共查询到20条相似文献,搜索用时 90 毫秒
1.
Yamamoto T Nishio-Kosaka M Izawa S Aga H Nishimoto T Chaen H Fukuda S 《Bioscience, biotechnology, and biochemistry》2011,75(6):1208-1210
One kojibiose phoshorylase (KP) homolog gene was cloned from Caldicellulosiruptor saccharolyticus ATCC43494. Recombinant KP from C. saccharolyticus (Cs-KP) expressed in Escherichia coli showed highest activity at pH 6.0 at 85 °C, and was stable from pH 3.5 to 10.0 and up to 85 °C for phosphorolysis. Cs-KP showed higher productivity of kojioligosaccharides of DP ≧ 4 than KP from Thermoanaerobacter brockii ATCC35047. 相似文献
2.
3.
Y.‐R. Lim R.‐Y. Yoon E.‐S. Seo Y.‐S. Kim C.‐S. Park D.‐K. Oh 《Journal of applied microbiology》2010,109(4):1188-1197
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase. 相似文献
4.
Yu Gao Wataru Saburi Yodai Taguchi 《Bioscience, biotechnology, and biochemistry》2013,77(11):2097-2109
ABSTRACTMaltose phosphorylase (MP), a glycoside hydrolase family 65 enzyme, reversibly phosphorolyzes maltose. In this study, we characterized Bacillus sp. AHU2001 MP (MalE) that was produced in Escherichia coli. The enzyme exhibited phosphorolytic activity to maltose, but not to other α-linked glucobioses and maltotriose. The optimum pH and temperature of MalE for maltose-phosphorolysis were 8.1 and 45°C, respectively. MalE was stable at a pH range of 4.5–10.4 and at ≤40°C. The phosphorolysis of maltose by MalE obeyed the sequential Bi–Bi mechanism. In reverse phosphorolysis, MalE utilized d-glucose, 1,5-anhydro-d-glucitol, methyl α-d-glucoside, 2-deoxy-d-glucose, d-mannose, d-glucosamine, N-acetyl-d-glucosamine, kojibiose, 3-deoxy-d-glucose, d-allose, 6-deoxy-d-glucose, d-xylose, d-lyxose, l-fucose, and l-sorbose as acceptors. The kcat(app)/Km(app) value for d-glucosamine and 6-deoxy-d-glucose was comparable to that for d-glucose, and that for other acceptors was 0.23–12% of that for d-glucose. MalE synthesized α-(1→3)-glucosides through reverse phosphorolysis with 2-deoxy-d-glucose and l-sorbose, and synthesized α-(1→4)-glucosides in the reaction with other tested acceptors. 相似文献
5.
Park JI Kent MS Datta S Holmes BM Huang Z Simmons BA Sale KL Sapra R 《Bioresource technology》2011,102(10):5988-5994
The celB gene of Caldicellulosiruptor saccharolyticus was cloned and expressed in Escherichia coli to create a recombinant biocatalyst for hydrolyzing lignocellulosic biomass at high temperature. The GH5 domain of CelB hydrolyzed 4-nitrophenyl-β-d-cellobioside and carboxymethyl cellulose with optimum activity at pH 4.7-5.5 and 80 °C. The recombinant GH5 and CBM3-GH5 constructs were both stable at 80 °C with half-lives of 23 h and 39 h, respectively, and retained >94% activity after 48 h at 70 °C. Enzymatic hydrolysis of corn stover and cellulose pretreated with the ionic liquid 1-ethyl-3-methylimidazolium acetate showed that GH5 and CBM3-GH5 primarily produce cellobiose, with product yields for CBM3-GH5 being 1.2- to 2-fold higher than those for GH5. Confocal microscopy of bound protein on cellulose confirmed tighter binding of CBM3-GH5 to cellulose than GH5, indicating that the enhancement of enzymatic activity on solid substrates may be due to the substrate binding activity of CBM3 domain. 相似文献
6.
