首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Do brassinosteroids mediate the water stress response?   总被引:1,自引:0,他引:1  
Brassinosteroids (BRs) have been suggested to increase the resistance of plants to a variety of stresses, including water stress. This is based on application studies, where exogenously applied bioactive BRs have been shown to improve various aspects of plant growth under water stress conditions. However, it is not known whether changes in endogenous BR levels are normally involved in mediating the plant's response to stress. We have utilized BR mutants in pea ( Pisum sativum L.) to determine whether changes in endogenous BR levels are part of the plant's response to water stress and whether low endogenous BR levels alter the plant's ability to cope with water stress. In wild-type (WT) plants, we show that while water stress causes a significant increase in ABA levels, it does not result in altered BR levels in either apical, internode or leaf tissue. Furthermore, the plant's ability to increase ABA levels in response to water stress is not affected by BR deficiency, as there was no significant difference in ABA levels between WT, lkb (a BR-deficient mutant) and lka (a BR-perception mutant) plants before or 14 days after the cessation of watering. In addition, the effect of water stress on traits such as height, leaf size and water potential in lkb and lka was similar to that observed in WT plants. Therefore, it appears that, at least in pea, changes in endogenous BR levels are not normally part of the plant's response to water stress.  相似文献   

2.
3.
U373-MG response to interleukin-1β-induced oxidative stress   总被引:2,自引:0,他引:2  
Oxidative stress has been involved in various neurological disorders and, in the central nervous system, astrocytes represent the cell type that contributes to neuroprotection via glutathione (GSH) metabolism, GSH-metabolizing enzymes like γ-glutamyltransferase (GGT), and apoE secretion. In this study, using IL-1β, a proinflammatory and prooxidant cytokine that is increased in numerous pathological situations, cells of astrocytoma cell line U373-MG were exposed to an oxidative stress, leading to c-Jun and c-Fos activation. IL-1β decreased both GGT activity and intracellular GSH content and increased apoE secretion, initiating astroglial response to injury. We observed that antioxidants inhibit IL-1β effects on c-Jun and c-Fos proteins, GGT activity and the GSH pool but not on apoE secretion. Our results allow us to conclude that neurological disorders associated with an IL-1β-induced oxidative stress could be, at least experimentally, reversible in the presence of one antioxidant, N-acetylcysteine. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
We report that α-tocotrienol quinone (ATQ3) is a metabolite of α-tocotrienol, and that ATQ3 is a potent cellular protectant against oxidative stress and aging. ATQ3 is orally bioavailable, crosses the blood-brain barrier, and has demonstrated clinical response in inherited mitochondrial disease in open label studies. ATQ3 activity is dependent upon reversible 2e-redox-cycling. ATQ3 may represent a broader class of unappreciated dietary-derived phytomolecular redox motifs that digitally encode biochemical data using redox state as a means to sense and transfer information essential for cellular function.  相似文献   

5.

Background

Marine cleaning interactions in which cleaner fish or shrimps remove parasites from visiting 'client' reef fish are a textbook example of mutualism. However, there is yet no conclusive evidence that cleaning organisms significantly improve the health of their clients. We tested the stress response of wild caught individuals of two client species, Chromis dimidiata and Pseudanthias squamipinnis, that had either access to a cleaner wrasse Labroides dimidiatus, or to cleaner shrimps Stenopus hispidus and Periclimenes longicarpus, or no access to cleaning organisms.

Results

For both client species, we found an association between the presence of cleaner organisms and a reduction in the short term stress response of client fish to capture, transport and one hour confinement in small aquaria, as measured with cortisol levels.

Conclusion

It is conceivable that individuals who are more easily stressed than others pay a fitness cost in the long run. Thus, our data suggest that marine cleaning mutualisms are indeed mutualistic. More generally, measures of stress responses or basal levels may provide a useful tool to assess the impact of interspecific interactions on the partner species.  相似文献   

6.
Bacteria respond to physical and chemical stresses that affect the integrity of the cell wall and membrane by activating an intricate cell envelope stress response. The ability of cells to regulate the biophysical properties of the membrane by adjusting fatty acid composition is known as homeoviscous adaptation. Here, we identify a homeoviscous adaptation mechanism in Bacillus subtilis regulated by the extracytoplasmic function σ factor σ(W). Cell envelope active compounds, including detergents, activate a sense-oriented, σ(W)-dependent promoter within the first gene of the fabHa fabF operon. Activation leads to a decrease in the amount of FabHa coupled with an increase in FabF, the initiation and elongation condensing enzymes of fatty acid biosynthesis respectively. Downregulation of FabHa results in an increased reliance on the FabHb paralogue leading to a greater proportion of straight chain fatty acids in the membrane, and the upregulation of FabF increases the average fatty acid chain length. The net effect is to reduce membrane fluidity. The inactivation of the σ(W)-dependent promoter within fabHa increased sensitivity to detergents and to antimicrobial compounds produced by other Bacillus spp. Thus, the σ(W) stress response provides a mechanism to conditionally decrease membrane fluidity through the opposed regulation of FabHa and FabF.  相似文献   

