首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Sendai virus grown in L cells (L Sendai) caused little hemolysis, whereas the one grown in fertile eggs (egg Sendai) induced distinct hemolysis. Enzymatic treatment with trypsin at low concentrations markedly enhanced the hemolytic activity of L Sendai but not that of egg Sendai. Both sonic treatment and freezing and thawing greatly enhanced the hemolytic activity of egg Sendai, but they gave little enhancing effect on that of L Sendai which could, however, be greatly increased by successive treatment with trypsin. Dose response and kinetic experiments on the trypsin effect have suggested that a similarity exists in the inhibitory mechanism of infectivity for L cells and hemolytic activity of L Sendai. Treatment of L cells with trypsin at later stages of infection released a highly hemolytic L Sendai from those cells. The present study, by reference to the density centrifugation studies in a previous report (4), has shown that a variation in infectivity for L cells and in the hemolytic activity of L Sendai is a type of host-controlled modification distinguishable from the density variation.  相似文献   

2.
Saponins are a class of compounds containing a triterpenoid or steroid core with some attached carbohydrate modules. Many saponins cause hemolysis. However, the hemolytic mechanism of saponins at the molecular level is not yet fully understood. In an attempt to explore this issue, we have studied dioscin—a saponin with high hemolytic activity—through extensive molecular dynamics (MD) simulations. Firstly, all-atom MD simulations of 8 ns duration were conducted to study the stability of the dioscin–cholesterol complex and the cholesterol–cholesterol complex in water and in decane, respectively. MM-GB/SA computations indicate that the dioscin–cholesterol complex is energetically more favorable than the cholesterol–cholesterol complex in a non-polar environment. Next, several coarse-grained MD simulations of 400 ns duration were conducted to directly observe the distribution of multiple dioscin molecules on a DPPC-POPC-PSM-CHOL lipid bilayer. Our results indicate that dioscin can penetrate into the lipid bilayer, accumulate in the lipid raft micro-domain, and then bind cholesterol. This leads to the destabilization of lipid raft and consequent membrane curvature, which may eventually result in the hemolysis of red cells. This possible mechanism of hemolysis can well explain some experimental observations on hemolysis.  相似文献   

3.
A suspension ofPlasmodium berghei obtained by lysis with saponin of red blood cells from an infected rat showed high hemolytic activity, when incubatedin vitro with normal rat red blood cells. The hemolysis was a temperature-dependent process and was dependent on the concentration of the parasite. Plasma ofPlasmodium berghei infected albino rats also possessed lytic activity.  相似文献   

4.
A study has been made of the kinetics of lysis induced by various hemolytic agents. The course of bemolysis was followed by mixing lysin with washed human erythrocytes, removing samples from the mixture, and estimating colorimetrically the hemoglobin in the supernatant fluid of the centrifuged samples. Most of the curves (but not all of them, e.g. tyrocidine) obtained by plotting degree of hemolysis against time, were S-shaped. The initiation of lysis by streptolysin S'' was delayed, and in this property, streptolysin S'' was similar to Cl. septicum hemolysin. None of the other lysins studied exhibited a long latent period preceding lysis. The maximum rate of hemoglobin liberation was found, in the range of lysin concentrations studied, to be a linear function of concentration when theta toxin of Cl. welchii, pneumolysin, tetanolysin, or streptolysin S'' was the lytic agent. With comparable concentrations of saponin, sodium taurocholate, cetyl pyridinium chloride, tyrocidine, duponol C, lecithin-atrox venom mixture, or streptolysin O, the relation between rate and concentration was non-linear. The critical thermal increment associated with hemolysis was determined for systems containing pneumolysin, theta toxin, streptolysin S'', streptolysin O, tetanolysin, and saponin. The findings concerning the effect of concentration and temperature on the rate of hemolysis provide a basis for classifying hemolytic agents (Tables I and II). Hemolysis induced by Cl. septicum hemolysin was found to be preceded by two phases: a phase of alteration of the erythrocytes and a phase involving swelling. Antihemolytic serum inhibited the first but not the second phase while sucrose inhibited the second but not the first phase.  相似文献   