Yodai Taguchi Wataru Saburi Ryozo Imai 《Bioscience, biotechnology, and biochemistry》2017,81(8):1512-1519
Trehalose 6-phosphate phosphorylase (TrePP), a member of glycoside hydrolase family 65, catalyzes the reversible phosphorolysis of trehalose 6-phosphate (Tre6P) with inversion of the anomeric configuration to produce β-d-glucose 1-phosphate (β-Glc1P) and d-glucose 6-phosphate (Glc6P). TrePP in Lactococcus lactis ssp. lactis (LlTrePP) is, alongside the phosphotransferase system, involved in the metabolism of trehalose. In this study, recombinant LlTrePP was produced and characterized. It showed its highest reverse phosphorolytic activity at pH 4.8 and 40°C, and was stable in the pH range 5.0–8.0 and at up to 30°C. Kinetic analyses indicated that reverse phosphorolysis of Tre6P proceeded through a sequential bi bi mechanism involving the formation of a ternary complex of the enzyme, β-Glc1P, and Glc6P. Suitable acceptor substrates were Glc6P, and, at a low level, d-mannose 6-phosphate (Man6P). From β-Glc1P and Man6P, a novel sugar phosphate, α-d-Glcp-(1?1)-α-d-Manp6P, was synthesized with 51% yield. 相似文献
7.
Young-Woo Nam Takanori Nihira Takatoshi Arakawa Yuka Saito Motomitsu Kitaoka Hiroyuki Nakai Shinya Fushinobu 《The Journal of biological chemistry》2015,290(30):18281-18292
The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes. 相似文献
8.
Mario Klimacek Alexander Sigg Bernd Nidetzky 《Biotechnology and bioengineering》2020,117(10):2933-2943
Chemical group-transfer reactions by hydrolytic enzymes have considerable importance in biocatalytic synthesis and are exploited broadly in commercial-scale chemical production. Mechanistically, these reactions have in common the involvement of a covalent enzyme intermediate which is formed upon enzyme reaction with the donor substrate and is subsequently intercepted by a suitable acceptor. Here, we studied the glycosylation of glycerol from sucrose by sucrose phosphorylase (SucP) to clarify a peculiar, yet generally important characteristic of this reaction: partitioning between glycosylation of glycerol and hydrolysis depends on the type and the concentration of the donor substrate used (here: sucrose, α-d -glucose 1-phosphate (G1P)). We develop a kinetic framework to analyze the effect and provide evidence that, when G1P is used as donor substrate, hydrolysis occurs not only from the β-glucosyl-enzyme intermediate (E-Glc), but additionally from a noncovalent complex of E-Glc and substrate which unlike E-Glc is unreactive to glycerol. Depending on the relative rates of hydrolysis of free and substrate-bound E-Glc, inhibition (Leuconostoc mesenteroides SucP) or apparent activation (Bifidobacterium adolescentis SucP) is observed at high donor substrate concentration. At a G1P concentration that excludes the substrate-bound E-Glc, the transfer/hydrolysis ratio changes to a value consistent with reaction exclusively through E-Glc, independent of the donor substrate used. Collectively, these results give explanation for a kinetic behavior of SucP not previously accounted for, provide essential basis for design and optimization of the synthetic reaction, and establish a theoretical framework for the analysis of kinetically analogous group-transfer reactions by hydrolytic enzymes. 相似文献
9.
Brian P. Dalrymple Yolande Swadling Daisy H. Cybinski Gang-Ping Xue 《FEMS microbiology letters》1996,143(2-3):115-120
Abstract A gene ( cin I) encoding a cinnamoyl ester hydrolase (CEH) has been isolated from the ruminai bacterium, Butyrivibrio fibrisohens E14, using a model substrate, MUTMAC [4-methylumbelliferoyl ( p -trimethylammonium cinnamate chloride)]. CinI has significant amino-acid similarities with members of a large and diverse family of hydrolases with a serine/aspartic acid/ histidine catalytic triad. Our analyses identified two previously unclassified amino acid sequences, the amino-terminal domain of unknown function in XynZ from Clostridium thermocellum and XynC, an acetylxylan esterase from Caldicellulosiruptor saccharolyticus , as members of the same family of hydrolases. A previously described esterase with CEH activity, XylD from Pseudomonas fluorescens ssp. cellulosa , is not similar to CinI. CinI was expressed at high levels in the periplasmic fraction of E. coli TOPP2 and released ferulic acid from Fara [5- O -( trans -feruloyl)-arabinofuranose] prepared from wheat bran. 相似文献
10.
