首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytosine-5 methylation within CpG dinucleotides is a potentially important mechanism of epigenetic influence on human traits and disease. In addition to influences of age and gender, genetic control of DNA methylation levels has recently been described. We used whole blood genomic DNA in a twin set (23 MZ twin-pairs and 23 DZ twin-pairs, N = 92) as well as healthy controls (N = 96) to investigate heritability and relationship with age and gender of selected DNA methylation profiles using readily commercially available GoldenGate bead array technology. Despite the inability to detect meaningful methylation differences in the majority of CpG loci due to tissue type and locus selection issues, we found replicable significant associations of DNA methylation with age and gender. We identified associations of genetically heritable single nucleotide polymorphisms with large differences in DNA methylation levels near the polymorphism (cis effects) as well as associations with much smaller differences in DNA methylation levels elsewhere in the human genome (trans effects). Our results demonstrate the feasibility of array-based approaches in studies of DNA methylation and highlight the vast differences between individual loci. The identification of CpG loci of which DNA methylation levels are under genetic control or are related to age or gender will facilitate further studies into the role of DNA methylation and disease.  相似文献   

2.
3.
4.
DNA methylation is essential in brain function and behavior; therefore, understanding the role of DNA methylation in brain-based disorders begins with the study of DNA methylation profiles in normal brain. Determining the patterns and scale of methylation conservation and alteration in an evolutionary context enables the design of focused but effective methylation studies of disease states. We applied an enzymatic-based approach, Methylation Mapping Analysis by Paired-end Sequencing (Methyl-MAPS), which utilizes second-generation sequencing technology to provide an unbiased representation of genome-wide DNA methylation profiles of human and mouse brains. In this large-scale study, we assayed CpG methylation in cerebral cortex of neurologically and psychiatrically normal human postmortem specimens, as well as mouse forebrain specimens. Cross-species human-mouse DNA methylation conservation analysis shows that DNA methylation is not correlated with sequence conservation. Instead, greater DNA methylation conservation is correlated with increasing CpG density. In addition to CpG density, these data show that genomic context is a critical factor in DNA methylation conservation and alteration signatures throughout mammalian brain evolution. We identify key genomic features that can be targeted for identification of epigenetic loci that may be developmentally and evolutionarily conserved and wherein aberrations in DNA methylation patterns can confer risk for disease.  相似文献   

5.
《Epigenetics》2013,8(11):1308-1318
DNA methylation is essential in brain function and behavior; therefore, understanding the role of DNA methylation in brain-based disorders begins with the study of DNA methylation profiles in normal brain. Determining the patterns and scale of methylation conservation and alteration in an evolutionary context enables the design of focused but effective methylation studies of disease states. We applied an enzymatic-based approach, Methylation Mapping Analysis by Paired-end Sequencing (Methyl-MAPS), which utilizes second-generation sequencing technology to provide an unbiased representation of genome-wide DNA methylation profiles of human and mouse brains. In this large-scale study, we assayed CpG methylation in cerebral cortex of neurologically and psychiatrically normal human postmortem specimens, as well as mouse forebrain specimens. Cross-species human-mouse DNA methylation conservation analysis shows that DNA methylation is not correlated with sequence conservation. Instead, greater DNA methylation conservation is correlated with increasing CpG density. In addition to CpG density, these data show that genomic context is a critical factor in DNA methylation conservation and alteration signatures throughout mammalian brain evolution. We identify key genomic features that can be targeted for identification of epigenetic loci that may be developmentally and evolutionarily conserved and wherein aberrations in DNA methylation patterns can confer risk for disease.  相似文献   

6.
Monozygotic twins share identical genomic DNA and are indistinguishable using conventional genetic markers. Increasing evidence indicates that monozygotic twins are epigenetically distinct, suggesting that a comparison between DNA methylation patterns might be useful to approach this forensic problem. However, the extent of epigenetic discordance between healthy adult monozygotic twins and the stability of CpG loci within the same individual over a short time span at the whole-genome scale are not well understood. Here, we used Infinium HumanMethylation450 Beadchips to compare DNA methylation profiles using blood collected from 10 pairs of monozygotic twins and 8 individuals sampled at 0, 3, 6, and 9 months. Using an effective and unbiased method for calling differentially methylated (DM) CpG sites, we showed that 0.087%–1.530% of the CpG sites exhibit differential methylation in monozygotic twin pairs. We further demonstrated that, on whole-genome level, there has been no significant epigenetic drift within the same individuals for up to 9 months, including one monozygotic twin pair. However, we did identify a subset of CpG sites that vary in DNA methylation over the 9-month period. The magnitude of the intra-pair or longitudinal methylation discordance of the CpG sites inside the CpG islands is greater than those outside the CpG islands. The CpG sites located on shores appear to be more suitable for distinguishing between MZ twins.  相似文献   