5.
Hemolysis induced by antimicrobial polymers was examined to gain an understanding of the mechanism of polymer toxicity to human cells. A series of cationic amphiphilic methacrylate random copolymers containing primary ammonium groups as the cationic functionality and either butyl or methyl groups as hydrophobic side chains have been prepared by radical copolymerization. Polymers with 0-47 mol % methyl groups in the side chains, relative to the total number of monomeric units, showed antimicrobial activity but no hemolysis. The polymers with 65 mol % methyl groups or 27 mol % butyl groups displayed both antimicrobial and hemolytic activity. These polymers induced leakage of the fluorescent dye calcein trapped in human red blood cells (RBCs), exhibiting the same dose-response curves as for hemoglobin leakage. The percentage of disappeared RBCs after hemolysis increased in direct proportion to the hemolysis percentage, indicating complete release of hemoglobin from fractions of RBCs (all-or-none leakage) rather than partial release from all cells (graded leakage). An osmoprotection assay using poly(ethylene glycol)s (PEGs) as osmolytes indicated that the PEGs with MW > 600 provided protection against hemolysis while low molecular weight PEGs and sucrose had no significant effect on the hemolytic activity of polymers. Accordingly, we propose the mechanism of polymer-induced hemolysis is that the polymers produce nanosized pores in the cell membranes of RBCs, causing an influx of small solutes into the cells and leading to colloid-osmotic lysis.  相似文献   

6.
7.
The effects of monopalmitoylphosphatidylcholine (MPPC or lysophosphatidylcholine) and a series of short-chain primary alcohols (ethanol, 1-butanol and 1-hexanol) on cell shape, hemolysis, viscoelastic properties and membrane lipid packing of human red blood cells (RBCs) were studied. For MPPC, the effective membrane concentration to induce the formation of stage 3 echinocytes (8 x 10(6) molecules per cell) was one order of magnitude lower than that needed to induce 50% hemolysis (7 x 10(7) molecules per cell). In contrast, short-chain alcohols induced both shape changes and hemolysis within close concentration range (2.5 x 10(8) to 3.5 x 10(8) molecules per cell). Viscoelastic properties of the RBCs were studied by micropipette aspiration and correlated with shape change. Ethanol-treated RBCs showed a decrease in membrane elastic modulus and an increase in membrane viscosity in the recovery phase at the early stage of shape change. MPPC-treated cells showed the same type of viscoelastic changes, but these were not observed until the formation of stage 2 echinocytes. High-resolution solid-state 13C nuclear magnetic resonance technique was applied to study membrane lipid packing in the ghost membrane by following the chemical shift of hydrocarbon chains. Both MPPC and ethanol caused the 13C-NMR chemical shift to move upfield, indicating that membrane lipids were expanded due to the intercalation of these exogenous molecules. Using data obtained from model compounds, we convert values of chemical shift into a lipid packing parameter, i.e., number of gauche bonds for fatty acyl hydrocarbon chains. Approximately 10(8) interacting molecules per cell are required to induce a detectable change of lipid packing by both MPPC and ethanol. The results indicate that homolysis occurs at a smaller surface area for MPPC- than ethanol-treated RBCs. Our findings suggest that progressive changes in the molecular packing in the membrane lead eventually to hemolysis, but the mode responsible for shape transformation varies with these amphipaths.  相似文献   

8.
Bovine erythrocytes were treated with each of three bacterial phospholipases C; phosphatidylcholine-hydrolyzing phospholipase C (PCase) of Clostridium perfringens, sphingomyelinase C (SMase) of Bacillus cereus and phosphatidylinositol-specific phospholipase C (PIase) of Bacillus thuringiensis. An increase in osmotic fragility was detected by means of a coil planet centrifugation (CPC) apparatus (Biomedical Systems Co., Tokyo) after the treatment with these enzymes. The peak of hemolysis normally observed in the untreated erythrocytes at the range between 50 and 100 mOsM shifted to 160 to 200 mOsM with the progress of sphingomyelin hydrolysis by phospholipase C of C. perfringens. Sphingomyelinase C of B. cereus showed two different effects on bovine erythrocytes: In the absence of divalent cations or in the presence of Ca2+ alone, the peak of hemolysis shifted to the region from 130 to 160 mOsM, without appreciable hydrolysis of sphingomyelin, while in the presence of Mg2+ or Mg2+ plus Ca2+, the peak of hemolysis further shifted to the region from 160 to 200 mOsM with the hydrolysis of sphingomyelin. Abrupt shift in osmotic fragility to a much higher region around 250 mOsM was produced by treatment with increasing amounts of phosphatidylinositol-specific phospholipase C. In this case, a significant amount of acetylcholinesterase was released from the erythrocyte membrane without hot or hot-cold hemolysis. The mechanism of alteration of osmotic fragility of bovine erythrocytes by treatment with phospholipases C seems to differ from case to case, depending upon the specific action of each enzyme toward the membrane phospholipids.  相似文献   