The optimum conditions for the production of l-arabinose from debranched arabinan were determined to be pH 6.5, 75 °C, 20 g l−1 debranched arabinan, 42 U ml−1 endo-1,5-α-l-arabinanase, and 14 U ml−1 α-l-arabinofuranosidase from Caldicellulosiruptor saccharolyticus and the conditions for sugar beet arabinan were pH 6.0, 75 °C, 20 g l−1 sugar beet arabinan, 3 U ml−1 endo-1,5-α-l-arabinanase, and 24 U ml−1 α-l-arabinofuranosidase. Under the optimum conditions, 16 g l−1l-arabinose was obtained from 20 g l−1 debranched arabinan or sugar beet arabinan after 120 min, with a hydrolysis yield of 80% and a productivity of 8 g l−1 h−1. This is the first reported trial for the production of l-arabinose from the hemicellulose arabinan by the combined use of endo- and exo-arabinanases. 相似文献
11.
Shuntaro Nakamura Takanori Nihira Rikuya Kurata Hiroyuki Nakai Kazumi Funane Enoch Y. Park Takatsugu Miyazaki 《The Journal of biological chemistry》2021,297(6)
Glycoside hydrolase family 65 (GH65) comprises glycoside hydrolases (GHs) and glycoside phosphorylases (GPs) that act on α-glucosidic linkages in oligosaccharides. All previously reported bacterial GH65 enzymes are GPs, whereas all eukaryotic GH65 enzymes known are GHs. In addition, to date, no crystal structure of a GH65 GH has yet been reported. In this study, we use biochemical experiments and X-ray crystallography to examine the function and structure of a GH65 enzyme from Flavobacterium johnsoniae (FjGH65A) that shows low amino acid sequence homology to reported GH65 enzymes. We found that FjGH65A does not exhibit phosphorolytic activity, but it does hydrolyze kojibiose (α-1,2-glucobiose) and oligosaccharides containing a kojibiosyl moiety without requiring inorganic phosphate. In addition, stereochemical analysis demonstrated that FjGH65A catalyzes this hydrolytic reaction via an anomer-inverting mechanism. The three-dimensional structures of FjGH65A in native form and in complex with glucose were determined at resolutions of 1.54 and 1.40 Å resolutions, respectively. The overall structure of FjGH65A resembled those of other GH65 GPs, and the general acid catalyst Glu472 was conserved. However, the amino acid sequence forming the phosphate-binding site typical of GH65 GPs was not conserved in FjGH65A. Moreover, FjGH65A had the general base catalyst Glu616 instead, which is required to activate a nucleophilic water molecule. These results indicate that FjGH65A is an α-1,2-glucosidase and is the first bacterial GH found in the GH65 family. 相似文献
12.
Qingbao Ding Ling Ou Dongzhi Wei Xiaokun Wei 《Nucleosides, nucleotides & nucleic acids》2013,32(5):360-368
Recombinant E. coli pDEOA was constructed and lactose can be used instead of IPTG to induce the expression of thymidine phosphorylase by pDEOA. The use of lactose at concentrations higher than 0.5 mmol/L had an induction effect similar to that of IPTG but resulted in a longer initial induction time and better cell growth. The thymidine phosphorylase induced by lactose was very stable at 50°C. Intact pDEOA cells induced by lactose can be used as a source of thymidine phosphorylase. Under standard reaction conditions, several deoxynucleosides were effectively produced from thymidine. 相似文献
13.
《Bioscience, biotechnology, and biochemistry》2013,77(2):312-319
The soluble and insoluble fractions obtained after sonication and centrifugation of Bifidobacterium adolescentis M101–4 cells were examined, and both of these fractions exhibited mitogenic activity in art assay of murine splenocytes and Peyer’s patch cells in vitro. The soluble fraction was further treated by a 6-step procedure involving proteinase K-treatment, ultrafiltration with a 50-kDa cut-off molecular-sieving membrane, anion-exchange chromatography, dialysis, ultrafiltration through a 6-kDa cut-off membrane filter, and gel-filtration to yield a soluble high molecular weight fraction (SHF) which was effective for stimulating the proliferation of murine splenocytes. Almost three quarters of this fraction by weight was found to consist of carbohydrates containing glucose and galactose as major constituents, and the average molecular weight was estimated to be between 60,000 and 2,460,000, with the main peak at 1,550,000 Da, by the retention time of gel permeation chromatography. A structural analysis by 1H- and 13C-nuclear magnetic resonance and methylation indicated that SHF contained polysaccharides consisting of -4Galp1-, -4Glcp1-, and -6Glcp1- as the major residues, and Galf1- and -6Galf1- as the minor residues. Immunopotentiating SHF was found to contain galactofuranosyl residues as characteristic constituents which had not been previously detected in other soluble fractions from Gram-positive bacteria. 相似文献
14.
