首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adequate endothelial production of nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), and prostacyclin (PGI?) is critical to the maintenance of vascular homeostasis. However, it is not clear whether alterations in each of these vasodilatory pathways contribute to the impaired endothelial function in murine atherosclerosis. In the present study, we analyze the alterations in NO-, EDHF- and PGI?-dependent endothelial function in the thoracic aorta in relation to the development of atherosclerotic plaques in apoE/LDLR?/? mice. We found that in the aorta of 2-month-old apoE/LDLR?/? mice there was no lipid deposition, subendothelial macrophage accumulation; and matrix metalloproteinase (MMP) activity was low, consistent with the absence of atherosclerotic plaques. Interestingly, at this stage the endothelium was already activated and hypertrophic as evidenced by electron microscopy, while acetylcholine-induced NO-dependent relaxation in the thoracic aorta was impaired, with concomitant upregulation of cyclooxygenase-2 (COX-2)/PGI? and EDHF (epoxyeicosatrienoic acids, EETs) pathways. In the aorta of 3-6-month-old apoE/LDLR?/? mice, lipid deposition, macrophage accumulation and MMP activity in the intima were gradually increased, while impairment of NO-dependent function and compensatory upregulation of COX-2/PGI? and EDHF pathways were more accentuated. These results suggest that impairment of NO-dependent relaxation precedes the development of atherosclerosis in the aorta and early upregulation of COX-2/PGI? and EDHF pathways may compensate for the loss of the biological activity of NO.  相似文献   

2.
Puerarin has properties of anti-oxidation and anti-inflammation, which has been demonstrated protective effects in atherosclerosis and other cardiovascular diseases. However, the detail molecular mechanism still remains unclear. Here, we determined whether the atheroprotective effect of puerarin was by reducing monocyte adhesion and explored the underlying mechanism. The results showed that puerarin dose- and time-dependently reduced oxLDL-induced monocyte THP-1 adhesion to HUVECs and the expression of adhesion-related genes such as VCAM-1, ICAM-1, MCP-1 and IL-8 in HUVECs. Puerarin activated ERK5 phosphorylation and up-regulated expressions of downstream KLF2 and its targeted genes endothelial nitric oxide synthase and thrombomodulin. However, the protective effects were reversed by ERK5/KLF2 pathway inhibitor XDM8-92, BIX02189 or KLF2 siRNA suggesting the pathway involved in the function. The ex vivo assay, in which THP-1 adhesion to endothelium isolated from apoE?/? mice received various treatments further confirmed the results from HUVECs. Finally, we found that the atherosclerotic lesions in both cross sections at aortic root and whole aorta were significantly reduced in high fat-diet (HFD) mice with puerarin treatment compared with the HFD-only mice, but were increased respectively by 76% and 71% in XMD8-92 group, and 82% and 73% in BIX02189 group. Altogether, the data revealed that puerarin inhibited the monocyte adhesion in vitro and in vivo and thus reduced atherosclerotic lesions in apoE?/? mice; the protective effects were mediated by activation of ERK5/KLF2 signaling pathway. Our findings advance the understanding of puerarin function in atherosclerosis and point out a way to prevent the disease.  相似文献   

3.
BACKGROUND: In the course of atherosclerosis, humans and apolipoprotein (apoE) Knockout (KO) mice exhibit an active cell-mediated and humoral immune process, both at the systemic level and within atheromata. Low density lipoproteins (LDL) infiltrate the vascular wall, where they are oxidatively modified. This oxidative modification may generate new epitopes for which tolerance is not achieved during ontogenesis. Such epitopes could constitute new targets for autoreactive immune responses that may have a physiopathological role in disease development. MATERIALS AND METHODS: Exposing mice to high dose of antigens during thymic T-cell education induces immunological tolerance to the administered antigens. We injected newborn apoE KO mice with oxidized LDL. They were fed a cholesterol-rich diet and aortic atherosclerosis, cell-mediated immune response, and T-cell repertoire were analyzed after 5 months. RESULTS: Injection of oxidized LDL at birth reduced not only the immune response to oxidized LDL, but also susceptibility to atherosclerosis in apoE mice. Injection of oxidized LDL induced T-cell tolerance due to clonal deletion, rather than anergy of the reactive T cells. The T-cell repertoire of apoE KO mice was affected by the development of the disease, whereas tolerization normalized it. CONCLUSIONS: This study demonstrates that the immune response against oxidized LDL has a deleterious role in atherogenesis and that a fine-tuning of this response could modify the course of the disease.  相似文献   