9.
Brown spider venom phospholipase-D belongs to a family of toxins characterized as potent bioactive agents. These toxins have been involved in numerous aspects of cell pathophysiology including inflammatory response, platelet aggregation, endothelial cell hyperactivation, renal disorders, and hemolysis. The molecular mechanism by which these toxins cause hemolysis is under investigation; literature data have suggested that enzyme catalysis is necessary for the biological activities triggered by the toxin. However, the way by which phospholipase-D activity is directly related with human hemolysis has not been determined. To evaluate how brown spider venom phospholipase-D activity causes hemolysis, we examined the impact of recombinant phospholipase-D on human red blood cells. Using six different purified recombinant phospholipase-D molecules obtained from a cDNA venom gland library, we demonstrated that there is a correlation of hemolytic effect and phospholipase-D activity. Studying recombinant phospholipase-D, a potent hemolytic and phospholipase-D recombinant toxin (LiRecDT1), we determined that the toxin degrades synthetic sphingomyelin (SM), lysophosphatidylcholine (LPC), and lyso-platelet-activating factor. Additionally, we determined that the toxin degrades phospholipids in a detergent extract of human erythrocytes, as well as phospholipids from ghosts of human red blood cells. The products of the degradation of synthetic SM and LPC following recombinant phospholipase-D treatments caused hemolysis of human erythrocytes. This hemolysis, dependent on products of metabolism of phospholipids, is also dependent on calcium ion concentration because the percentage of hemolysis increased with an increase in the dose of calcium in the medium. Recombinant phospholipase-D treatment of human erythrocytes stimulated an influx of calcium into the cells that was detected by a calcium-sensitive fluorescent probe (Fluo-4). This calcium influx was shown to be channel-mediated rather than leak-promoted because the influx was inhibited by L-type calcium channel inhibitors but not by a T-type calcium channel blocker, sodium channel inhibitor or a specific inhibitor of calcium activated potassium channels. Finally, this inhibition of hemolysis following recombinant phospholipase-D treatment occurred in a concentration-dependent manner in the presence of L-type calcium channel blockers such as nifedipine and verapamil. The data provided herein, suggest that the brown spider venom phospholipase-D-induced hemolysis of human erythrocytes is dependent on the metabolism of membrane phospholipids, such as SM and LPC, generating bioactive products that stimulate a calcium influx into red blood cells mediated by the L-type channel.  相似文献   

10.
The mechanism of action on rabbit red cells of Treponema hyodysenteriae hemolysin was studied using volume analysis and release of hemoglobin. While fixation of the hemolysin on the erythrocytes is temperature independent, it appears that hemolysis is temperature dependent. The kinetics of hemolysis proceed according to a sigmoid curve characterized by a prelytic lag. The duration of the prelytic lag varies inversely with the quantity of hemolysin but the rate and the maximum value of hemolysis are directly proportional to the quantity of hemolysin. The effect of sucrose and trypan blue on the hemolysin and the red cells suggest that erythrocyte lysis is likely to be induced by the hemolysin in a way different from that known for other hemolytic agents.  相似文献   

11.
1. The time-dilution curves are given for the hemolytic action of saponin, sodium taurocholate, and sodium oleate on nucleated chicken erythrocytes. 2. Saponin and sodium taurocholate cause hemolysis but leave the nuclei and ghosts in suspension, thereby making the end-point of hemolysis more arbitrary than the clear end-point for non-nucleated cell hemolysis. 3. The curves of hemolysis by saponin and taurocholate are shown to be of the same nature as are found in the hemolysis of non-nucleated cells. 4. Sodium oleate causes first hemolysis and then, in the stronger solutions, causes karyolysis. Two pairs of values for κ and c = ∞ are thus obtainable for the same reaction, one pair for the destruction of corpuscular membrane, the other pair for the destruction of the nucleus. 5. Viscosity changes are found in the lysin-cell system with strong concentrations of sodium taurocholate and sodium oleate. Time-viscosity curves are given for these changes. 6. Microscopically, the action of these lysins on the nucleated chicken red cell appears to be similar to their action on the non-nucleated erythrocytes.  相似文献   

