hydroxybenzoic acid (HBA). This makes S. johnsonii a naturally high CoQ10 producer. New methods for extraction and purification of CoQ10 are also discussed, and identification of a closely eluting side product under normal phase isolation is reported.  相似文献   

2.
Shalata  Adel  Edery  Michael  Habib  Clair  Genizi  Jacob  Mahroum  Mohammad  Khalaily  Lama  Assaf  Nurit  Segal  Idan  Abed El Rahim  Hoda  Shapira  Hana  Urian  Danielle  Tzur  Shay  Douiev  Liza  Saada  Ann 《Neurochemical research》2019,44(10):2372-2384

Primary deficiency of coenzyme Q10 (CoQ10 ubiquinone), is classified as a mitochondrial respiratory chain disorder with phenotypic variability. The clinical manifestation may involve one or multiple tissue with variable severity and presentation may range from infancy to late onset. ADCK3 gene mutations are responsible for the most frequent form of hereditary CoQ10 deficiency (Q10 deficiency-4 OMIM #612016) which is mainly associated with autosomal recessive spinocerebellar ataxia (ARCA2, SCAR9). Here we provide the clinical, biochemical and genetic investigation for unrelated three nuclear families presenting an autosomal form of Spino-Cerebellar Ataxia due to novel mutations in the ADCK3 gene. Using next generation sequence technology we identified a homozygous Gln343Ter mutation in one family with severe, early onset of the disease and compound heterozygous mutations of Gln343Ter and Ser608Phe in two other families with variable manifestations. Biochemical investigation in fibroblasts showed decreased activity of the CoQ dependent mitochondrial respiratory chain enzyme succinate cytochrome c reductase (complex II?+?III). Exogenous CoQ slightly improved enzymatic activity, ATP production and decreased oxygen free radicals in some of the patient’s cells. Our results are presented in comparison to previously reported mutations and expanding the clinical, molecular and biochemical spectrum of ADCK3 related CoQ10 deficiencies.

  相似文献   

3.
In vitro maturation (IVM) can impair the balance between antioxidant capacity and oxidative stress, and jeopardize embryo development by increasing oxidative stress, reducing energy metabolism, and causing improper meiotic segregation. Balancing the energy production and reduction of oxidative stress can be achieved by supplementation with coenzyme Q10 (CoQ10), an electron transporter in the mitochondrial inner membrane. To improve the in vitro production of ovine embryos, we studied the effect of CoQ10 supplementation during the maturation of sheep oocytes. A minimum of 100 cumulus‐oocyte complexes (COCs) were matured in the presence of 15, 30, or 50 μM CoQ10 in three to five replicates; next, in vitro fertilization and culture in a subset of oocytes were done. Our data revealed that compared to control oocytes or other concentrations of CoQ10, supplementation with 30 µM CoQ10 resulted in a significant increase in blastocyst formation and hatching rates, improved the distribution, relative mass and potential membrane of mitochondria, decreased the levels of reactive oxygen species and glutathione and lessened the percentage of oocytes with misaligned chromosomes after spindle assembly. The relative expression levels of apoptosis markers CASPASE3 and BAX were significantly reduced in CoQ10‐treated oocytes and cumulus cells whereas the relative expression level of GDF9, an oocyte‐specific growth factor, significantly increased. In conclusion, supplementation with CoQ10 improves the quality of COCs and the subsequent developmental competence of the embryo.  相似文献   

4.
Female reproductive capacity declines dramatically in the fourth decade of life as a result of an age‐related decrease in oocyte quality and quantity. The primary causes of reproductive aging and the molecular factors responsible for decreased oocyte quality remain elusive. Here, we show that aging of the female germ line is accompanied by mitochondrial dysfunction associated with decreased oxidative phosphorylation and reduced Adenosine tri‐phosphate (ATP) level. Diminished expression of the enzymes responsible for CoQ production, Pdss2 and Coq6, was observed in oocytes of older females in both mouse and human. The age‐related decline in oocyte quality and quantity could be reversed by the administration of CoQ10. Oocyte‐specific disruption of Pdss2 recapitulated many of the mitochondrial and reproductive phenotypes observed in the old females including reduced ATP production and increased meiotic spindle abnormalities, resulting in infertility. Ovarian reserve in the oocyte‐specific Pdss2‐deficient animals was diminished, leading to premature ovarian failure which could be prevented by maternal dietary administration of CoQ10. We conclude that impaired mitochondrial performance created by suboptimal CoQ10 availability can drive age‐associated oocyte deficits causing infertility.  相似文献   