7.
8.
c-Jun N-terminal kinases (JNKs) are intracellular stress-activated signalling molecules, which are controlled by a highly evolutionarily conserved signalling cascade. In mammalian cells, JNKs are regulated by a wide variety of cellular stresses and growth factors and have been implicated in the regulation of remarkably diverse biological processes, such as cell shape changes, immune responses and apoptosis. How can such different stimuli activate the JNK pathway and what roles does JNK play in vivo? Molecular genetic analysis of the Drosophila JNK gene has started to provide answers to these questions, confirming the role of this molecule in development and stress responses and suggesting a conserved function for JNK signalling in processes such as wound healing. Here, we review this work and discuss how future experiments in Drosophila should reveal the cell type-specific mechanisms by which JNKs perform their diverse functions.  相似文献   

9.
10.
Pyrrole–imidazole polyamides targeted to the androgen response element were cytotoxic in multiple cell lines, independent of intact androgen receptor signaling. Polyamide treatment induced accumulation of S-phase cells and of PCNA replication/repair foci. Activation of a cell cycle checkpoint response was evidenced by autophosphorylation of ATR, the S-phase checkpoint kinase, and by recruitment of ATR and the ATR activators RPA, 9-1-1, and Rad17 to chromatin. Surprisingly, ATR activation was accompanied by only a slight increase in single-stranded DNA, and the ATR targets RPA2 and Chk1, a cell cycle checkpoint kinase, were not phosphorylated. However, ATR activation resulted in phosphorylation of the replicative helicase subunit MCM2, an ATR effector. Polyamide treatment also induced accumulation of monoubiquitinated FANCD2, which is recruited to stalled replication forks and interacts transiently with phospho-MCM2. This suggests that polyamides induce replication stress that ATR can counteract independently of Chk1 and that the FA/BRCA pathway may also be involved in the response to polyamides. In biochemical assays, polyamides inhibit DNA helicases, providing a plausible mechanism for S-phase inhibition.  相似文献   

11.
Lactobacillus salivarius, a probiotic bacterium, encounters acidic conditions in its passage through the gastrointestinal tract of human and animal hosts. We studied the effect of a rapid downshift in extracellular pH from 6.5 to 4 on cell growth. The maximum growth rate was higher in low pH medium with glutathione supplementation than without. Cells developed a GSH-mediated acid-tolerance response and, when grown with 0.5 mM GSH, reached a higher final density than with other conditions. These findings suggest that the increased growth rate is caused by uptake of GSH which acts as a nutrient source as well as having protective functions, allowing for continued growth.  相似文献   

12.
13.
Folate deficiency has been shown to influence carcinogenesis by creating an imbalance in the base excision repair (BER) pathway, affecting BER homeostasis. The inability to mount a BER response to oxidative stress in a folate-deficient environment results in the accumulation of DNA repair intermediates, i.e., DNA strand breaks. Our data indicate that upregulation of β-pol expression in response to oxidative stress is inhibited by folate deficiency at the level of gene expression. Alteration in the expression of β-pol in a folate-deficient environment is not due to epigenetic changes in the core promoter of the β-pol gene, i.e., the CpG islands within the β-pol promoter remain unmethylated in the presence or absence of folate. However, the promoter analysis studies show a differential binding of regulatory factors to the -36 to -7 region (the folic acid-response region, FARR) within the core promoter of β-pol. Moreover, we observe a tight correlation between the level of binding of regulatory factors with the FARR and inhibition of β-pol expression. Based on these findings, we propose that folate deficiency results in an upregulation/stability of negative regulatory factors interacting with FARR, repressing the upregulation of the β-pol gene in response to oxidative stress.  相似文献   

14.
The objective was to evaluate the impact of domestication process on the physiological stress response of cultured Eurasian perch confronted to a chronic stress situation. Briefly, F1 and F4 juveniles were submitted to chronic confinement and investigated on days 5, 15 and 30. Capture and 15min-anesthesia were imposed on fish to assess the effect of preceding confinement on acute stress response. On day 30, the fish were finally challenged with Aeromonas hydrophila and sampled after 5 and 10 days for immune parameter measurements. Cortisol and glucose levels were not affected by confinement but increased significantly after acute stressor exposure. Moreover, cortisol rise following capture and anesthesia was higher in F1 confined-fish, suggesting that they have previously been affected by chronic confinement. A higher HSP70 level was also observed on day 30 in F1 confined-juveniles. During bacterial challenge, regardless of confinement level, F4 juveniles displayed higher lysozyme activity and agglutination response than F1 which may indicate a higher immune capacity in domesticated fish. In conclusion, chronic confinement stressor induced few physiological responses but may increase the responsiveness to other aquacultural stressors. Domestication process also seems to improve chronic stress resistance, growth as well as the immune status of the fish.  相似文献   

