首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
An X-ray crystal structural analysis revealed that (2S,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-L-isoleucine; Ac-L-Ile) and (2R,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-D-alloisoleucine; Ac-D-aIle) formed a molecular compound containing one Ac-L-Ile molecule and one Ac-D-aIle molecule as an unsymmetrical unit. This molecular compound is packed with strong hydrogen bonds forming homogeneous chains consisting of Ac-L-Ile molecules or Ac-D-aIle molecules and weak hydrogen bonds connecting these homogeneous chains in a fashion similar to that observed for Ac-L-Ile and Ac-D-aIle. Recrystallization of an approximately 1:1 mixture of Ac-L-Ile and Ac-D-aIle from water gave an equimolar molecular compound due to its lower solubility than that of Ac-D-aIle or especially Ac-L-Ile. The results suggest that the equimolar mixture of Ac-L-Ile and Ac-D-aIle could be obtained from an Ac-L-Ile-excess mixture by recystallization from water.  相似文献   

2.
2-Deoxy-2-[(2R,3S)-2-fluoro-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-D-glucopyranose and its (2S,3R)-isomer were respectively synthesized from allyl 2-[(2R,3S)-3-(benzyloxycarbonyloxy)-2-fluorotetradecanamido]-2-deoxy-4,6-O-isopropylidene-β-D-glucopyranoside and its corresponding (2S,3R)-isomer. Both target compounds did not activate macrophage, but the (2S,3R)-analogue strongly inhibited the binding of LPS to macrophage.  相似文献   

3.
A stereoselective synthesis of erythro-serricornin [(4RS,6R,7S)-4,6-dimethyl-7-hydroxynonan-3-one] was completed starting from l-(+)-tartaric acid. The relative configuration of C(6)-methyl and C(7)-hydroxyl groups in naturally occurring serricornin was threo.  相似文献   

4.
Quinoxaline and benzimidazole derivatives obtained from L-rhamnose and L-fucose under deoxygenated, weakly acidic, heated conditions were studied using GLC, HPLC, and NMR.

Four quinoxalines and one benzimidazole were obtained from L-rhamnose (RHA-I, II, III, III′, and IV) and L-fucose (FUA-I, II, III, IV, and V) in an acidic solution (MeOH-AcOH-H2I = 8 : 1 : 2) at 80°C. The total yield of the products as sugar was about 80% from either rhamnose or fucose.

The structure of RHA-I was (2′S)-2-methyl-3-(2′-hydroxypropyl)quinoxaline; RHA-II, (2′R,3′S)-2-(2′,3′-dihydroxybutyl)quinoxaline; RHA-III, (1′S,2′S,3′S)-2-(1′2′3′-trihydroxybutyl)quinoxaline[2-(L-arabino-1′,2′,3′-trihydroxybutyl)quinoxaline]; RHA-III′, 2-(L-ribo-1′,2′,3′-trihydroxybutyl)quinoxaline; and RHA-IV, 2-(L-manno-1′,2′,3′,4′-tetrahydroxypentyl)-benzimidazole, and the structure of FUA-I was the same as RHA-I; FUA-II, (2′S, 3′S)-2-(2′, 3′-dihydroxybutyl)quinoxaline; FUA-III, (1′R, 2′R, 3′S)-2-(1′,2′,3′-trihydroxybutyl)quinoxaline [2-(L-xylo-1′,2′,3′-trihydroxybutyl)quinoxaline; FUA-IV, 2-(L-lyxo-1′,2′,3′-trihydroxybutyl)-quinoxaline; and FUA-V, 2-(L-galacto-1′,2′,3′,4′-tetrahydroxypentyl)benzimidazole. These results suggest no significant difference for the pathways of quinoxaline and benzimidazole formation between L-rhamnose and L-fucose. Possible pathways are proposed for each sugar.  相似文献   

5.
A plant glycosphingolipid, O-(β-d-mannopyranosyl)-(l → 4)-O-(β-d-glucopyranosyl)-(l → l)-(2S,3S,4R)-4-hydroxy-N-tetracosanoylsphinganine 1, and the stereoisomer, O-(α-d-mannopyranosyl)-(1 → 4)-O-(β-d-glucopyranosyl)-(l → l)-(2S,3S,4R)-4-hydroxy-N-tetracosanoylsphinganine 6, were synthesized in a stereo- and regio-controlled way.  相似文献   