4.
Apolipoprotein E (apoE) and the low density lipoprotein receptor (LDLr) are well recognized determinants of atherosclerosis. In addition to hepatocytes, where both are highly expressed and contribute to plasma lipoprotein clearance, they are expressed in vascular cells and macrophages. In this study, we examined the effects of human apoE isoforms and LDLr levels in atherogenic pathways in primary macrophages ex vivo and atherosclerosis development after bone marrow transfer in vivo using mice expressing human apoE isoforms and different levels of LDLr expression. Increases in LDLr expression significantly increased cholesterol delivery into macrophages in culture, and the effects were more prominent with lipoproteins containing apoE4 than those containing apoE3. Conversely, increased LDLr expression reduced cholesterol efflux in macrophages expressing apoE4 but not in macrophages expressing apoE3. Furthermore, apoE3 protected VLDL from oxidation in vitro more than did apoE4. In LDLr-deficient mice expressing the human apoE4 isoform, Apoe4/4 Ldlr-/-, the replacement of bone marrow cells with those expressing LDLr increased atherosclerotic lesions in a dose-dependent manner compared with mice transplanted with cells having no LDLr. In contrast, atherosclerosis in Apoe3/3 Ldlr-/- mice, expressing the human apoE3 isoform, did not differ by the levels of macrophage LDLr expression. Our results demonstrate that apoE4, but not apoE3, in macrophages enhances atherosclerotic plaque development in mice in an LDLr-dependent manner and suggests that this interaction may contribute to the association of apoE4 with an increased cardiovascular risk in humans.  相似文献   

5.
Atherosclerosis is a multifactorial, long-lasting process in humans. Accordingly, animal models in which more rapid changes occur can be useful for the study of this process. Among such models are apolipoprotein E-deficient (apoE-/-) mice, which give insight into the human process. ApoE-/- mice show impaired clearing of plasma lipoproteins and develop atherosclerosis in a short time, and hence they are an excellent model in which to assess the impact of dietary factors. This review considers lipid metabolism and inflammation as well as nutritional constituents affecting atherosclerosis, with reference to apoE-/- mice, and discusses the mechanisms through which they act.  相似文献   

6.
In creating an allelic variant of mouse Apoe designed to resemble human apolipoprotein E4 (apoE4), we generated hypomorphic apoE (hypoE) mice that express only approximately 5% of normal apoE mRNA levels in all tissues. Insertion of a neo cassette flanked by loxP sites in the third intron of Apoe reduced expression of the Arg-61 allelic variant in hypoE mice and resulted in plasma apoE levels that were approximately 2-5% of normal. Unlike other mouse models with low levels of circulating apoE, hypoE mice had a nearly normal lipoprotein cholesterol profile when fed a chow diet. Further reduction of apoE expression in hypoE/Apoe(-/-) heterozygous mice led to an increase in remnant lipoprotein-associated cholesterol levels, demonstrating that hypoE mice express close to the threshold level of Arg-61 apoE required for a normal lipoprotein profile. Unlike wild type mice, hypoE mice were susceptible to diet-induced hypercholesterolemia, which was fully reversed within 3 weeks after resumption of a chow diet. In Mx1-Cre transgenic hypoE mice, plasma apoE levels returned to normal within 10 days after gene repair and removal of the neo cassette following induction of Cre recombinase. HypoE mice provide the opportunity for conditional gene repair by crossing with inducible or lineage/cell type-specific Cre transgenic mice, generating new models to dissect the roles of apoE in atherosclerosis regression, immunoregulation, and neurodegeneration.  相似文献   