5.
Panicum meyerianum Nees is a wild relative of Panicum maximum Jacq. (guinea grass), which is an important warm-season forage grass and biomass crop. We investigated the conditions that maximized the transformation efficiency of P. meyerianum by Agrobacterium infection by monitoring the expression of the β-glucuronidase (GUS) gene. The highest activities of GUS in calli were achieved by the co-cultivation of plants with Agrobacterium at 28°C for 6 days. We transferred the ddsA gene, which encodes decaprenyl diphosphate synthase and is required for coenzyme Q10 (CoQ10) synthesis, into P. meyerianum by using our optimized co-cultivation procedure for transformation. We confirmed by PCR and DNA gel blot hybridization that all hygromycin-resistant plants retained stable insertion of the hpt and ddsA genes. We also demonstrated strong expression of S14:DdsA protein in the leaves of transgenic P. meyerianum. Furthermore, we showed that transgenic P. meyerianum produced CoQ10 at levels 11–20 times higher than that of non-transformants. By comparison, the CoQ9 level in transgenic plants was dramatically reduced. This is the first report of efficient Agrobacterium-mediated transfer of a foreign gene into the warm-season grass P. meyerianum.  相似文献   

6.
Purpose Ischemia, reperfusion, and free radical generation have been recently implicated in the progressive bladder dysfunction. Coenzyme Q10 (CoQ10) is a pro-vitamin like substance that appears to be efficient for treatment of neurodegenerative disorders and ischemic heart disease. Our goal was to investigate the potential protective effect of CoQ10 in a rabbit model of in vivo bilateral ischemia and ischemia/reperfusion (I/R). Material and Methods Six groups of four male New Zealand White rabbits each were treated with CoQ10 (3 mg/kg body weight/day—dissolved in peanut oil) (groups 1–3) or vehicle (peanut oil) (groups 4–6). Groups 1 and 4 (ischemia-alone groups) had clamped bilateral vesical arteries for 2 h; in groups 2 and 5 (I/R groups), bilateral ischemia was similarly induced and the rabbits were allowed to recover for 2 weeks. Groups 3 and 6 were controls (shams) and were exposed to sham surgery. The effects on contractile responses to various stimulations and biochemical studies such as citrate synthase (CS), choline acetyltransferase (ChAT), superoxide dismutase (SOD), and catalase (CAT) were evaluated. The protein peroxidation indicator, carbonyl group, and nitrotyrosine contents were analyzed by Western blotting. Results Ischemia resulted in significant reductions in the contractile responses to all forms of stimulation in vehicle-fed rabbits, whereas there were no reductions in CoQ10-treated rabbits. Contractile responses were significantly reduced in vehicle-treated I/R groups, but significantly improved in CoQ10-treated rabbits. Protein carbonylation and nitration increased significantly in ischemia-alone and I/R bladders; CoQ10 treatment significantly attenuated protein carbonylation and nitration. CoQ10 up-regulated SOD and CAT activities in control animals; the few differences in CoQ10-treated animal in SOD and CAT after ischemia and in general increase CAT activities following I/R. Conclusions CoQ10 supplementation provides bladder protection against I/R injury. This protection effect improves mitochondrial function during I/R by repleting mitochondrial CoQ10 stores and potentiating their antioxidant properties.  相似文献   

7.
Pseudomonas M16 is the mutant derived from a facultative methylotroph, Pseudomonas N842, which is the potent producer of coenzyme Q10 (CoQ10). This mutant with elevated productivity of CoQ10 was observed to accumulate the significant amount of another CoQ homolog, which could not be detected in the parent strain. This CoQ homolog was extracted from the intact cells of the mutant and purified to crystaline state. The chemical properties and the results of UV, NMR and mass spectrometries revealed that this CoQ homolog was CoQ11.  相似文献   