6.
Pyrrolothiazolate formed by the Maillard reaction between l-cysteine and d-glucose has a pyrrolothiazole skeleton as a chromophore. We searched for a Maillard pigment having a pyrrolooxazole skeleton formed from l-threonine or l-serine instead of l-cysteine in the presence of d-glucose. As a result, two novel yellow pigments, named pyrrolooxazolates A and B, were isolated from model solutions of the Maillard reaction containing l-threonine and d-glucose, and l-serine and d-glucose, respectively, and identified as (2R,3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-2,5,7a-trimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid and (3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-5,7a-dimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid by instrumental analyses. These compounds were pyrrolooxazole derivatives carrying a carboxy group, and showed the absorption maxima at 300–360 nm under acidic and neutral conditions and at 320–390 nm under alkaline conditions.  相似文献   

7.
The acylated, amidated and esterified derivatives of N-acetylglucosaminyl-α(1 → 4)-N-acetylmuramyl tri- and tetrapeptide were synthesized and examined as to their protective effect on pseudomonal infection in the mouse and pyrogenicity in the rabbit. Modifications of the terminal end function of the peptide moieties in their molecules caused enhancement of resistance to pseudomonal infection and reduction of pyrogenicity. Among the compounds tested, sodium N-acetylglucosaminyl-β(1 → 4)-N-acetylmuramyl-l-alanyl-d-isoglutaminyl-(l)-stearoyl-(d)-meso-2,6-diaminopimelic acid-(d)-amide and sodium N-acetylglucosaminyl-β(1 → 4)-N-acetylmuramyl-l-alanyl-d-isoglutaminyl-(l)-stearoyl-(d)-meso-2,6-diaminopimelic acid-(d)-amide-(l)-d-alanine were found to be advantageous and conceivably worthwhile for further investigation as immunobiologically active compounds.  相似文献   

8.
The photobromination of 1,5-anhydro-2,3-O-isopropylidene-β-d-ribofuranose gave the corresponding (5S)-5-bromo compound. The reduction of the bromide with triphenyltindeuteride gave (5S)-(5-2H1)-1,5-anhydro-2,3-O-isopropylidene-β-d-ribofuranose, with a chiral purity of 76% at C-5, which was converted to (5R)- and (5S)-(5-2H1)-d-riboses and other ribofuranose derivatives.  相似文献   

9.
From the methanolysis product of the antibiotic YA–56 X (Zorbamycin) and Y belonging to phleomycin-bleomycin group, two monosaccharides and one disaccharide were isolated as their fully acetylated derivatives. The structures of these compounds were determined to be methyl 2,3,4-tri-O-acetyl-6-deoxy-β-L-gulopyranoside, methyl 2,4,6-tri-O-acetyl-3-O-carbamoyl-α-D-mannopyranoside and methyl 2-O-(2,4,6-tri-O-acetyl-3-O-carbamoyl-α-D-mannopyranosyl)-3,4-O-0-acetyl-6-deoxy-β-L-“gulopyranoside,

Based on these results, it was concluded that 2-O-(3-O-carbamoyl-α-D-mannosyl)-6-deoxy-L-gulose is present as a sugar moiety of the antibiotic YA–56.  相似文献   

10.
Two novel genes (tsB, tsC) involved in the conversion of DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) to L-cysteine through S-carbamyl-L-cysteine (L-SCC) pathway were cloned from the genomic DNA library of Pseudomonas sp. TS1138. The recombinant proteins of these two genes were expressed in Escherichia coli BL21, and their enzymatic activity assays were performed in vitro. It was found that the tsB gene encoded an L-ATC hydrolase, which catalyzed the conversion of L-ATC to L-SCC, while the tsC gene encoded an L-SCC amidohydrolase, which showed the catalytic ability to convert L-SCC to L-cysteine. These results suggest that tsB and tsC play important roles in the L-SCC pathway and L-cysteine biosynthesis in Pseudomonas sp. TS1138, and that they have potential applications in the industrial production of L-cysteine.  相似文献   