12.
A magnetostriction oscillator has been used for determining the relative fragility of human red cells to 9000 cycle vibrations under some different environmental conditions. The destruction of the cells is a logarithmic function of time according to the equation See PDF for Equation. Hypertonic saline solution, saponin, preheating, alcohol, and ether in subhemolytic concentrations decrease the fragility of human red cells subjected to sonic oscillation. Hypotonic saline, preheating to 50°C. for 3 minutes, and hemolytic concentrations of ether increase the fragility of red cells to 9 kc. vibrations. Following preheating of the cells, and in the presence of saponin the destruction deviates slightly from a true logarithmic rate of hemolysis.  相似文献   

13.
Mast cells of peritoneal and pleural fluid of albino rats were separated by a modified coil planet centrifuge. This apparatus was composed of a double rotating system and utilized the steady flow of medium (acid-citrate-dextrose solution with 15% rat serum) through a coiled Teflon tube (0.66 mm × 10 m) in a weak centrifugal field (40 g). This system prevented cell adhesion and aggregation during centrifugation. Mast cells were separated from the other cells by densities and size. A final purity of 97.2 ± 1.0% was achieved reproducibly with reasonable yield. Morphological and chemical examination indicated little change in the mast cells after separation; separated mast cells were able to undergo granule discharge and histamine release.  相似文献   

14.
The hemolysis of erythrocytes from certain inbred mouse strains (e.g., BALB/c) in response to hydrogen peroxide stress has been shown to be correlated with the type of hemoglobin beta chain (Kruckeberg, W.C., et al. (1987) Blood 70, 909-914). The characteristic hemolytic response of BALB/c red cells to oxidative stress resembles that of human red cells in that carbon monoxide and iron chelators inhibit hemolysis of both. Gross hemoglobin oxidation rates were similar in hemolytic (BALB/c) and nonhemolytic (C57BL/6) strains. The rate and degree of in vitro catalase inhibition by sodium azide was also the same for the two strains. Even in the presence of this catalase inhibitor the assayable hydrogen peroxide disappeared within seconds of its addition, yet hemolysis was not observed for about 15 min. The mechanism underlying this delay between hydrogen peroxide addition and disappearance and subsequent hemolysis is under investigation.  相似文献   

15.
Tamoxifen (TAM), the antiestrogenic drug most widely prescribed in the chemotherapy of breast cancer, induces changes in normal discoid shape of erythrocytes and hemolytic anemia. This work evaluates the effects of TAM on isolated human erythrocytes, attempting to identify the underlying mechanisms on TAM-induced hemolytic anemia and the involvement of biomembranes in its cytostatic action mechanisms. TAM induces hemolysis of erythrocytes as a function of concentration. The extension of hemolysis is variable with erythrocyte samples, but 12.5 microM TAM induces total hemolysis of all tested suspensions. Despite inducing extensive erythrocyte lysis, TAM does not shift the osmotic fragility curves of erythrocytes. The hemolytic effect of TAM is prevented by low concentrations of alpha-tocopherol (alpha-T) and alpha-tocopherol acetate (alpha-TAc) (inactivated functional hydroxyl) indicating that TAM-induced hemolysis is not related to oxidative membrane damage. This was further evidenced by absence of oxygen consumption and hemoglobin oxidation both determined in parallel with TAM-induced hemolysis. Furthermore, it was observed that TAM inhibits the peroxidation of human erythrocytes induced by AAPH, thus ruling out TAM-induced cell oxidative stress. Hemolysis caused by TAM was not preceded by the leakage of K(+) from the cells, also excluding a colloid-osmotic type mechanism of hemolysis, according to the effects on osmotic fragility curves. However, TAM induces release of peripheral proteins of membrane-cytoskeleton and cytosol proteins essentially bound to band 3. Either alpha-T or alpha-TAc increases membrane packing and prevents TAM partition into model membranes. These effects suggest that the protection from hemolysis by tocopherols is related to a decreased TAM incorporation in condensed membranes and the structural damage of the erythrocyte membrane is consequently avoided. Therefore, TAM-induced hemolysis results from a structural perturbation of red cell membrane, leading to changes in the framework of the erythrocyte membrane and its cytoskeleton caused by its high partition in the membrane. These defects explain the abnormal erythrocyte shape and decreased mechanical stability promoted by TAM, resulting in hemolytic anemia. Additionally, since membrane leakage is a final stage of cytotoxicity, the disruption of the structural characteristics of biomembranes by TAM may contribute to the multiple mechanisms of its anticancer action.  相似文献   