7.
Epigenetic changes can be induced by adverse environmental exposures, such as nutritional imbalance, but little is known about the nature or extent of these changes. Here we have explored the epigenomic effects of a sustained nutritional change, excess dietary methyl donors, by assessing genomic CpG methylation patterns in isogenic mice exposed for one or six generations. We find stochastic variation in methylation levels at many loci; exposure to methyl donors increases the magnitude of this variation and the number of variable loci. Several gene ontology categories are significantly overrepresented in genes proximal to these methylation-variable loci, suggesting that certain pathways are susceptible to environmental influence on their epigenetic states. Long-term exposure to the diet (six generations) results in a larger number of loci exhibiting epigenetic variability, suggesting that some of the induced changes are heritable. This finding presents the possibility that epigenetic variation within populations can be induced by environmental change, providing a vehicle for disease predisposition and possibly a substrate for natural selection.  相似文献   

8.
In vertebrates, DNA methylation-mediated repression of retrotransposons is essential for the maintenance of genomic integrity. In the current study, we developed a technique termed HT-TREBS (High-Throughput Targeted Repeat Element Bisulfite Sequencing). This technique is designed to measure the DNA methylation levels of individual loci of any repeat families with next-generation sequencing approaches. To test the feasibility of HT-TREBS, we analyzed the DNA methylation levels of the IAP LTR family using a set of 12 different genomic DNA isolated from the brain, liver and kidney of 4 one-week-old littermates of the mouse strain C57BL/6N. This technique has successfully generated the CpG methylation data of 5,233 loci common in all the samples, representing more than 80% of the individual loci of the five targeted subtypes of the IAP LTR family. According to the results, approximately 5% of the IAP LTR loci have less than 80% CpG methylation levels with no genomic position preference. Further analyses of the IAP LTR loci also revealed the presence of extensive DNA methylation variations between different tissues and individuals. Overall, these data demonstrate the efficiency and robustness of the new technique, HT-TREBS, and also provide new insights regarding the genome-wide DNA methylation patterns of the IAP LTR repeat elements.  相似文献   

9.
10.
11.
《Epigenetics》2013,8(2):268-275
Age is a key risk factor for breast cancer and epigenetic alterations may contribute to age-related increases in breast cancer risk, though the relation of age-related methylation in normal breast tissues with altered methylation in breast tumors is unclear. We investigated the relation of age with DNA methylation in normal breast tissues genome-wide using two data sets from the Gene Expression Omnibus (GEO) database (GSE32393 and GSE31979). We validated our observations in an independent set of normal breast tissues, examined age-related methylation in normal breast for enrichment of genomic features, and compared age-related methylation in normal tissue with methylation alterations in breast tumors. Between the two array-based methylation data sets, there were 204 CpG loci with significant (P < 0.05) and consistent age-related methylation, 97% of which were increases in methylation. Our validation sets confirmed the direction of age-related DNA methylation changes in all measured regions. Among the 204 age-related CpG loci, we observed a significant enrichment for CpG islands (P = 8.7E-6) and polycomb group protein target genes (P = 0.03). In addition, 24 of the 204 CpGs with age-related methylation in normal breast were significantly differentially methylated between normal and breast tumor tissues. We identified consistent age-related methylation changes in normal breast tissue that are further altered in breast tumors and may represent early events contributing to breast carcinogenesis. This work identifies age-related methylation in normal breast tissue and begins to deconstruct the contribution of aging to epigenetic alterations present in breast tumors.  相似文献   

12.
The developmental failure of mammalian parthenogenote has been a mystery for a long time and posed a question as to why bi-parental reproduction is necessary for development to term. In the 1980s, it was proven that this failure was not due to the genetic information itself, but to epigenetic modification of genomic DNA. In the following decade, several studies successfully identified imprinted genes which were differentially expressed in a parent-of-origin-specific manner, and it was shown that the differential expression depended on the pattern of DNA methylation. These facts prompted development of genome-wide systematic screening methods based on DNA methylation and differential gene expression to identify imprinted genes. Recently computational approaches and microarray technology have been introduced to identify imprinted genes/loci, contributing to the expansion of our knowledge. However, it has been shown that the gene silencing derived from genomic imprinting is accomplished by several mechanisms in addition to direct DNA methylation, indicating that novel approaches are further required for comprehensive understanding of genomic imprinting. To unveil the mechanism of developmental failure in mammalian parthenogenote, systematic screenings for imprinted genes/loci have been developed. In this review, we describe genomic imprinting focusing on the history of genome-wide screening.  相似文献   