Yamamoto T Yamashita H Mukai K Watanabe H Kubota M Chaen H Fukuda S 《Carbohydrate research》2006,341(14):2350-2359
Chimeric phosphorylases were constructed of the kojibiose phosphorylase (KP) gene and the trehalose phosphorylase (TP) gene from Thermoanaerobacter brockii. Four chimeric enzymes had KP activity, and another had TP activity. Chimera V-III showed not TP, but KP activity, although only 125 amino acid residues in 785 residues of chimera V-III were from that of KP. Chimera V-III had 1% of the specific activity of the wild-type KP. Furthermore, the temperature profile and kinetic parameters of chimera V-III were remarkably changed as compared to those of the wild-type KP. The results of the molecular mass of chimera V-III using GPC (76,000 Da) strongly suggested that the chimera V-III protein exists as a monomer in solution, whereas wild-type KP and TP are hexamer and dimer structures, respectively. The result of the substrate specificity for phosphorolysis was that the chimera acted on nigerose, sophorose and laminaribiose, in addition to kojibiose. Furthermore, chimera V-III was also able to act on sophorose and laminaribiose in the absence of inorganic phosphate, and produced two trisaccharides, beta-D-glucosyl-(1-->6)-laminaribiose and laminaritriose, from laminaribiose. 相似文献
15.
16.
《Bioscience, biotechnology, and biochemistry》2013,77(12):2374-2384
Bifidobacteria have many beneficial effects for human health. The gastrointestinal tract, where natural colonization of bifidobacteria occurs, is an environment poor in nutrition and oxygen. Therefore, bifidobacteria have many unique glycosidases, transporters, and metabolic enzymes for sugar fermentation to utilize diverse carbohydrates that are not absorbed by host humans and animals. They have a unique, effective central fermentative pathway called bifid shunt. Recently, a novel metabolic pathway that utilizes both human milk oligosaccharides and host glycoconjugates was found. The galacto-N-biose/lacto-N-biose I metabolic pathway plays a key role in colonization in the infant gastrointestinal tract. These pathways involve many unique enzymes and proteins. This review focuses on their molecular mechanisms, as revealed by biochemical and crystallographic studies. 相似文献
17.
Aims: To characterize the duel activities of a glycosyl hydrolase family 3 β‐glucosidase/xylosidase from rumen bacterial metagenome and to investigate the capabilities of its β‐d ‐xylosidase activities for saccharification of hemicellulosic xylans. Methods and Results: A β‐glucosidase/xylosidase gene RuBGX1 was cloned from yak (Bos grunniens) rumen using the metagenomic technology. Recombinant RuBGX1, expressed in Escherichia coli, demonstrated high hydrolytic activities on both p‐nitrophenyl‐β‐d ‐glucopyranoside (pNP‐Glc) and p‐nitrophenyl‐β‐d ‐xylopyranoside (pNP‐Xyl) substrates. Analysis of the kinetic properties indicated that RuBGX1 had a lower affinity for pNP‐Glc substrate as the Km was 0·164 mmol l?1 for pNP‐Glc and 0·03 mmol l?1 for pNP‐Xyl at pH 6·0 and 50°C, respectively. The capabilities of RuBGX1 β‐xylosidase for hydrolysis of xylooligosaccharide substrates were further investigated using an endoxylanase‐coupled assay. Hydrolysis time courses illustrated that a significant increase (about 50%) in the reducing sugars, including xylobiose, xylotriose and xylotetraose, was achieved by supplementing endoxylanase with RuBGX1. Enzymatic product analysis using high‐performance anion‐exchange chromatography‐pulsed amperometric detection showed that RuBGX1 could release xyloses from intermediate xylooligosaccharides produced by endoxylanase. Conclusions: The RuBGX1 shows β‐glucosidase activity in hydrolysis of cello‐oligosaccharides; meanwhile, it has β‐xylosidase activity and functions synergistically with endoxylanase to promote the degradation of hemicellulosic xylans. Significance and Impact of the study: This was the first to report the β‐xylosidase activity of family 3 β‐glucosidase/xylosidase functioned in the degradation of hemicellulosic xylans. The bifunctional β‐glucosidase/xylosidase property of RuBGX1 can be used in simultaneous saccharification of cellulose and xylan into fermentable glucose and xylose. 相似文献
18.
