首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pine wilt disease caused by Bursaphelenchus xylophilus (BX), also known as the pine wood nematode (PWN), is the most devastating disease of pine trees. In this work, a high molecular weight B. xylophilus cellulase antigen (BXCa) was purified from total homogenates of nematodes. BXCa was found to be able to hydrolyze carboxymethyl cellulose (CMC) efficiently (155.65 U/mg) and to have an approximate molecular mass of 58.9 kDa. We harvested anti-BXCa antibodies and performed immunocytochemical assays, which revealed the localization of cellulase pools in the esophageal gland cells of the PWN. It was also discovered that cellulase was secreted from the stylet and was used to hydrolyze cellulose to facilitate the PWN entering host cells. These results are consistent with other plant parasitical nematodes. Interestingly, strong fluorescence signals from cellulase staining were observed in tracheid cells in naturally infected pine wood, in addition to ray cells and the resin canal zone. These results strongly suggest that the cellulase released by the PWN is one of the pathogenic substances of pine wilt disease and is responsible for the development of the early symptoms of the disease.  相似文献   

2.
3.
4.
Pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causative agent of pine wilt disease (PWD) of pine trees and is transmitted by cerambycid beetles belonging to the genus Monochamus. PWN is believed to have been introduced into Japan from North America at the beginning of the 20th century. In this article, we first provide an outline of the PWD system and the range expansion of PWN in Japan and then review the literature, focusing on the virulence of PWN. Virulence is a heritable trait in PWN, with high virulence being closely related to a high rate of reproduction and within-tree dispersal. When two PWN isolates with different virulence levels are inoculated into pine seedlings, the more virulent nematodes always dominate in dead seedlings. In a laboratory setting, many more virulent nematodes board the insect vectors than avirulent ones. The age at which vectors transmit the most abundant PWNs to pine twigs changes during the course of a PWD epidemic. However, the relation between virulence and transmission of PWN remains as yet relatively unknown. Such information would enable ecologists to predict the evolution of the PWD system. In this review we also compare ecological traits between the PWN and the avirulent congener, B. mucronatus.  相似文献   

5.
Esteya vermicola (Ophiostomataceae) is the first reported endoparasitic fungus of the pinewood nematode (PWN), Bursaphelenchus xylophilus (Nematoda: Aphelenchoidoidea). It has high in vitro infectivity. In this study, the nematocidal effect of E. vermicola in logs was investigated and evaluated. Two months after inoculation of pine wilt-killed Pinus densiflora logs with E. vermicola conidia suspensions of 3 × 108 and 3 × 106 ml−1, the density of nematodes decreased by approximately 79% and 47%, respectively. When the fungus was sprayed on to four-year-old pine seedlings one month before PWN inoculation, the survival index of seedlings reached 0.67 compared with only 0.067 for control seedlings without fungal spraying. These results suggest that conidia spraying of Evermicola can, to some extent, protect pine trees from wilt disease. Moreover, infected nematodes and hyphae of Evermicola were observed in the treated wood sections.  相似文献   

6.
The pine wood nematode (PWN) Bursaphelenchus xylophilus is the causal agent of pine wilt disease (PWD), a xylem restricting disease of pine trees. PWN, a native of North America where it very rarely kills native pine trees, has spread internationally killing host trees in China, Japan, Korea, Taiwan and Portugal, with isolated incursions into Spain. Based on the locations where tree mortality has been recorded, it appears that pine trees growing in hot, dry conditions are more susceptible to pine wilt disease. This paper describes the ETpN model, an evapo-transpiration model (previously developed by Forest Research), which has been modified to incorporate the presence of PWN inside a tree and which predicts the regions of Europe that are likely to succumb to PWD. ETpN acts independently of the vector beetle (Monochamus spp.), predicting the likelihood of PWD on the assumption that a tree in a particular region has already been infested by the pine wood nematode. Different regions across Europe are included to investigate and demonstrate how different climates affect PWD incidence significantly. Simplified, “lite” and latency models have been developed to allow a non-specialist user to determine respectively the risk of PWD at a particular location and the likelihood of delays (latency) in expression of wilt symptoms.  相似文献   