11.
(2S,2’R,3R,4E,8E)-N-2’-Hydroxyoctadecanoyl-1-O-(β-d-glucopyranosyl)-9-methyl-4,8-sphingadienine (Pen III), a cerebroside isolated from Penicillium funiculosum A-1 as the fruiting inducer against Basidiomycete Schizophyllum commune, was synthesized by starting from d-glucose, l-serine, homoprenyl acetate and stearic acid.  相似文献   

12.
Kinetic parameters of d-amino acid oxidase from R. gracilis (DAAO) towards d-2-naphthyl alanine (d-2-NAla) and of l-aspartate amino transferase (l-AAT) from Escherichia coli towards 2-naphthyl pyruvate (2-NPA) were measured. The two enzymes were then combined in a one-pot reaction in which DAAO was used to generate 2-NPA which was the substrate of l-AAT in the presence of cysteine sulphinic acid (CSA) as an amino donor. The combined reactions afforded enantiomerically pure l-2-NAla in almost quantitative yield. The extremely low water solubility of 2-NAla can be partially overcome by running the biotransformation in suspension with higher formal concentration. In these conditions multiple enzyme additions are required.  相似文献   

13.
As a model experiment for the stereoselective synthesis of optically active cis-α,β-dibenzyl-α-hydroxy-γ-butyrolactone, (2R, 3S)-2-benzyl-2-hydroxy-3-(3,4-methylenedioxybenzyl)-γ-butyrolactone (3) was stereoselectively synthesized from L-(+)-arabinose.  相似文献   

14.
The stereoselective synthesis of the 1-O-α-d-ghicopyranosides and 1-O-α-d-cellobiosides of 3-deoxy-2(R)- and 2(S)-glycerols to determine the complete stereochemistry of rhynchosporoside, which is a host selective phytotoxin from Rhynchosporium secalis, is described in detail.  相似文献   

15.
l-Methionine γ-lyase (EC 4.4.1.11) catalyzes α,β-elimination of l-2-amino-3-(N-methylamino)propionic acid and l-2-amino-3-(N-hydroxyethylamino)propionic acid to yield pyruvate, ammonia, and the corresponding amines. These amino acids also undergo the enzymatic β-replacement reaction with thiols to produce the corresponding S-substituted cysteines. Thus, l-methionine γ-lyase cleaves a C-N bond in addition to C-S, C-Se, and C-O bonds at the β position of amino acids by elimination and replacement reactions. A linear relationship between the reactivity, (log(Vmax/Km) and the pKa value of the conjugated acid of the leaving group has been found for Se-methyl-l-selenocysteine, S-methyl-l-cysteine, and O-methyl-l-serine. However, l-2-amino-3-(N-methylamino)propionic acid has shown lower reactivity than that expected from the pKa value of methylammonium ions.  相似文献   

16.
Tyrosine phenol lyase catalyzes a series of α,β-elimination, β-replacement and racemization reactions. These reactions were studied with intact cells of Erwinia herbicola ATCC 21434 containing tyrosine phenol lyase.

Various aromatic amino acids were synthesized from l-serine and phenol, pyrocatechol, resorcinol or pyrogallol by the replacement reaction using the intact cells. l(d)-Tyrosine, 3,4-dihydroxyphenyl-l(d)-alanine (l(d)-dopa), l(d)-serine, l-cysteine, l-cystine and S-methyl-l-cysteine were degraded to pyruvate and ammonia by the elimination reaction. These amino acids could be used as substrate, together with phenol or pyrocatechol, to synthesize l-tyrosine or l-dopa via the replacement reaction by intact cells. l-Serine and d-serine were the best amino acid substrates for the synthesis of l-tyrosine or l-dopa. l-Tyrosine and l-dopa synthesized from d-serine and phenol or pyrocatechol were confirmed to be entirely l-form after isolation and identification of these products. The isomerization of d-tyrosine to l-tyrosine was also catalyzed by intact cells.