7.
Recent evidence suggests that adventitial fibroblasts (AFs) are crucially implicated in atherosclerosis. However, the mechanisms by which AFs are dysfunctional and contribute to atherosclerosis remain unclear. This study aimed to investigate the role of regulator of G‐protein signalling 3 (RGS3) in the regulation of AFs using apoE knockout mouse as the model. Pathological changes in aortic arteries of apoE knockout mice fed with hyperlipid diet were examined by Movat staining. The expression of RGS3, α‐SMA, TGF‐β1, Smad2, and Smad3 in the adventitia was detected by immunohistochemistry. Adventitial fibroblasts were isolated from aortic arteries of apoE knockout mice and infected with RGS3 overexpression lentivirus or empty lentivirus. The expression of RGS3, α‐SMA, TGF‐β1, Smad2, and Smad3 in AFs was detected by real‐time polymerase chain reaction and Western blot analysis. We found that hyperlipidic diet caused significant aortic intima thickening and atherosclerotic plaques in 15‐week‐old apoE knockout mice. Compared to wild‐type mice, RGS3 expression was lower while α‐SMA, TGF‐β1, Smad2, and Smad3 expression was higher in the adventitia of apoE knockout mice. In addition, lentivirus mediated overexpression of RGS3 caused decreased expression of α‐SMA, TGF‐β1, Smad2, and Smad3 in AFs derived from apoE(?/?) mice. In conclusion, these results suggest that RGS3 may provide protection against pathological changes of AFs and the development of atherosclerosis by inhibiting TGF‐β1/Smad signalling. RGS3 may be a potential therapeutic target for atherosclerosis.  相似文献   

8.
Polymorphisms in the apolipoprotein E (apoE) gene are risk factors for chronic inflammatory diseases including atherosclerosis. The gene product apoE is synthesized in many cell types and has both lipid transport–dependent and lipid transport–independent functions. Previous studies have shown that apoE expression in myeloid cells protects against atherogenesis in hypercholesterolemic ApoE−/− mice. However, the mechanism of this protection is still unclear. Using human APOE gene replacement mice as models, this study showed that apoE2 and apoE4 expressed endogenously in myeloid cells enhanced the inflammatory response via mechanisms independent of plasma lipoprotein transport. The data revealed that apoE2-expressing myeloid cells contained higher intracellular cholesterol levels because of impaired efflux, causing increasing inflammasome activation and myelopoiesis. In contrast, intracellular cholesterol levels were not elevated in apoE4-expressing myeloid cells, and its proinflammatory property was found to be independent of inflammasome signaling and related to enhanced oxidative stress. When ApoE−/− mice were reconstituted with bone marrow from various human APOE gene replacement mice, effective reduction of atherosclerosis was observed with marrow cells obtained from APOE3 but not APOE2 and APOE4 gene replacement mice. Taken together, these results documented that apoE2 and apoE4 expression in myeloid cells promotes inflammation via distinct mechanisms and promotes atherosclerosis in a plasma lipoprotein transport–independent manner.  相似文献   

9.
10.
LDL receptor-deficient (LDLR(-/-)) mice fed a Western diet exhibit severe hyperlipidemia and develop significant atherosclerosis. Apolipoprotein E (apoE) is a multifunctional protein synthesized by hepatocytes and macrophages. We sought to determine effect of macrophage apoE deficiency on severe hyperlipidemia and atherosclerosis. Female LDLR(-/-) mice were lethally irradiated and reconstituted with bone marrow from either apoE(-/-) or apoE(+/+) mice. Four weeks after transplantation, recipient mice were fed a Western diet for 8 weeks. Reconstitution of LDLR(-/-) mice with apoE(-/-) bone marrow resulted in a slight reduction in plasma apoE levels and a dramatic reduction in accumulation of apoE and apoB in the aortic wall. Plasma lipid levels were unaffected when mice had mild hyperlipidemia on a chow diet, whereas IDL/LDL cholesterol levels were significantly reduced when mice developed severe hyperlipidemia on the Western diet. The hepatic VLDL production rate of mice on the Western diet was decreased by 46% as determined by injection of Triton WR1339 to block VLDL clearance. Atherosclerotic lesions in the proximal aorta were significantly reduced, partially due to reduction in plasma total cholesterol levels (r=0.56; P<0.0001). Thus, macrophage apoE-deficiency alleviates severe hyperlipidemia by slowing hepatic VLDL production and consequently reduces atherosclerosis in LDLR(-/-) mice.  相似文献   

