首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Y chromosomes from representative sample of Eastern Ukrainians (94 individuals) were analyzed for composition and frequencies of haplogroups, defined by 11 biallelic loci located in non-recombining part of the chromosome (SRY1532, YAP, 92R7, DYF155S2, 12f2, Tat, M9, M17, M25, M89, and M56). In the Ukrainian gene, pool six haplogroups were revealed: E, F (including G and I), J, N3, P, and R1a1. These haplogroups were earlier detected in a study of Y-chromosome diversity on the territory of Europe as a whole. The major haplogroup in the Ukrainian gene pool, haplogroup R1a1 (earlier designated HG3), accounted for about 44% of all Y chromosomes in the sample examined. This haplogroup is thought to mark the migration patterns of the early Indo-Europeans and is associated with the distribution of the Kurgan archaeological culture. The second major haplogroup is haplogroup F (21.3%), which is a combination of the lineages differing by the time of appearance. Haplogroup P found with the frequency of 9.6%, represents the genetic contribution of the population originating from the ancient autochthonous population of Europe. Haplogroups J and E (11.7 and 4.2%, respectively) mark the migration patterns of the Middle-Eastern agriculturists during the Neolithic. The presence of the N3 lineage (9.6%) is likely explained by a contribution of the assimilated Finno-Ugric tribes. The data on the composition and frequencies of Y-chromosome haplogroups in the sample studied substantially supplement the existing picture of the male lineage distribution in the Eastern Slav population.  相似文献   

2.
Y chromosomes from representative sample of Eastern Ukrainians (94 individuals) were analyzed for composition and frequencies of haplogroups, defined by 11 biallelic loci located in non-recombining part of the chromosome (SRY1532, YAP, 92R7, DYF155S2, 12f2, Tat, M9, M17, M25,M89, andM56). In the Ukrainian gene, pool six haplogroups were revealed: E, F (including G and I), J, N3, P, and R1a1. These haplogroups were earlier detected in a study of Y-chromosome diversity on the territory of Europe as a whole. The major haplogroup in the Ukrainian gene pool, haplogroup R1a1 (earlier designated HG3), accounted for about 44% of all Y chromosomes in the sample examined. This haplogroup is thought to mark the migration patterns of the early Indo-Europeans and is associated with the distribution of the Kurgan archaeological culture. The second major haplogroup is haplogroup F (21.3%), which is a combination of the lineages differing by the time of appearance. Haplogroup P found with the frequency of 9.6%, represents the genetic contribution of the population originating from the ancient autochthonous population of Europe. Haplogroups J and E (11.7 and 4.2%, respectively) mark the migration patterns of the Middle-Eastern agriculturists during the Neolithic. The presence of the N3 lineage (9.6%) is likely explained by a contribution of the assimilated Finno–Ugric tribes. The data on the composition and frequencies of Y-chromosome haplogroups in the sample studied substantially supplement the existing picture of the male lineage distribution in the Eastern Slav population.  相似文献   

3.
This study examines the genetic variation in Basque Y chromosome lineages using data on 12 Y-short tandem repeat (STR) loci in a sample of 158 males from four Basque provinces of Spain (Alava, Vizcaya, Guipuzcoa, and Navarre). As reported in previous studies, the Basques are characterized by high frequencies of haplogroup R1b (83%). AMOVA analysis demonstrates genetic homogeneity, with a small but significant amount of genetic structure between provinces (Y-short tandem repeat loci STRs: 1.71%, p = 0.0369). Gene and haplotype diversity levels in the Basque population are on the low end of the European distribution (gene diversity: 0.4268; haplotype diversity: 0.9421). Post-Neolithic contribution to the paternal Basque gene pool was estimated by measuring the proportion of those haplogroups with a Time to Most Recent Common Ancestor (TMRCA) previously dated either prior (R1b, I2a2) or subsequent to (E1b1b, G2a, J2a) the Neolithic. Based on these estimates, the Basque provinces show varying degrees of post-Neolithic contribution in the paternal lineages (10.9% in the combined sample).  相似文献   