8.
Coenzyme Q (CoQ), an electron transfer molecule in the respiratory chain and a lipid-soluble antioxidant, is present in almost all organisms. Most cereal crops produce CoQ9, which has nine isoprene units. CoQ10, with 10 isoprene units, is a very popular food supplement. Here, we report the genetic engineering of rice to produce CoQ10 using the gene for decaprenyl diphosphate synthase (DdsA). The production of CoQ9 was almost completely replaced with that of CoQ10, despite the presence of endogenous CoQ9 synthesis. DdsA designed to express at the mitochondria increased accumulation of total CoQ amount in seeds.  相似文献   

9.
Although coenzyme Q10 (CoQ10) supplementation has shown to reduce pain levels in chronic pain, the effects of CoQ10 supplementation on pain, anxiety, brain activity, mitochondrial oxidative stress, antioxidants, and inflammation in pregabalin-treated fibromyalgia (FM) patients have not clearly elucidated. We hypothesised that CoQ10 supplementation reduced pain better than pregabalin alone via reducing brain activity, mitochondrial oxidative stress, inflammation, and increasing antioxidant levels in pregabalin-treated FM patients. A double-blind randomised placebo-controlled trial was conducted. Eleven FM patients were enrolled with 2 weeks wash-out then randomly allocated to 2 treatment groups; pregabalin with CoQ10 or pregabalin with placebo for 40 d. Then, patients in CoQ10 group were switched to placebo, and patients in placebo group were switched to CoQ10 for another 40 d. Pain pressure threshold (PPT), FM questionnaire, anxiety, and pain score were examined. Peripheral blood mononuclear cells (PBMCs) were isolated to investigate mitochondrial oxidative stress and inflammation at day 0, 40, and 80. The level of antioxidants and brain positron emission tomography (PET) scan were also determined at these time points. Pregabalin alone reduced pain and anxiety via decreasing brain activity compared with their baseline. However, it did not affect mitochondrial oxidative stress and inflammation. Supplementation with CoQ10 effectively reduced greater pain, anxiety and brain activity, mitochondrial oxidative stress, and inflammation. CoQ10 also increased a reduced glutathione levels and superoxide dismutase (SOD) levels in FM patients. These findings provide new evidence that CoQ10 supplementation provides further benefit for relieving pain sensation in pregabalin-treated FM patients, possibly via improving mitochondrial function, reducing inflammation, and decreasing brain activity.  相似文献   

10.
We have investigated the role of the Coenzyme Q pool in glycerol-3-phosphate oxidation in hamster brown adipose tissue mitochondria. Antimycin A and myxothiazol inhibit glycerol-3-phosphate cytochromec oxidoreductase in a sigmoidal fashion, indicating that CoQ behaves as a homogeneous pool between glycerol-3-phosphate dehydrogenase and complex III. The inhibition of ubiquinol cytochromec reductase is linear at low concentrations of both inhibitors, indicating that sigmoidicity of antimycin A and myxothiazol inhibition is not a direct property of antimycin A and myxothiazol binding. Glycerol-3-phosphate cytochromec oxidoreductase is strongly stimulated by added CoQ3, indicating that endogenous CoQ is not saturating. Application of the pool equation for nonsaturating ubiquinone allows calculation of theK m for endogenous CoQ of glycerol-3-phosphate dehydrogenase of 3.14mM. The results of this investigations reveal that CoQ behaves as a homogeneous pool between glycerol-3-phosphate dehydrogenase and complex III in brown adipose tissue mitochondria; moreover, its concentration is far below saturation for maximal electron transfer activity in comparison with other branches of the respiratory chain connected with the CoQ pool. HPLC analysis revealed a lower amount of CoQ in brown adipose mitochondria (0.752 nmol/mg protein) in comparison with mitochondria from other tissues and the presence of both CoQ9 and CoQ10.  相似文献   