11.
The low density lipoprotein receptor (LDLR) plays a major role in regulation of plasma cholesterol levels as a ligand for apolipoprotein B-100 and apolipoprotein E (apoE). Consequently, LDLR-deficient mice fed a Western-type diet develop significant hypercholesterolemia and atherosclerosis. ApoE not only mediates uptake of atherogenic lipoproteins via the LDLR and other cell-surface receptors, but also directly inhibits atherosclerosis. In this study, we examined the hypothesis that coexpression of the LDLR and apoE would have greater effects than either one alone on plasma cholesterol levels and the development of atherosclerosis in LDLR-deficient mice. LDLR-deficient mice fed a Western-type diet for 10 weeks were injected with recombinant adenoviral vectors encoding the genes for human LDLR, human apoE3, both LDLR and apoE3, or lacZ (control). Plasma lipids were analyzed at several time points after vector injection. Six weeks after injection, mice were analyzed for extent of atherosclerosis by two independent methods. As expected, LDLR expression alone induced a significant reduction in plasma cholesterol due to reduced VLDL and LDL cholesterol levels, whereas overexpression of apoE alone did not reduce plasma cholesterol levels. When the LDLR and apoE were coexpressed in this model, the effects on plasma cholesterol levels were no greater than with expression of the LDLR alone. However, coexpression did result in a substantial increase in large apoE-rich HDL particles. In addition, although the combination of cholesterol reduction and apoE expression significantly reduced atherosclerosis, its effects were no greater than with expression of the LDLR or apoE alone. In summary, in this LDLR-deficient mouse model fed a Western-type diet, there was no evidence of an additive effect of expression of the LDLR and apoE on cholesterol reduction or atherosclerosis.  相似文献   

12.
Mouse models of experimental atherosclerosis.   总被引:21,自引:0,他引:21  
Since 1992 the mouse has become an excellent model for experimental atherosclerosis research. Until 1992, the diet -- induced atherosclerosis mouse model has been used effectively, but the lesions tended to be small and were limited to early fatty-streak stage. This model was also criticized because of the toxicity and inflammatory responses due to the diet. In 1992 the first line of gene targeted animal models, namely apolipoprotein E -- knockout mice was developed. Of the genetically engineered models, the apoE -- deficient model is the only one that develops extensive atherosclerotic lesions on a chow diet. It is also the model in which the lesions have been characterized most thoroughly. The lesions develop into fibrous plaques; however, there is no evidence that plaque rupture occurs in this model. The LDL receptor - deficient model has elevated LDL levels, but no lesions, or only very small lesions, form on the chow diet, however, robust lesions do form on the western-type diet. The creation of apoE -- knockout mice has changed the face of atherosclerosis research.  相似文献   

13.
Previous studies have suggested that the terminal complex of complement may contribute to the pathogenesis of atherosclerosis. C5b-9 complexes colocalize with the extracellular lipid in the aortic intima of hypercholesterolemic rabbits, and C6-deficient rabbits develop less atherosclerosis than controls. To test the role of complement in atherosclerosis in a different animal model, C5 deficient (C5def) mice were cross-bred with atherosclerosis susceptible apoE(-/-) mice, generating mice deficient in both apoE and C5 and control apoE(-/-) mice. Progeny were typed for C5 titer and serum cholesterol levels. Both male and female mice were fed a high fat diet from weaning until 22 weeks of age. At that time there were no significant differences in plasma cholesterol or triglycerides between apoE(-/-) control and apoE(-/-)/C5def groups. Morphometric analysis of the aortic root lesions gave mean (+/-SEM) lesion areas for male apoE(-/-) and apoE(-/-)/C5def mice of 468,176 +/- 21,982 and 375,182 +/- 53,089 microm(2), respectively (n = 10 each, P value = 0.123). In female apoE(-/-) mice (n = 5), the mean lesion area was 591,981 +/- 53,242 microm(2), compared to 618,578 +/- 83,457 microm(2) for female apoE(-/-)/C5def mice (n = 10) (P value = 0.835). Thus neither male nor female mice showed a significant change in lesion area when C5 was not present. In contrast to the case in the hypercholesterolemic rabbit, activation of the terminal complex of complement does not play a major role in the development of atherosclerosis in apoE(-/-) mice.  相似文献   