13.
14.
15.
One of the key objectives of comparative genomics is the characterization of the forces that shape genomes over the course of evolution. In the last decades, evidence has been accumulated that for vertebrate genomes also epigenetic modifications have to be considered in this context. Especially, the elevated mutation frequency of 5-methylcytosine (5mC) is assumed to facilitate the depletion of CpG dinucleotides in species that exhibit global DNA methylation. For instance, the underrepresentation of CpG dinucleotides in many mammalian genomes is attributed to this effect, which is only neutralized in so-called CpG islands (CGIs) that are preferentially unmethylated and thus partially protected from rapid CpG decay. For primate-specific CpG-rich transposable elements from the ALU family, it is unclear whether their elevated CpG frequency is caused by their small age or by the absence of DNA methylation. In consequence, these elements are often misclassified in CGI annotations. We present a method for the estimation of germ line methylation from pairwise ancestral-descendant alignments. The approach is validated in a simulation study and tested on DNA repeats from the AluSx family. We conclude that a predicted unmethylated state in the germ line is highly correlated with epigenetic activity of the respective genomic region. Thus, CpG-rich repeats can be facilitated as in silico probes for the epigenetic potential of their genomic neighborhood.  相似文献   

16.
17.
DNA methylation is an integral part of the mechanism of a remodeling and modification of the chromatin structure. The global complex net of chromatin modification and remodeling reactions is still to be determined, and studies of the mechanisms controlling the epigenetic processes of histone modification and DNA methylation are in their infancy. Cytosine methylation occurs predominantly in CpG sequences of the eukaryotic genome, and it also takes place at symmetric CpHpG and nonsymmetric CpHpH sites (where H is A, T, or C). The modification efficiency of the three types of DNA methylation sites depends on their genomic localization. Different regions of the eukaryotic genome are remarkable for their methylation features: CpG-islands, CpG-island shores, differentially methylated regions of imprinted genes, and regions of nonalternative site-specific modification. The three canonical sites (CpG, CpHpG, and CpHpH) differ in DNA methylation efficiency depending on their nucleotide context. An epigenetic code of DNA methylation can be assumed with context differences playing a specific functional role. The review summarizes the main up-to-date data on the structural and functional features of site-specific cytosine methylation in eukaryotic genomes. Pathogenesis-related alterations in the methylation pattern of the eukaryotic genome are considered.  相似文献   

18.
DNA methylation of CpG islands plays a crucial role in the regulation of gene expression. More than half of all human promoters contain CpG islands with a tissue-specific methylation pattern in differentiated cells. Still today, the whole process of how DNA methyltransferases determine which region should be methylated is not completely revealed. There are many hypotheses of which genomic features are correlated to the epigenome that have not yet been evaluated. Furthermore, many explorative approaches of measuring DNA methylation are limited to a subset of the genome and thus, cannot be employed, e.g., for genome-wide biomarker prediction methods. In this study, we evaluated the correlation of genetic, epigenetic and hypothesis-driven features to DNA methylation of CpG islands. To this end, various binary classifiers were trained and evaluated by cross-validation on a dataset comprising DNA methylation data for 190 CpG islands in HEPG2, HEK293, fibroblasts and leukocytes. We achieved an accuracy of up to 91% with an MCC of 0.8 using ten-fold cross-validation and ten repetitions. With these models, we extended the existing dataset to the whole genome and thus, predicted the methylation landscape for the given cell types. The method used for these predictions is also validated on another external whole-genome dataset. Our results reveal features correlated to DNA methylation and confirm or disprove various hypotheses of DNA methylation related features. This study confirms correlations between DNA methylation and histone modifications, DNA structure, DNA sequence, genomic attributes and CpG island properties. Furthermore, the method has been validated on a genome-wide dataset from the ENCODE consortium. The developed software, as well as the predicted datasets and a web-service to compare methylation states of CpG islands are available at http://www.cogsys.cs.uni-tuebingen.de/software/dna-methylation/.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号