11.
Nephrotic syndrome (NS), a frequent chronic kidney disease in children and young adults, is the most common phenotype associated with primary coenzyme Q10 (CoQ10) deficiency and is very responsive to CoQ10 supplementation, although the pathomechanism is not clear. Here, using a mouse model of CoQ deficiency-associated NS, we show that long-term oral CoQ10 supplementation prevents kidney failure by rescuing defects of sulfides oxidation and ameliorating oxidative stress, despite only incomplete normalization of kidney CoQ levels and lack of rescue of CoQ-dependent respiratory enzymes activities. Liver and kidney lipidomics, and urine metabolomics analyses, did not show CoQ metabolites. To further demonstrate that sulfides metabolism defects cause oxidative stress in CoQ deficiency, we show that silencing of sulfide quinone oxido-reductase (SQOR) in wild-type HeLa cells leads to similar increases of reactive oxygen species (ROS) observed in HeLa cells depleted of the CoQ biosynthesis regulatory protein COQ8A. While CoQ10 supplementation of COQ8A depleted cells decreases ROS and increases SQOR protein levels, knock-down of SQOR prevents CoQ10 antioxidant effects. We conclude that kidney failure in CoQ deficiency-associated NS is caused by oxidative stress mediated by impaired sulfides oxidation and propose that CoQ supplementation does not significantly increase the kidney pool of CoQ bound to the respiratory supercomplexes, but rather enhances the free pool of CoQ, which stabilizes SQOR protein levels rescuing oxidative stress.  相似文献   

12.
Mutation of Pseudomonas N842 was carried out to increase CoQ10 production. The productivity of CoQ10 was improved considerably by repeated mutation, and the content of CoQ10 per unit cell of the fifth generation mutant was approximately 6 times that of the wild strain, Pseudomonas N842. CoQ11, which was hardly detectable in the wild strain, increased significantly by mutation, and the ratio of CoQ11 to total CoQ exceeded 20% in the fourth generation mutant. Intermittent feeding of glucose to the culture medium during cultivation increased cell yield and CoQ production. When total glucose added was 5 times that of basal medium, cell yield and CoQ formation respectively increased about 3 and 4 times.  相似文献   

13.
Mitochondrial disorders are often associated with primary or secondary CoQ10 decrease. In clinical practice, Coenzyme Q10 (CoQ10) levels are measured to diagnose deficiencies and to direct and monitor supplemental therapy. CoQ10 is reduced by complex I or II and oxidized by complex III in the mitochondrial respiratory chain. Therefore, the ratio between the reduced (ubiquinol) and oxidized (ubiquinone) CoQ10 may provide clinically significant information in patients with mitochondrial electron transport chain (ETC) defects. Here, we exploit mutants of Caenorhabditis elegans (C. elegans) with defined defects of the ETC to demonstrate an altered redox ratio in Coenzyme Q9 (CoQ9), the native quinone in these organisms. The percentage of reduced CoQ9 is decreased in complex I (gas-1) and complex II (mev-1) deficient animals, consistent with the diminished activity of these complexes that normally reduce CoQ9. As anticipated, reduced CoQ9 is increased in the complex III deficient mutant (isp-1), since the oxidase activity of the complex is severely defective. These data provide proof of principle of our hypothesis that an altered redox status of CoQ may be present in respiratory complex deficiencies. The assessment of CoQ10 redox status in patients with mitochondrial disorders may be a simple and useful tool to uncover and monitor specific respiratory complex defects.  相似文献   

14.
《Free radical research》2013,47(4-6):317-327
This study examines the possible role of Coenzyme Q (CoQ. ubiquinone) in the control of mitochondrial electron transfer. The CoQ concentration in mitochondria from different tissues was investigated by HPLC. By analyzing the rates of electron transfer as a function of total CoQ concentration, it was calculated that, at physiological CoQ concentration NADH cytochrome c reductase activity is not saturated. Values for theoretical Vmax could not be reached experimentally for NADH oxidation, because of the limited mis-cibility of CoQ10 with the phospholipids. On the other hand, it was found that CoQ3 could stimulate α-glycerophosphate cytochrome c reductase over three-fold. Electron transfer being a diffusion-coupled process. we have investigated the possibility of its being subjected to diffusion control. A reconstruction study of Complex I and Complex III in liposomes showed that NADH cytochrome c reductase was not affected by changing the average distance between complexes by varying the protein: lipid ratios. The results of a broad investigation on ubiquinol cytochrome c reductase in bovine heart submitochondrial particles indicated that the enzymic rate is not diffusion-controlled by ubiquinol. whereas the interaction of cytochrome c with the enzyme is clearly diffusion-limited  相似文献   