14.
To establish a mouse model of accelerated atherosclerosis in lupus, we generated apolipoprotein E-deficient (apoE(-/-)) and Fas(lpr/lpr) (Fas(-/-)) C57BL/6 mice. On a normal chow diet, 5 month old apoE(-/-)Fas(-/-) mice had enlarged glomerular tuft areas, severe proteinuria, increased circulating autoantibody levels, and increased apoptotic cells in renal and vascular lesions compared with either single knockout mice. Also, double knockout mice developed increased atherosclerotic lesions but decreased serum levels of total and non-HDL cholesterol compared with apoE(-/-)Fas(+/+) littermates. Moreover, female apoE(-/-)Fas(-/-) mice had lower vertebral bone mineral density (BMD) and bone volume density (BV/TV) than age-matched female apoE(-/-)Fas(+/+) mice. Compared with apoE(-/-)Fas(+/+) and apoE(+/+)Fas(-/-) mice, apoE(-/-)Fas(-/-) mice had decreased circulating oxidized phospholipid (OxPL) content on apoB-100 containing lipoprotein particles and increased serum IgG antibodies to OxPL, which were significantly correlated with aortic lesion areas (r = 0.58), glomerular tuft areas (r = 0.87), BMD (r = -0.57), and BV/TV (r = -0.72). These results suggest that the apoE(-/-)Fas(-/-) mouse model might be used to study atherosclerosis and osteopenia in lupus. Correlations of IgG anti-OxPL with lupus-like disease, atherosclerosis, and bone loss suggested a shared pathway of these disease processes.  相似文献   

15.
16.
Apolipoprotein E is a multifunctional protein synthesized by hepatocytes and macrophages. Plasma apoE is largely liver-derived and known to regulate lipoprotein metabolism. Macrophage-derived apoE has been shown to reduce the progression of atherosclerosis in mice. We tested the hypothesis that liver-derived apoE could directly induce regression of pre-existing advanced atherosclerotic lesions without reducing plasma cholesterol levels. Aged low density lipoprotein (LDL) receptor-deficient (LDLR(-/-)) mice were fed a western-type diet for 14 weeks to induce advanced atherosclerotic lesions. One group of mice was sacrificed for evaluation of atherosclerosis at base line, and two other groups were injected with a second generation adenoviruses encoding human apoE3 or a control empty virus. Hepatic apoE gene transfer increased plasma apoE levels by 4-fold at 1 week, and apoE levels remained at least 2-fold higher than controls at 6 weeks. There were no significant changes in plasma total cholesterol levels or lipoprotein composition induced by expression of apoE. The liver-derived human apoE gained access to and was retained in arterial wall. Compared with base-line mice, the control group demonstrated progression of atherosclerosis; in contrast, hepatic apoE expression induced highly significant regression of advanced atherosclerotic lesions. Regression of lesions was accompanied by the loss of macrophage-derived foam cells and a trend toward increase in extracellular matrix of lesions. As an index of in vivo oxidant stress, we quantitated the isoprostane iPF(2 alpha)-VI and found that expression of apoE markedly reduced urinary, LDL-associated, and arterial wall iPF(2 alpha)-VI levels. In summary, these results demonstrate that liver-derived apoE directly induced regression of advanced atherosclerosis and has anti-oxidant properties in vivo that may contribute to its anti-atherogenic effects.  相似文献   

17.
Nuclear factor - kappaB (NF-kappaB) is a good therapeutic target for cardiovascular disease and numerous efforts are being made to develop safe NF-kappaB inhibitors. Nowadays many authors address NF-kappaB as a major therapeutic target in atherosclerosis, especially for preventive measures, in the light of two main hypothesis of atherosclerosis: oxidation and inflammation. We hypothesized that ammonium pyrrolidinedithioocarbamate (PDTC) - a well-known inhibitor of NF-kappaB could inhibit the development of atherosclerosis in this experimental model. We used apoE/LDLR - DKO mouse model, which is considered as a one of the best models to study the anti-atherosclerotic effect of drugs. In this model PDTC inhibited atherogenesis, measured both by "en face" method (25,15+/-2,9% vs. 15,63+/-0,6%) and "cross-section" method (565867+/-39764 microm2 vs. 291695+/-30384 microm2). Moreover, PDTC did not change the profile of cholesterol and triglycerides in blood. To our knowledge, this is the first report that shows the effect of PDTC on atherogenesis in gene-targeted apoE/LDLR - double knockout mice.  相似文献   