7.
As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. However, the pathogenesis-related genes of B. xylophilus are not well characterized. Thus, DNA microarrays were used to investigate differential gene expression in PWN where Pinus thunbergii was inoculated with nematodes, compared with those cultured on Botrytis cinerea. The microarrays comprised 31121 probes, 1310 (4.2%) of which were differentially regulated (changes of >2-fold, P < 0.01) in the two growth conditions. Of these 1310 genes, 633 genes were upregulated, whereas 677 genes were downregulated. Gene Ontology (GO) categories were assigned to the classes Cellular Component, Molecular Function, and Biological Process. The comparative gene expression analysis showed that a large number of the pathogenesis-related genes of B. xylophilus, such as pectate lyase genes, cytochrome P450s, UGTs, and ABC transporter genes, were highly expressed when B. xylophilus infected P. thunbergii. Annotation analysis indicated that these genes contributed to cell wall degradation, detoxification, and the reproduction process. The microarray results were validated using quantitative RT-PCR (qRT-PCR). The microarray data confirmed the specific expression of B. xylophilus genes during infection of P. thunbergii, which provides basic information that facilitates a better understanding of the molecular mechanism of PWD.  相似文献   

8.
Pathogenicity of aseptic Bursaphelenchus xylophilus   总被引:2,自引:0,他引:2  
Zhu LH  Ye J  Negi S  Xu XL  Wang ZL  Ji JY 《PloS one》2012,7(5):e38095
Pine wilt is a disease of pine (Pinus spp.) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus. However, the pathogenic mechanism of pine wilt disease (PWD) remains unclear. Although the PWN was thought to be the only pathogenic agent associated with this disease, a potential role for bacterial symbionts in the disease process was recently proposed. Studies have indicated that aseptic PWNs do not cause PWD in aseptic pine trees, while PWNs associated with bacteria cause wilting symptoms. To investigate the pathogenicity of the PWN and its associated bacteria, 3-month-old microcuttings derived from certain clones of Pinus densiflora Siebold & Zucc. produced in vitro were inoculated under aseptic conditions with aseptic PWNs, non-aseptic PWNs and bacteria isolated from the nematodes. Six-month-old aseptic P. densiflora microcuttings and 7-month-old P. massoniana seedlings were also inoculated under aseptic conditions with aseptic PWNs and non-aseptic PWNs. The results showed that the aseptic microcuttings and seedlings inoculated with aseptic PWNs or non-aseptic PWNs wilted, while those inoculated with bacterial isolates did not wilt. Nematodes were recovered from wilted microcuttings and seedlings inoculated with aseptic PWNs and non-aseptic PWNs, and the asepsis of nematodes recovered from aseptic PWN-inoculated microcuttings and seedlings was reconfirmed by culturing them in NB liquid medium at 30°C for more than 7 days. Taken together, the results indicate that the asepsis of PWN did not cause the loss of pathogenicity.  相似文献   

9.
10.
Since it was first introduced into Asia from North America in the early 20th century, the pine wood nematode Bursaphelenchus xylophilus has caused the devastating forest disease called pine wilt. The emerging pathogen spread to parts of Europe and has since been found as the causal agent of pine wilt disease in Portugal and Spain. In 2011, the entire genome sequence of B. xylophilus was determined, and it allowed us to perform a more detailed analysis of B. xylophilus parasitism. Here, we identified 1,515 proteins secreted by B. xylophilus using a highly sensitive proteomics method combined with the available genomic sequence. The catalogue of secreted proteins contained proteins involved in nutrient uptake, migration, and evasion from host defenses. A comparative functional analysis of the secretome profiles among parasitic nematodes revealed a marked expansion of secreted peptidases and peptidase inhibitors in B. xylophilus via gene duplication and horizontal gene transfer from fungi and bacteria. Furthermore, we showed that B. xylophilus secreted the potential host mimicry proteins that closely resemble the host pine’s proteins. These proteins could have been acquired by host–parasite co-evolution and might mimic the host defense systems in susceptible pine trees during infection. This study contributes to an understanding of their unique parasitism and its tangled roots, and provides new perspectives on the evolution of plant parasitism among nematodes.  相似文献   

11.
Bursaphelenchus xylophilus, pinewood nematode (PWN), is the most serious pest of pine forests in Japan, but in North America its role in pine wilt disease is still being studied. The PWN is known to infest many species of Pinus, with P. nigra, P. sylvestris, and P. thunbergii the most susceptible in the eastern United States. Because of its potential, several European countries (Finland, Norway, and Sweden) and Korea have established embargoes against the importation of coniferous wood from regions of the world known to be infested with the PWN. Although the PWN is not considered an economic pest in North American forests, the recent embargoes have established an impact on current forest management practices and an economic impact on North American export trade.  相似文献   