4.
Stone marten (Martes foina) and European pine marten (M. martes) occur in western Eurasia. Current distributions of martens within Turkey and phylogenetic relationships among the Turkish and other populations of the two species within Eurasia remain relatively unknown. In this study, we aimed to determine genetic diversity within Martes populations inhabiting Turkey and to reveal the phylogenetic relationships among the Turkish and conspecific populations of the two marten species, using mitochondrial cytochrome b (CytB) sequences. Twenty‐four (24) haplotypes were identified among 86 marten samples collected across Turkey, including 23 novel haplotypes. Genetic distances among the Turkish haplotypes ranged from 0.1% to 0.8%, with an average of 0.3%. The 24 Turkish haplotypes were analysed together with those of conspecific populations deposited in GenBank. Phylogenetic (Bayesian Inference, maximum likelihood, neighbor‐joining) and network analyses revealed that all of the Turkish samples belonged to M. foina and that samples of M. martes were not encountered. Haplotypes of M. foina were divided into five haplogroups. The haplogroup including the two Chinese samples differed markedly from other the haplogroups. The remaining haplogroups contained samples from both the Turkish and European populations. We found that there was a genetically close relationship between the Turkish and the European stone marten populations. As a result of this study, M. martes may not be distributed in the Anatolian part of Turkey, possibly due to a barrier effect of two straits (Dardanelles and Bosporus) and the Caucasus Mountains. On the other hand, M. foina is distributed in both the Anatolian and Thracian parts of Turkey. Our results suggest that Turkey was likely one of the refuges for M. foina during Pleistocene glacial periods and is one of the centres of distribution of stone marten for Europe and the surrounding regions.  相似文献   

5.
The gene pool structure of Teleuts was examined and Y-chromosomal haplogroups composition and frequencies were determined. In the gene pool of Teleuts, five haplogroups, C3×M77, N3a, R1b*, R1b3, and R1a1, were identified. Evaluation of the genetic differentiation of the samples examined using analysis of molecular variance (AMOVA) with two marker systems (frequencies of haplogroups and Y-chromosomal microsatellite haplotypes) showed that Bachat Teleuts were equally distant from Southern and Northern Altaians. In Siberian populations, the frequencies and molecular phylogeny of the YSTR haplotypes within Y-chromosomal haplogroup R1a1 were examined. It was demonstrated that Teleuts and Southern Altaians had very close and overlapping profiles of R1a1 haplotypes. Population cluster analysis of the R1a1 YSTR haplotypes showed that Teleuts and Southern Altaians were closer to one another than to all remaining Siberian ethnic groups. Phylogenetic analysis of N3a haplotypes suggested specificity of Teleut haplotypes and their closeness to those of Tomsk Tatars. Teleuts were characterized by extremely high frequency of haplogroup R1b*, distinguished for highly specific profile of YSTR haplotypes and high haplotype diversity. The results of the comparative analysis suggested that the gene pool of Bachat Teleuts was formed on the basis of at least two heterogeneous genetic components, probably associated with ancient Turkic and Samoyedic ethnic components.  相似文献   

6.
The structure of Khakass gene pool has been investigated: Y-chromosome haplogroup compositions and frequencies were described in seven population samples of two basic subethnic groups, Sagai and Kachins, from three geographically separated regions of the Khakass Republic. Eight haplogroups were detected in the Khakass gene pool: C3, E, N*, N1b, N1c, R1a1a, and R1b1b1. The haplogroup spectra and the genetic diversity by haplogroups and YSTR haplotypes differed significantly between Sagai and Kachins. Kachins had a low level of gene diversity, whereas the diversity of Sagai was similar to that of other South-Siberian ethnic groups. Sagai samples from the Askizskii district were very similar to each other, and so were two Kachin samples from the Shirinskii district, while Sagai samples from the Tashtypskii district differed considerably from each other. The contribution of intergroup differences among ethnic groups was high, indicating significant genetic differentiation among native populations in Khakassia. The Khakass gene pool was strongly differentiated both by haplogroup frequencies and by YSTR haplotypes within the N1b haplogroup. The frequencies of YSTR haplotypes within the chromosome Y haplogroups N1b, N1c, and R1a1 were determined and their molecular phylogeny was investigated. Factor and cluster analysis, as well as AMOVA, suggest that the Khakass gene pool is structured by territory and subethnic groups.  相似文献   