15.
Coenzyme Q (CoQ, ubiquinone) is a central electron carrier in mitochondrial respiration. CoQ is synthesized through multiple steps involving a number of different enzymes. The prevailing view that the CoQ used in respiration exists as a free pool that diffuses throughout the mitochondrial inner membrane bilayer has recently been challenged. In the yeast Saccharomyces cerevisiae, deletion of the gene encoding Coq10p results in respiration deficiency without inhibiting the synthesis of CoQ, suggesting that the Coq10 protein is critical for the delivery of CoQ to the site(s) of respiration. The precise mechanism by which this is achieved remains unknown at present. We have identified a Plasmodium orthologue of Coq10 (PfCoq10), which is predominantly expressed in trophozoite-stage parasites, and localizes to the parasite mitochondrion. Expression of PfCoq10 in the S. cerevisiae coq10 deletion strain restored the capability of the yeast to grow on respiratory substrates, suggesting a remarkable functional conservation of this protein over a vast evolutionary distance, and despite a relatively low level of amino acid sequence identity. As the antimalarial drug atovaquone acts as a competitive inhibitor of CoQ, we assessed whether over-expression of PfCoq10 altered the atovaquone sensitivity in parasites and in yeast mitochondria, but found no alteration of its activity.  相似文献   

16.
We studied the effect of different solid substrates on virulence of two Beauveria bassiana isolates against the browntail moth, Euproctis chrysorrhoea (L.) (Lep.: Lymantriidae). Conidia produced on wheat grains, wheat flour, wheat bran, rice flour, rice bran, rice paddy, corn flour, millet, and Sabouraud's dextrose agar with 1% yeast extract (SDAY) as control were compared. There were significant differences among these substrates for their effects on the virulence of produced conidia. Applying 107 conidia/mL of B. bassiana EUT105, produced on rice bran caused the highest (84.9%) and on rice flour, the lowest (57.6%) mortalities. Bioassay on fifth-instar larvae using aerial conidia harvested from wheat grains, rice paddy, and SDAY indicated that conidia from wheat grains had the highest virulence while those from rice paddy, the lowest.  相似文献   

17.
New onset of diabetes is associated with the use of statins. We have recently demonstrated that pravastatin-treated hypercholesterolemic LDL receptor knockout (LDLr−/−) mice exhibit reductions in insulin secretion and increased islet cell death and oxidative stress. Here, we hypothesized that these diabetogenic effects of pravastatin could be counteracted by treatment with the antioxidant coenzyme Q 10 (CoQ 10), an intermediate generated in the cholesterol synthesis pathway. LDLr −/− mice were treated with pravastatin and/or CoQ 10 for 2 months. Pravastatin treatment resulted in a 75% decrease of liver CoQ 10 content. Dietary CoQ 10 supplementation of pravastatin-treated mice reversed fasting hyperglycemia, improved glucose tolerance (20%) and insulin sensitivity (>2-fold), and fully restored islet glucose-stimulated insulin secretion impaired by pravastatin (40%). Pravastatin had no effect on insulin secretion of wild-type mice. In vitro, insulin-secreting INS1E cells cotreated with CoQ 10 were protected from cell death and oxidative stress induced by pravastatin. Simvastatin and atorvastatin were more potent in inducing dose-dependent INS1E cell death (10–15-fold), which were also attenuated by CoQ 10 cotreatment. Together, these results demonstrate that statins impair β-cell redox balance, function and viability. However, CoQ 10 supplementation can protect the statins detrimental effects on the endocrine pancreas.  相似文献   

18.
The coenzyme Q (CoQ) molecule plays a critical role in the biochemical generation of energy in the form of adenosine triphosphate. Various types of CoQ can be classified according to their number of isoprenoid units in the tail. In human beings, CoQ10 is produced and is necessary for the basic functioning of cells. CoQ10 exists in two forms, as ubiquinone (UQ) and as ubiquinol (UQH2), which have different roles in the body. Molecular dynamics (MD) simulations for the analysis of the effects of solvents on the structure of the UQ molecule are presented. Besides, semi-empirical molecular orbital PM3 calculation is applied to obtain structural and electronic properties of both the UQ and the UQH2 molecules. According to the MD simulation, the UQ molecule seems to be flexible both in vacuum and in water. On the other hand, the molecule stays more rigid in methanol. PM3 calculations show that both molecules are quite hydrophobic. Furthermore, UQ is chemically more reactive than UQH2, but the latter is kinetically more stable than the former.  相似文献   