12.
13.
中龄林的马尾松受松材线虫侵染后,林木生长、生理生化指标、群落多样性等会发生异质性变化,但是,针对患病林木地下细根的响应尚不清楚。本研究以松材线虫疫区患病马尾松和健康马尾松为研究对象,采用土柱法,分0-15 cm和15-30 cm土层,对细根进行分级研究,定量分析1-5级细根的形态、生物量以及养分元素,探讨松材线虫侵染的马尾松人工林细根形态、生物量以及养分元素的分异特征。结果表明:(1)患病马尾松人工林细根的健康状态与根长密度、生物量呈极显著正相关(P<0.01),低级根(如1级根)患病后,响应会更加强烈。(2)马尾松人工林患病后,细根有效磷、速效钾浓度会显著降低(P<0.05),而全氮、钙浓度会显著升高(P<0.05)。(3)松材线虫病使林分的土壤有机质含量显著高于健康林分(P<0.05),而土壤速效钾含量会显著低于健康林分(P<0.05)。以上结果表明,松材线虫侵染的马尾松人工林会在细根形态、细根养分和土壤养分上会发生特异性响应,揭示了松材线虫病对马尾松人工林地下细根的影响,旨在为松材线虫病防治提供一定参考。  相似文献   

14.
Pseudomonas fluorescens GcM5-1A, isolated from the pine wood nematode (PWN), Bursaphelenchus xylophilus, was cultured in Luria Broth medium (LB). The clarified culture was extracted with ethyl acetate, and two dipeptides were purified from the extract. The chemical structures of 1 and 2 were identified as cyclo(-Pro-Val-)and cyclo(-Pro-Tyr-), respectively, by MS, 1H NMR, 13C NMR,1H-1H COSY, 1H -13C COSY spectra. Bioassay results showed that the two compounds were toxic to both suspension cells and seedlings of Pinus thunbergii, which may offer some clues to research the mechanism of pine wilt disease caused by PWN.  相似文献   

15.
化学通讯在松材线虫侵染和扩散中的作用   总被引:6,自引:1,他引:5  
松材线虫为外来入侵种 ,由其引起的松材线虫病正在我国迅速扩散蔓延 ,造成我国部分地区松林资源的毁灭性破坏。松材线虫病的发生和流行与媒介天牛、寄主植物、共生真菌和细菌密切相关 ,松材线虫 -墨天牛 -松树 -共生微生物之间存在着广泛的化学联系 ,它们通过化学互作 ,调控松材线虫的行为 ,影响松材线虫的侵染和扩散  相似文献   

16.

Background

A nematophagous fungus, Esteya vermicola, is recorded as the first endoparasitic fungus of pine wood nematode (PWN), Bursaphelenchus xylophilus, in last century. E. vermicola exhibited high infectivity toward PWN in the laboratory conditions and conidia spraying of this fungus on Japanese red pine, Pinus densiflora, seedlings in the field protected the pine trees from pine wilt disease to some extent, indicating that it is a potential bio-control agent against PWN. Previous research had demonstrated that the living fungal mycelia of E. vermicola continuously produced certain volatile organic compounds (VOCs), which were responsible for the PWN attraction. However, identity of these VOCs remains unknown.

Methodology/Principal Findings

In this study, we report the identification of α-pinene, β-pinene, and camphor produced by living mycelia of E. vermicola, the same volatile compounds emitted from PWN host pine tree, as the major VOCs for PWN attraction using gas chromatography-mass spectrometry (GC-MS). In addition, we also confirmed the host deception behavior of E. vermicola to PWN by using synthetic VOCs in a straightforward laboratory bioassay.

Conclusions/Significance

This research result has demonstrated that the endoparasitic nematophagous fungus, E. vermicola, mimics the scent of PWN host pine tree to entice PWN for the nutrient. The identification of the attractive VOCs emitted from the fungus E. vermicola is of significance in better understanding parasitic mechanism of the fungus and the co-evolution in the two organisms and will aid management of the pine wilt disease.  相似文献   