16.
1. The effects of a series of aliphatic alcohols (methanol to octanol) on membrane proteins of erythrocytes were studied by monitoring the flueorescence of a dye (1-anilino-8-naphthalenesulfonic acid (ANS)) that adsorbs to erythrocyte ghost membranes. Low concentrations of all the alcohols reduced the ANS fluorescence of the membrane-ANS suspensions; lent to those which protect against hypotonic hemolysis on intact erythrocytes; higher concentrations markedly increased the fluorescence. Ethanol and methanol decreased ANS fluorescence at all concentrations. 2. Lytic concentrations of saponin did not increase ANS fluorescence and did not modify the membrane action of the alcohols. 3. None of these effects were observed in liposomes prepared from lipid extracts of the erythrocyte membrane. 4. Since the apparent dissociation constant for the ANS-membrane interaction was unchanged in the presence of the alcohols, it was assumed that the fluorescence changes anesthetic concentration of the alcohols alter the conformation of membrane proteins, as indicated by the decreased number of ANS binding sites.  相似文献   

17.
The effect of antioxidants alpha-tocopherol and ionol on membranes of human red cells and bilayer lipid membrane (BLM) from azolektin has been studied. Ionol at concentration 4-10 mM induces the hemolysis of erythrocytes, the cells form changes are observed at concentration 2 mM alpha-tocopherol doesn't show the hemolytic properties at concentration 23 mM. The ionol concentration 1 mM doesn't change the form of the cells, but influence the passive electric parameters: the capacity (Cs) of erythrocytic membrane increases and the intracellular conductance (chi i) decreases. Tocopherol (3 mM) induces the decrease both Cs and chi i. The fast increase of membrane conductance is almost immediately registered on one side of BLM at addition of ionol (0,2-0,4 g/ml). Phosphatidylionol synthesized from ionol and contining the acyl chains C15H31 and C17H35 doesn't influence the electrical properties of BLM.  相似文献   

18.
The hemolytic effect of glyceryl guiacolate ether (GGF) with and without chloromazine (CPZ) was studied in vitro on rat, dog and human blood. The lowest concentration of GGE which could produce hemolysis of rat red cells was 0.15 M. The time fpr 50% hemolysis (TH50) of blood depended upon the concentration of drug and dilution of blood. A higher concentration of GGE hemolyzed blood much faster than the lower. There was a progressive increase in the TH50 when 0.15 M GGF was tested on blood samples containing increasing numbers of red cells. CPZ in all cases had its own hemolytic effect at higher concentrations. In this regard rat blood was 10 times more sensitive than dog, and human. A striking potentiating effect of CPZ was observed on the hemolytic effect of GGE. The magnitude of potentiation in all cases was directly related to the concentrations of CPZ. Dog blood was found relatively more sensitive to the hemolytic effect of the combination of CPZ and GGE as compared to the rat and human, which acted alike.  相似文献   

19.
The hemolytic activity of a collection of 63 steroid saponins was determined. The correlations between these structures and their hemolytic and cytotoxic activities are discussed. It has been demonstrated that the hemolytic activity of steroid saponins is highly dependent on their structures, that is, the sugar length, the sugar linkage, the substitutes on the sugar, as well as the aglycone. It has also been disclosed that the hemolytic activity and cytotoxicity of steroid saponins are not correlated. These results suggest that steroid saponins execute hemolysis and cytotoxic activity in different mechanisms, and encourage to develop steroid saponins into potent antitumor agents devoid of the detrimental effect of hemolysis.  相似文献   

20.
Galectins are β-galactoside binding lectins with a potential hemolytic role on erythrocyte membrane integrity and permeability. In the present study, goat heart galectin-1 (GHG-1) was purified and investigated for its hemolytic actions on erythrocyte membrane. When exposed to various saccharides, lactose and sucrose provided maximum protection against hemolysis, while glucose and galactose provided lesser protection against hemolysis. GHG-1 agglutinated erythrocytes were found to be significantly hemolyzed in comparison with unagglutinated erythrocytes. A concentration dependent rise in the hemolysis of trypsinized rabbit erythrocytes was observed in the presence of GHG-1. Similarly, a temperature dependent gradual increase in percent hemolysis was observed in GHG-1 agglutinated erythrocytes as compared to negligible hemolysis in unagglutinated cells. The hemolysis of GHG-1 treated erythrocytes showed a sharp rise with the increasing pH up to 7.5 which became constant till pH 9.5. The extent of erythrocyte hemolysis increased with the increase in the incubation period, with maximum hemolysis after 5 h of incubation. The results of this study establish the ability of galectins as a potential hemolytic agent of erythrocyte membrane, which in turn opens an interesting avenue in the field of proteomics and glycobiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号