7.
The Y-chromosome haplogroup composition of the population of the Cabo Verde Archipelago was profiled by using 32 single-nucleotide polymorphism markers and compared with potential source populations from Iberia, west Africa, and the Middle East. According to the traditional view, the major proportion of the founding population of Cabo Verde was of west African ancestry with the addition of a minor fraction of male colonizers from Europe. Unexpectedly, more than half of the paternal lineages (53.5%) of Cabo Verdeans clustered in haplogroups I, J, K, and R1, which are characteristic of populations of Europe and the Middle East, while being absent in the probable west African source population of Guiné-Bissau. Moreover, a high frequency of J* lineages in Cabo Verdeans relates them more closely to populations of the Middle East and probably provides the first genetic evidence of the legacy of the Jews. In addition, the considerable proportion (20.5%) of E3b(xM81) lineages indicates a possible gene flow from the Middle East or northeast Africa, which, at least partly, could be ascribed to the Sephardic Jews. In contrast to the predominance of west African mitochondrial DNA haplotypes in their maternal gene pool, the major west African Y-chromosome lineage E3a was observed only at a frequency of 15.9%. Overall, these results indicate that gene flow from multiple sources and various sex-specific patterns have been important in the formation of the genomic diversity in the Cabo Verde islands.An erratum to this article can be found at  相似文献   

8.
The compositions and frequencies of Y-chromosome haplogroups identified by genotyping 23 biallelic loci of its nonrecombining region (YAP, 92R7, DYF155S2, 12f2, Tat, M9, M17, M25, M89, M124, M130, M170, M172, M174, M173, M178, M201, M207, M242, M269, P21, P25, and P37) have been determined in a sample of 68 Belarussians. Eleven haplogroups have been found in the Belarussian gene pool (E, F*, G, I, I1b, J2, N3a*, Q*, R1*, R1a1, and R1b3). Haplogroup R1a1 is the most frequent; it includes 46% of all Y chromosomes in this sample. The frequencies of haplogroups I1b and I are 17.6 and 7.3%, respectively. Haplogroup N3a* is the next in frequency. The frequencies of haplogroups E, J2, and R1b3 are 4.4% each; that of R1* is 3%; and those of F*, G, and Q* are 1.5% each.  相似文献   

9.
Among azoospermic and severely oligozoospermic men, 7-15% present microdeletions of a region on the long arm of the Y chromosome that has been called AZF (azoospermia factor). Because these deletions present varying relative frequencies in different populations, we decided to ascertain whether their presence was correlated with specific Y-chromosome haplotypes. For that, we evaluated 51 infertile Israeli men, 9 of whom had microdeletions in AZF. Haplotypes were identified using a hierarchical system with eight biallelic DNA markers. We also checked for the presence of the deletion marker 50f2/C, which was absent in all seven patients with isolated AZFc deletion and also in the one patient with isolated AZFb deletion, suggesting that these microdeletions overlap. As expected, haplogroup J was the most common (47%), followed by equal frequencies of haplogroups Y* (xDE, J, K), P* (xR1a, R1b8), K* (xP), and E. In six patients with AZFc deficiencies of comparable size, three belonged to haplogroup J, two belonged to haplogroup P* (xR1a, R1b8), and one belonged to haplogroup R1a. Also, there were no significant differences in the haplotype frequencies between the groups with and without microdeletions. Thus we did not identify any association of a specific haplogroup with predisposition to de novo deletion of the AZF region in the Israeli population.  相似文献   