Thus, l-tyrosine or l-dopa could be synthesized from dl-serine and phenol or pyrocatechol by intact cells of Erwinia herbicola containing tyrosine phenol lyase.  相似文献   

17.
Abstract

The 1-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-3-aryl-5-benzyl (or substituted benzyl)-1,2,4-triazin-6(1H)-/ones or thiones were prepared via galactosidation of 3-aryl-5-benzyl (or substituted benzyl)-1,2,4-triazin-6(1H)-/ones or thiones with 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide. The structure of the new galactosyl derivatives was based on both spectroscopic and chemical evidences.  相似文献   

18.
The cell wall polysaccharide of cotyledon of Tora-bean (Phaseolus vulgaris), which surrounds starch granules, was isolated from saline-extraction residues of homogenized cotyledon, as alkali-insoluble fibrous substance. Alkali-insoluble residue, which had been treated with α-amylase (Termamyl), had a cellulose-like matrix under the electron microscope. It was composed of l-arabinose, d-xylose, d-galactose and d-glucose (molar ratio, 1.0: 0.2: 0.1: 1.2) together with a trace amount of l-fucose. Methylation followed by hydrolysis of the polysaccharide yielded 2, 3, 5-tri-O-methyl-l-arabinose (3.3 mol), 2, 3, 4-tri-O-methyl-d-xylose (1.0 mol), 2, 3-di-O-methyl-l-arabinose (3.7 mol), 3, 4-di-O-methyl-d-xylose (1.0 mol), 2-O-methyl-l-arabinose and 2, 3, 6-tri-O-methyl-d-glucose (12.7 mol), 2, 6-di-O-methyl-d-glucose (1.2 mol) and 2, 3-di-O-methyl-d-glucose (1.0 mol).

Methylation analysis, Smith degradation and enzymatic fragmentation with cellulase and α-l-arabinofuranosidase showed that the l-arabinose-rich alkali-insoluble polysaccharide possesses a unique structural feature, consisting of β-(1 → 4)-linked glucan backbone, which was attached with side chains of d-xylose residue and β-d-galactoxylose residue at O-6 positions and α-(1 → 5)-linked l-arabinosyl side cains (DP=8) at O-3 positions of β-(1 → 4)-linked d-glucose residues, respectively.  相似文献   

19.
The mechanism of stereospecific production of l-amino acids from the corresponding 5-substituted hydantoins by Bacillus brevis AJ-12299 was studied. The enzymes involved in the reaction were partially purified by DEAE-Toyopearl 650M column chromatography and their properties were investigated. The conversion of dl-5-substituted hydantoins to the corresponding l-amino acids consisted of the following two successive reactions. The first step was the ring-opening hydrolysis to N-carbamoyl amino acids catalyzed by an ATP dependent l-5-substituted hydantoin hydrolase. This reaction was stereospecific and the N-carbamoyl amino acid produced was exclusively the l-form. N-Carbamoyl-l-amino acid was also produced from the d-form of 5-substituted hydantoin, which suggests that spontaneous racemization occurred in the reaction mixture. In the second step, N-carbamoyl-l-amino acid was hydrolyzed to l-amino acid by an N-carbamoyl-l-amino acid hydrolase, which was also an l-specific enzyme. The ATP dependency of the l-5-substituted hydantoin hydrolase was supposed to be the limiting factor in the production of l-amino acids from the corresponding 5-substituted hydantoins by this bacterium.  相似文献   

20.
A growth factor (TJF) for a malo-lactic fermentation bacterium has been isolated from tomato juice, and found to be a β-glucoside. The NMR spectra of TJF and its acetate revealed that the glucosyl residue linked to the hydroxyl group at C-2′ or C-4′ of d- or l-pantothenic acid moiety. Then, 2′-O-(β-d-glucopyranosyl)-dl-pantothenic acid (I), 4′-O-(β-d-glucopyranosyl)-dl-pantothenic acid (II) and 4′-O-(β-d-glucopyranosyl)-d(R)-pantothenic acid (II-a) were synthesized, and Il-a and 4′-O-(β-d-glucopyranosyl)-l-pantothenic acid (II-b) were obtained by the optical resolution of the acetate of II. Among the above compounds, II-a was identical with natural TJF regarding to the biological activity, NMR and ORD spectra, and thin-layer chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号