17.
Pine wilt disease (PWD) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, is one of the most devastating diseases of Pinus spp. The PWN was therefore listed as one of the most dangerous forest pests in China meriting quarantine. Virulence of the PWN is closely linked with the spread of PWD. However, main factors responsible for the virulence of PWNs are still unclear. Recently epiphytic bacteria carried by PWNs have drawn much attention. But little is known about the relationship between endophytic bacteria and virulence of B. xylophilus. In this research, virulence of ten strains of B. xylophilus from different geographical areas in six provinces of China and four pine species were tested with 2-year-old seedlings of Pinus thunbergii. Endophytic bacteria were isolated from PWNs with different virulence to investigate the relationship between the bacteria and PWN virulence. Meanwhile, the carbon metabolism of endophytic bacteria from highly and low virulent B. xylophilus was analyzed using Biolog plates (ECO). The results indicated that ten strains of PWNs showed a wide range of virulence. Simultaneously, endophytic bacteria were isolated from 90% of the B. xylophilus strains. The dominant endophytic bacteria in the nematodes were identified as species of Stenotrophomonas, Achromobacter, Ewingella, Leifsonia, Rhizobium, and Pseudomonas using molecular and biochemical methods. Moreover, S. maltophilia, and A. xylosoxidans subsp. xylosoxidans were the predominant strains. Most of the strains (80%) from P. massoniana contained either S. maltophilia, A. xylosoxidans, or both species. There was a difference between the abilities of the endophytic bacteria to utilize carbon sources. Endophytic bacteria from highly virulent B. xylophilus had a relatively high utilization rate of carbohydrate and carboxylic acids, while bacteria from low virulent B. xylophilus made better use of amino acids. In conclusion, endophytic bacteria widely exist in B. xylophilus from different pines and areas; and B. xylophilus strains with different virulence possessed various endophytic bacteria and diverse carbon metabolism which suggested that the endophytic bacteria species and carbon metabolism might be related with the B. xylophilus virulence.  相似文献   

18.
Pseudomonas fluorescens GcM5-1A was isolated from the pine wood nematode (PWN), Bursaphelenchus xylophilus, obtained from wilted Japanese black pine, Pinus thumbergii, in China. In this paper, a genomic library of the GcM5-1A strain was constructed and a toxin–producing clone was isolated by bioassay. Nucleotide sequence analysis revealed an open reading frame of 1,290 bp encoding a protein of 429 amino acids with N-terminal putative signal peptide of 36 amino acids, which shared a similarity of 83, 82 and 80% identity with hypothetical protein PFLU2919 from P. fluorescens SBW25, Dyp-type peroxidase family protein from P. fluorescens Pf-5 and Tat-translocated enzyme from P. fluorescens Pf0-1, respectively. The gene encoding a full-length protein or without the putative signal peptide was cloned and expressed as a soluble protein in E. coli. The recombinant protein was purified to electrophoretic homogeneity by affinity chromatography using a Ni2+ matrix column. Its relative molecular weight was estimated to be 48.5 kDa by SDS-PAGE for full-length protein, and 45.0 kDa for the recombinant protein without putative signal peptide. Bioassay results showed that the recombinant protein with or without the putative signal peptide was toxic to both suspension cells and P. thunbergii seedlings. HPLC analysis demonstrated that components in branch extracts of P. thunbergii were significantly changed after addition of the recombinant full-length protein and hydrogen peroxide, which indicated that it is probably a peroxidase. This study offers information that can be used to determine the mechanism of pine wilt disease caused by the PWN.  相似文献   

19.
Among important nematode species occurring in Japan, current research achievements with the following four nematodes are reviewed: 1) Soybean cyst nematode (SCN), Heterodera glycines - breeding for resistance, race determination, association with Cephalosporium gregatum in azuki bean disease, and isolation of hatching stimulant. 2) Potato-cyst nematode (PCN), Globodera rostochiensis - pathotype determination (Ro 1), breeding for resistance, and control recommendations. 3) Pinewood nematode (PWN), Bursaphelenchus xylophilus - primary pathogen in pine wilt disease, life cycle exhibiting a typical symbiosis with Japanese pine sawyer, Monochamus alternatus, and project for control. 4) Rice root nematodes (RRN), Hirschmanniella imamuri and H. oryzae - distribution of species, population levels in roots, and role of these nematodes in rice culture.  相似文献   

20.
【目的】研究拟松材线虫是否分泌纤维素酶以及纤维素酶与其致病力的关系。【方法】对拟松材线虫的不同致病性种群以及松材线虫的虫体蛋白提取液、分泌液的纤维素酶活性进行定量测定,比较群体间纤维素同工酶谱型差异。【结果】拟松材线虫也含有纤维素酶,并向体外分泌;且不同致病性种群的纤维素酶活性与其致病性有一定相关性,致病性越强纤维素酶活性越强。【结论】纤维素酶活性大小是导致拟松材线虫不同种群间致病性差异的重要原因,这对于全面认识松树线虫萎蔫病的致病机理有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号