10.
MtDNA and Y-chromosome lineages in the Yakut population   总被引:1,自引:0,他引:1  
The structure of female (mtDNA) and male (Y-chromosome haplotypes) lineages in the Yakut population was examined. To determine mtDNA haplotypes, sequencing of hypervariable segment I and typing of haplotype-specific point substitutions in the other parts of the mtDNA molecule were performed. Y haplogroups were identified through typing of biallelic polymorphisms in the nonrecombining part of the chromosome. Haplotypes within haplogroups were analyzed with seven microsatellite loci. Mitochondrial gene pool of Yakuts is mainly represented by the lineages of eastern Eurasian origin (haplogroups A, B, C, D, G, and F). In Yakuts haplogroups C and D showing the total frequency of almost 80% and consisting of 12 and 10 different haplopypes, respectively, were the most frequent and diverse. The total part of the lineages of western Eurasian origin ("Caucasoid") was about 6% (4 haplotypes, haplogroups H, J, and U). Most of Y chromosomes in the Yakut population (87%) belonged to haplogroup N3 (HG16), delineated by the T-C substitution at the Tat locus. Chromosomes of haplogroup N3 displayed the presence of 19 microsatellite haplotypes, the most frequent of which encompassed 54% chromosomes of this haplogroup. Median network of haplogroup N3 in Yakuts demonstrated distinct "starlike phylogeny". Male lineages of Yakuts were shown to be closest to those of Eastern Evenks.  相似文献   

11.
Although previous studies have characterized the genetic structure of populations from Haiti and Jamaica using classical and autosomal STR polymorphisms, the patrilineal influences that are present in these countries have yet to be explored. To address this lacuna, the current study aims to investigate, for the first time, the potential impact of different ancestral sources, unique colonial histories, and distinct family structures on the paternal profile of both groups. According to previous reports examining populations from the Americas, island-specific demographic histories can greatly impact population structure, including various patterns of sex-biased gene flow. Also, given the contrasting autosomal profiles provided in our earlier study (Simms et al.: Am J Phys Anthropol 142 (2010) 49-66), we hypothesize that the degree and directionality of gene flow from Europeans, Africans, Amerindians, and East Asians are dissimilar in the two countries. To test this premise, 177 high-resolution Y-chromosome binary markers and 17 Y-STR loci were typed in Haiti (n = 123) and Jamaica (n = 159) and subsequently utilized for phylogenetic comparisons to available reference collections encompassing Africa, Europe, Asia (East and South), and the New World. Our results reveal that both studied populations exhibit a predominantly South-Saharan paternal component, with haplogroups A1b-V152, A3-M32, B2-M182, E1a-M33, E1b1a-M2, E2b-M98, and R1b2-V88 comprising 77.2% and 66.7% of the Haitian and Jamaican paternal gene pools, respectively. Yet, European derived chromosomes (i.e., haplogroups G2a*-P15, I-M258, R1b1b-M269, and T-M184) were detected at commensurate levels in Haiti (20.3%) and Jamaica (18.9%), whereas Y-haplogroups indicative of Chinese [O-M175 (3.8%)] and Indian [H-M69 (0.6%) and L-M20 (0.6%)] ancestry were restricted to Jamaica.  相似文献   