19.
Coenzyme Q(10) (CoQ(10)) is an essential component of the plasma membrane ion transporter (PMIT) system and of the electron transport chain in the inner mitochondrial membrane. Because of its intrinsic functions in cell growth and energy metabolism (ATP synthesis), and its protective effects against oxidative stress, CoQ(10) is a good candidate for supporting growth of cells in culture. However, because of its quinone structure, CoQ(10) is extremely lipophilic and practically insoluble in water. We used a specific technology to prepare a submicron-sized dispersion of CoQ(10), inhibiting re-crystallization by a stabilizer. This dispersion, which exhibits a very large specific surface area for drug dissolution, was tested as a supplement for the in vitro culture of bovine embryos in a chemically defined system. The rate of early cleavage of embryos (5- to 8-cell stages) was evaluated 66 h postinsemination (hpi) and was highest in medium supplemented with 30 or 100 microM CoQ(10) (66.5 +/- 0.8% and 68.7 +/- 1.1%, respectively) and lowest in 10 microM CoQ(10) (55.3 +/- 0.8%). The proportions of oocytes developing to blastocysts by 186 hpi were 19.0 +/- 0.6% and 25.2 +/- 0.3% in medium supplemented with 10 microM and 30 microM CoQ(10), respectively, and were significantly (p < 0.001) higher than those obtained with the equivalent amounts of stabilizer (9.9 +/- 0.4% and 11.3 +/- 0.4%). In the presence of 30 microM CoQ(10), significantly (p < 0.001) more blastocysts hatched by 210 hpi than in the equivalent amount of stabilizer (31.8 +/- 1.3 vs. 8.4 +/- 2.2). Expanded blastocysts produced in the presence of 30 microM CoQ(10) had significantly (p < 0.01) more inner cell mass cells and trophectoderm cells, and a significantly (p < 0.001) increased ATP content as compared to expanded blastocysts produced in the presence of the corresponding amount of stabilizer. Our results show that noncrystalline CoQ(10) in submicron-sized dispersion supports the development and viability of bovine embryos produced in a chemically defined culture system.  相似文献   

20.
Coenzyme Q10 (CoQ10) or Ubiquinone10 (UQ10), an isoprenylated benzoquinone, is well-known for its role as an electron carrier in aerobic respiration. It is a sole representative of lipid soluble antioxidant that is synthesized in our body. In recent years, it has been found to be associated with a range of patho-physiological conditions and its oral administration has also reported to be of therapeutic value in a wide spectrum of chronic diseases. Additionally, as an antioxidant, it has been widely used as an ingredient in dietary supplements, neutraceuticals, and functional foods as well as in anti-aging creams. Since its limited dietary uptake and decrease in its endogenous synthesis in the body with age and under various diseases states warrants its adequate supply from an external source. To meet its growing demand for pharmaceutical, cosmetic and food industries, there is a great interest in the commercial production of CoQ10. Various synthetic and fermentation of microbial natural producers and their mutated strains have been developed for its commercial production. Although, microbial production is the major industrial source of CoQ10 but due to low yield and high production cost, other cost-effective and alternative sources need to be explored. Plants, being photosynthetic, producing high biomass and the engineering of pathways for producing CoQ10 directly in food crops will eliminate the additional step for purification and thus could be used as an ideal and cost-effective alternative to chemical synthesis and microbial production of CoQ10. A better understanding of CoQ10 biosynthetic enzymes and their regulation in model systems like E. coli and yeast has led to the use of metabolic engineering to enhance CoQ10 production not only in microbes but also in plants. The plant-based CoQ10 production has emerged as a cost-effective and environment-friendly approach capable of supplying CoQ10 in ample amounts. The current strategies, progress and constraints of CoQ10 production in plants are discussed in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号