18.
Recruitment of inflammatory cells in the arterial wall by vascular adhesion molecules plays a key role in development of atherosclerosis. Apolipoprotein E-deficient (apoE(-/-)) mice have spontaneous hyperlipidemia and develop all phases of atherosclerotic lesions. We sought to examine plasma levels of soluble vascular cell adhesion molecule-1 (sVCAM-1) and sP-selectin in two apoE(-/-) strains C57BL/6 (B6) and BALB/c with early or advanced lesions. Mice were fed chow or a Western diet containing 42% fat, 0.15% cholesterol, and 19.5% casein. On either diet, BALB/c.apoE(-/-) mice developed much smaller atherosclerotic lesions and displayed significantly lower levels of sVCAM-1 and sP-selectin than B6.apoE(-/-) mice. The Western diet significantly elevated sVCAM-1 levels in both strains and sP-selectin levels in B6.apoE(-/-) mice. BALB/c.apoE(-/-) mice exhibited 2-fold higher HDL cholesterol levels on the chow diet and 15-fold higher HDL levels on the Western diet than B6.apoE(-/-) mice, although the two strains had comparable levels of total cholesterol and triglyceride. Thus, increased atherosclerosis is accompanied by increases in circulating VCAM-1 and P-selectin levels in the two apoE(-/-) mouse strains, and the high HDL level may protect against atherosclerosis by inhibiting the expression of adhesion molecules in BALB/c.apoE(-/-) mice.  相似文献   

19.
Differences in affinity of human apolipoprotein E (apoE) isoforms for the low density lipoprotein receptor (LDLR) are thought to result in the differences in lipid metabolism observed in humans with different APOE genotypes. Mice expressing three common human apoE isoforms, E2, E3, and E4, in place of endogenous mouse apoE were used to investigate the relative roles of apoE isoforms in LDLR- and non-LDLR-mediated very low density lipoprotein (VLDL) clearance. While both VLDL particles isolated from mice expressing apoE3 and apoE4 bound to mouse LDLR with affinity and Bmax similar to VLDL containing mouse apoE, VLDL with apoE2 bound with only half the Bmax. In the absence of the LDLR, all lines of mice expressing human apoE showed dramatic increases in VLDL cholesterol and triglycerides (TG) compared to LDLR knockout mice expressing mouse apoE. The mechanism of the hyperlipidemia in mice expressing human apoE isoforms is due to impairment of non-LDL-receptor-mediated VLDL clearance. This results in the severe atherosclerosis observed in mice expressing human apoE but lacking the LDLR, even when fed normal chow diet. Our data show that defects in LDLR independent pathway(s) are a potential factor that trigger hyperlipoproteinemia when the LDLR pathway is perturbed, as in E2/2 mice.  相似文献   

20.
Apolipoprotein (apo)E is synthesized in atherosclerotic lesions by macrophages, however, its role in lesions is not known. Whereas apoE could exacerbate atherosclerosis by promoting macrophage uptake of cholesterol-rich lipoproteins or modulating protective inflammatory responses, it could also restrict lesion formation by facilitating cholesterol efflux out of lesions. The role of apoE was examined in lethally irradiated male C57BL/6J wild-type (WT) mice that were repopulated with bone marrow cells (BMT) from either identical C57BL/6J mice (WT+WT BMT) or C57BL/6J apoE-deficient mice (WT+E-/- BMT). This enabled us to compare normal mice with mice possessing macrophages that did not express apoE. The participation of macrophage-derived apoE in atherosclerosis was assessed by placing the mice on an atherogenic diet. Male WT+E-/- BMT mice had significantly reduced lesion area in the aortic valves (P < 0.01) compared with male WT+WT BMT mice ( approximately 22,000 vs. approximately 49,000 microm2/section, respectively). Further evaluation revealed that plasma cholesterol, lipoprotein cholesterol distribution, and plasma apoE were similar between the two groups, indicating that these known risk factors did not account for the differences in lesion area. However, the two groups were distinguished by the amount of apoE found in the lesions. ApoE antigen was expressed abundantly in WT+WT BMT lesions, whereas WT+E-/- BMT lesions contained little apoE. These findings indicate that the majority of apoE in lesions is synthesized locally by resident macrophages, and suggest that locally produced apoE can promote diet-induced atherosclerosis in male wild-type mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号