12.
The Himalayas as a directional barrier to gene flow   总被引:1,自引:0,他引:1       下载免费PDF全文
High-resolution Y-chromosome haplogroup analyses coupled with Y-short tandem repeat (STR) haplotypes were used to (1) investigate the genetic affinities of three populations from Nepal--including Newar, Tamang, and people from cosmopolitan Kathmandu (referred to as "Kathmandu" subsequently)--as well as a collection from Tibet and (2) evaluate whether the Himalayan mountain range represents a geographic barrier for gene flow between the Tibetan plateau and the South Asian subcontinent. The results suggest that the Tibetans and Nepalese are in part descendants of Tibeto-Burman-speaking groups originating from Northeast Asia. All four populations are represented predominantly by haplogroup O3a5-M134-derived chromosomes, whose Y-STR-based age (+/-SE) was estimated at 8.1+/-2.9 thousand years ago (KYA), more recent than its Southeast Asian counterpart. The most pronounced difference between the two regions is reflected in the opposing high-frequency distributions of haplogroups D in Tibet and R in Nepal. With the exception of Tamang, both Newar and Kathmandu exhibit considerable similarities to the Indian Y-haplogroup distribution, particularly in their haplogroup R and H composition. These results indicate gene flow from the Indian subcontinent and, in the case of haplogroup R, from Eurasia as well, a conclusion that is also supported by the admixture analysis. In contrast, whereas haplogroup D is completely absent in Nepal, it accounts for 50.6% of the Tibetan Y-chromosome gene pool. Coalescent analyses suggest that the expansion of haplogroup D derivatives--namely, D1-M15 and D3-P47 in Tibet--involved two different demographic events (5.1+/-1.8 and 11.3+/-3.7 KYA, respectively) that are more recent than those of D2-M55 representatives common in Japan. Low frequencies, relative to Nepal, of haplogroup J and R lineages in Tibet are also consistent with restricted gene flow from the subcontinent. Yet the presence of haplogroup O3a5-M134 representatives in Nepal indicates that the Himalayas have been permeable to dispersals from the east. These genetic patterns suggest that this cordillera has been a biased bidirectional barrier.  相似文献   

13.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024–16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uighur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplotypes with the Central Asian ethnic groups and Mongols. Comparisons with modern Paleoasian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable Paleoasian contribution to the modern Yakut gene pool.  相似文献   

14.
The compositions and frequencies of Y-chromosome haplogroups identified by genotyping 23 biallelic loci of its nonrecombining region (YAP, 92R7, DYF155S2, 12f2, Tat, M9, M17, M25, M89, M124, M130, M170, M172, M174, M173, M178, M201, M207, M242, M269, P21, P25, and P37) have been determined in a sample of 68 Belarussians. Eleven haplogroups have been found in the Belarussian gene pool (E, F*, G, I, I1b, J2, N3a*, Q*, R1*, R1a1, and R1b3). Haplogroup R1a1 is the most frequent; it includes 46% of all Y chromosomes in this sample. The frequencies of haplogroups I1b and I are 17.6 and 7.3%, respectively. Haplogroup N3a* is the next in frequency. The frequencies of haplogroups E, J2, and R1b3 are 4.4% each; that of R1* is 3%; and those of F*, G, and Q* are 1.5% each.__________Translated from Genetika, Vol. 41, No. 8, 2005, pp. 1132–1136.Original Russian Text Copyright © 2005 by Kharkov, Stepanov, Feshchenko, Borinskaya, Yankovsky, Puzyrev.  相似文献   