Kikue Kubota Kimiko Watanabe Akio Kobayashi 《Bioscience, biotechnology, and biochemistry》2013,77(6):1537-1540
Three novel dithiazine compounds in the aroma concentrate from cooked sakuraebi, Sergia lucens Hansen, were isolated. Their structures were confirmed as 4,6-dimethyl-2-propyl-1,3,5-dihydrodithiazine (A), 4-butyl-2,6-dimethyl-1,3,5-dihydrodithiazine (B) and pyrrolidino[1,2-e]4H-2,4-dimethyl-1,3,5-dithiazine (C) by spectroscopic analyses. The same compounds have also been found in the aroma concentrate from cooked krill. These three compounds were newly discovered as food volatiles, and among them, compound C seems to take an important role in the aroma of cooked small shrimp by its strong roasted aroma and its relatively high concentration. 相似文献
19.
《Biocatalysis and Biotransformation》2013,31(3):326-337
AbstractSucrose phosphorylase is a bacterial α-transglucosidase that catalyses glucosyl transfer from sucrose to phosphate, releasing d-fructose and α-d-glucose 1-phosphate as the product of the first (enzyme glucosylation) and second (enzyme deglucosylation) step of the enzymatic reaction, respectively. The transferred glucosyl moiety of sucrose is accommodated at the catalytic subsite of the phosphorylase through a network of charged hydrogen bonds whereby a highly conserved residue pair of Asp and Arg points towards the equatorial hydroxyl at C4. To examine the role of this ‘hyperpolar’ binding site for the substrate 4-OH, we have mutated Asp49 and Arg395 of Leuconostoc mesenteroides sucrose phosphorylase individually to Ala (D49A) and Leu (R395L), respectively, and also prepared an ‘uncharged’ double mutant harbouring both site-directed substitutions. The efficiency for enzyme glucosylation from sucrose was massively decreased in purified preparations of D49A (107-fold) and R395L (105-fold) as compared to wild-type enzyme. The double mutant was not active above the detection limit. Enzyme deglucosylation to phosphate proceeded relatively efficient in D49A as well as R395L, about 500-fold less than in the wild-type phosphorylase. Substrate inhibition by phosphate and a loss in selectivity for reaction with phosphate as compared to water were new features in the two mutants. Asp49 and Arg395 are both essential in the catalytic reaction of L. mesenteroides sucrose phosphorylase. 相似文献
20.
Choemon Kanno Hiroyuki Hattori Kunio Yamauchi 《Bioscience, biotechnology, and biochemistry》2013,77(5):1325-1332
Properties of proteins in the light (<d 1.03 on Ficoll and then <d 1.14 on sucrose) and heavy (d 1.03/1.05 on Ficoll and then <d 1.14 on sucrose) plasma membranes (PM) isolated from lactating bovine mammary gland were investigated. The PMs consisted of 57 ~ 62% of protein and 38 ~ 43% lipid. The lipid/protein ratio was 0.77 in the light PM and higher than 0.61 of the heavy PM. However, no appreciable differences were found between the light and heavy PMs with respect to polypeptide, amino acid, and carbohydrate compositions. The protein moiety contained approximate 5 ~ 6% carbohydrate: fucose 8 ~ 9, mannose 11 ~ 12, galactose 16, N-acetylglucosamine 32,N-acetylgalactosamine 12 ~ 15, and sialic acid 17~20 mol%. PM protein was high in the content of aspartic acid, glutamic acid, and leucine and low in proline, cystine, methionine, and histidine. On double immunodiffusion both PMs formed precipitin lines against milk fat globule membrane (MFGM) antiserum. Electrophoretic analysis on sodium dodecyl sulfate-polyacrylamide gel revealed the presence of many minor polypeptides and three major glycopeptides (PAS-I, II, and III) of molecular weights of 115,000, 94,000, and 82,000. The glycoprotein profiles of the PMs were different from those of MFGM, except that PAS-II and -III of PM corresponded to PAS-3 and -4 of MFGM, respectively. 相似文献