15.
Aim We analysed the population genetics of the brown hare (Lepus europaeus) in order to test the hypothesis that this species migrated into central Europe from a number of late glacial refugia, including some in Asia Minor. Location Thirty‐three localities in Greece, Bulgaria, Italy, Croatia, Serbia, Poland, Switzerland, Austria, France, Germany, the Netherlands, Spain, the United Kingdom, Turkey and Israel. Methods In total, 926 brown hares were analysed for mitochondrial DNA (mtDNA) variation by restriction fragment length polymorphism (RFLP) performed on polymerase chain reaction‐amplified products spanning cytochrome b (cyt b)/control region (CR), cytochrome oxidase I (COI) and 12S–16S rRNA. In addition, sequence analysis of the mtDNA CR‐I region was performed on 69 individuals, and the data were compared with 137 mtDNA CR‐I sequences retrieved from GenBank. Results The 112 haplotypes detected were partitioned into five phylogeographically well‐defined major haplogroups, namely the ‘south‐eastern European type haplogroup’ (SEEh), ‘Anatolian/Middle Eastern type haplogroup’ (AMh), ‘European type haplogroup, subgroup A’ (EUh‐A), ‘European type haplogroup, subgroup B’ (EUh‐B) and ‘Intermediate haplogroup’ (INTERh). Sequence data retrieved from GenBank were consistent with the haplogroups determined in this study. In Bulgaria and north‐eastern Greece numerous haplotypes of all five haplogroups were present, forming a large overlap zone. Main conclusions The mtDNA results allow us to infer post‐glacial colonization of large parts of Europe from a late glacial/early Holocene source population in the central or south‐central Balkans. The presence of Anatolian/Middle Eastern haplotypes in the large overlap zone in Bulgaria and north‐eastern Greece reveals gene flow from Anatolia to Europe across the late Pleistocene Bosporus land‐bridge. Although various restocking operations could be partly responsible for the presence of unexpected haplotypes in certain areas, we nevertheless trace a strong phylogeographic signal throughout all regions under study. Throughout Europe, mtDNA results indicate that brown hares are not separated into discernable phyletic groups.  相似文献   

16.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024-16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to a common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uigur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplogroups with the Central Asian ethnic groups and Mongols. Comparisons with modern paleo-Asian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable paleo-Asian contribution to the modern Yakut gene pool.  相似文献   

17.
One of the primary unanswered questions regarding the dispersal of Romani populations concerns the geographical region and/or the Indian caste/tribe that gave rise to the proto-Romani group. To shed light on this matter, 161 Y-chromosomes from Roma, residing in two different provinces of Serbia, were analyzed. Our results indicate that the paternal gene pool of both groups is shaped by several strata, the most prominent of which, H1-M52, comprises almost half of each collection's patrilineages. The high frequency of M52 chromosomes in the two Roma populations examined may suggest that they descend from a single founder that has its origins in the Indian subcontinent. Moreover, when the Y-STR profiles of haplogroup H derived individuals in our Roma populations were compared to those typed in the South Indian emigrants from Malaysia and groups from Madras, Karnataka (Lingayat and Vokkaliga castes) and tribal Soligas, sharing of the two most common haplotypes was observed. These similarities suggest that South India may have been one of the contributors to the proto-Romanis. European genetic signatures (i.e., haplogroups E1b1b1a1b-V13, G2a-P15, I-M258, J2-M172 and R1-M173), on the other hand, were also detected in both groups, but at varying frequencies. The divergent European genetic signals in each collection are likely the result of differential gene flow and/or admixture with the European host populations but may also be attributed to dissimilar endogamous practices following the initial founder effect. Our data also support the notion that a number of haplogroups including G2a-P15, J2a3b-M67(xM92), I-M258 and E1b1b1-M35 were incorporated into the proto-Romani paternal lineages as migrants moved from northern India through Southwestern Asia, the Middle East and/or Anatolia into the Balkans.  相似文献   

18.
Y-chromosomal haplogroups composition and frequencies were analyzed in Northern and Southern Altaians. In the gene pool of Altaians a total of 18 Y-chromosomal haplogroups were identified, including C3xM77, C3c, DxM15, E, F*, J2, I1a, I1b, K*, N*, N2, N3a, O3, P*, Q*, R1*, R1a1, and R1b3. The structuring nature of the Altaic gene pool is determined by the presence of the Caucasoid and Mongoloid components, along with the ancient genetic substratum, marked by the corresponding Western and Eastern Eurasian haplogroups. Haplogroup R1a1 prevailed in both ethnic groups, accounting for about 53 and 38% of paternal lineages in Southern and Northern Altaians, respectively. This haplogroup is thought to be associated with the eastward expansion of early Indo-Europeans, and marks Caucasoid element in the gene pools of South Siberian populations. Similarly to haplogroup K*, the second frequent haplogroup Q* represents paleo-Asiatic marker, probably associated with the Ket and Samoyedic contributions to the Altaic gene pool. The presence of lineages N2 and N3a can be explained as the contribution of Finno-Ugric tribes, assimilated by ancient Turks. The presence of haplogroups C3xM77, C3c, N*, and O3 reflects the contribution of Central Asian Mongoloid groups. These haplogroups, probably, mark the latest movements of Mongolian migrants from the territory of contemporary Tuva and Mongolia. The data of factor analysis, variance analysis, cluster analysis, and phylogenetic analysis point to substantial genetic differentiation of Northern and Southern Altaians. The differences between Northern and Southern Altaians in the haplogroup composition, as well as in the internal haplotype structure were demonstrated.  相似文献   

19.
Y-chromosomal haplogroups composition and frequencies were analyzed in Northern and Southern Altaians. In the gene pool of Altaians a total of 18 Y-chromosomal haplogroups were identified, including C3xM77, C3c, DxM15, E, F*, J2, I1a, I1b, K*, N*, N2, N3a, O3, P*, Q*, R1*, R1a1, and R1b3. The structured nature of the Altaic gene pool is determined by the presence of the Caucasoid and Mongoloid components, along with the ancient genetic substratum, marked by the corresponding Western and Eastern Eurasian haplogroups. Haplogroup R1a1 prevailed in both ethnic groups, accounting for about 53 and 38% of paternal lineages in Southern and Northern Altaians, respectively. This haplogroup is thought to be associated with the eastward expansion of early Indo-Europeans, and marks Caucasoid element in the gene pools of South Siberian populations. Similarly to haplogroup K*, the second frequent haplogroup Q* represents paleo-Asiatic marker, probably associated with the Ket and Samoyedic contributions to the Altaic gene pool. The presence of lineages N2 and N3a can be explained as the contribution of Finno--Ugric tribes, assimilated by ancient Turks. The presence of haplogroups C3xM77, C3c, N*, and 03 reflects the contribution of Central Asian Mongoloid groups. These haplogroups, probably, mark the latest movements of Mongolian migrants from the territory of contemporary Tuva and Mongolia. The data of factor analysis, variance analysis, cluster analysis, and phylogenetic analysis point to substantial genetic differentiation of Northern and Southern Altaians. The differences between Northern and Southern Altaians in the haplogroup composition, as well as in the internal haplotype structure were demonstrated.  相似文献   

20.
The Bayash are a branch of Romanian speaking Roma living dispersedly in Central, Eastern, and Southeastern Europe. To better understand the molecular architecture and origin of the Croatian Bayash paternal gene pool, 151 Bayash Y chromosomes were analyzed for 16 SNPs and 17 STRs and compared with European Romani and non-Romani majority populations from Europe, Turkey, and South Asia. Two main layers of Bayash paternal gene pool were identified: ancestral (Indian) and recent (European). The reduced diversity and expansion signals of H1a patrilineages imply descent from closely related paternal ancestors who could have settled in the Indian subcontinent, possibly as early as between the eighth and tenth centuries AD. The recent layer of the Bayash paternal pool is dominated by a specific subset of E1b1b1a lineages that are not found in the Balkan majority populations. At least two private mutational events occurred in the Bayash during their migrations from the southern Balkans toward Romania. Additional admixture, evident in the low frequencies of typical European haplogroups, J2, R1a, I1, R1b1b2, G, and I2a, took place primarily during the early Bayash settlement in the Balkans and the Romani bondage in Romania. Our results indicate two phenomena in the Bayash and analyzed Roma: a significant preservation of ancestral H1a haplotypes as a result of considerable, but variable level of endogamy and isolation and differential distribution of less frequent, but typical European lineages due to different patterns of the early demographic history in Europe marked by differential admixture and genetic drift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号