15.
Nitric oxide production in tobacco leaf cells: a generalized stress response?   总被引:16,自引:0,他引:16  
The function of nitric oxide (NO), a gaseous free radical emitted by many plants, is incompletely understood. In the present study the hypothesis that NO generation, like that of the reactive oxygen species, occurs as a general response to different environmental cues was tested. Leaf peels and mesophyll cell suspensions of Nicotiana tabacum cv. Xanthi were loaded with the NO‐specific fluorophore, diaminofluorescein, and subjected to an abiotic stressor. Light stress and mechanical injury had no apparent effect on NO production. In contrast, high temperatures, hyperosmotic stress, salinity and epi‐illumination in a microscope all led to rapid surges in NO‐induced fluorescence. The fluorescence originated from cells of the palisade mesophyll and across all epidermal cell types, including guard cells, subsidiary cells, and long and short trichomes. Fluorescence was evident first in the plastids, then in the nucleus and finally throughout the cytosol. Nicotiana plumbaginifolia cell suspensions expressing the calcium reporter aequorin provided evidence that, under hyperosmotic stress, NO participates in the elevation of free Ca2+ in the cytoplasm. The physiological significance of NO production in response to abiotic stressors is discussed.  相似文献   

16.
Mitochondrial dysfunction is well documented in presymptomatic brain tissue with Parkinson’s disease (PD). Identification of the autosomal recessive variant PARK6 caused by loss-of-function mutations in the mitochondrial kinase PINK1 provides an opportunity to dissect pathogenesis. Although PARK6 shows clinical differences to PD, the induction of alpha-synuclein “Lewy” pathology by PINK1-deficiency proves that mitochondrial pathomechanisms are relevant for old-age PD. Mitochondrial dysfunction is induced by PINK1 deficiency even in peripheral tissues unaffected by disease, consistent with the ubiquitous expression of PINK1. It remains unclear whether this dysfunction is due to PINK1-mediated phosphorylation of proteins inside or outside mitochondria. Although PINK1 deficiency affects the mitochondrial fission/fusion balance, cell stress is required in mammals to alter mitochondrial dynamics and provoke apoptosis. Clearance of damaged mitochondria depends on pathways including PINK1 and Parkin and is critical for postmitotic neurons with high energy demand and cumulative stress, providing a mechanistic concept for the tissue specificity of disease.  相似文献   

17.
In addition to high temperature, other stresses and clinical conditions such as cancer and diabetes can lead to the alteration of heat-shock protein (HSP) levels in cells. Moreover, HSPs can associate with either specific lipids or with areas of special membrane topology (such as lipid rafts), and changes in the physical state of cellular membranes can alter hsp gene expression. We propose that membrane microheterogeneity is important for regulating the HSP response. In support of this hypothesis, when particular membrane intercalating compounds are used to alter membrane properties, the simultaneous normalization of dysregulated expression of HSPs causes beneficial responses to disease states. Therefore, these compounds (such as hydroxylamine derivatives) have the potential to become a new class of pharmaceuticals for use in 'membrane-lipid therapy'.  相似文献   

18.
Thirty-six symbiotic associations involving six chickpea cultivars against six rhizobial strains were evaluated for symbiotic performance and responses to osmotic stress applied by mannitol (50 mM) in aerated hydroponic cultures. Analyses in different symbioses were focused on biomass production, nodulation, nitrogen fixation, and their modulation under osmotic stress conditions, as well as expression of nodular antioxidant enzymes. Mesorhizobium ciceri reference (835) and local (CMG6) strains, as well as the local (C11) M. mediterraneum allowed the best symbiotic efficiency for all chickpea cultivars. The osmotic stress induces severe decrease ranging 30–50% in aerial biomass and 50–70% for nitrogen fixation. Nevertheless, plants inoculated with M. ciceri (835) and M. mediterraneum (C11) preserve a relatively high growth (4 g plant−1) with nitrogen-fixing activity (25 μmols h−1 plant−1). The bacterial partner was the most important factor of variance of the analysed parameters in osmotic stress or physiological conditions where it gets to 60–85%. The strains allowing the best competent symbioses were proposed for field assays. Under osmotic stress, nodular peroxidase (POX) and ascorbate peroxidase (APX) activities were significantly enhanced. The increase of POX and APX was inversely correlated with the inhibition of aerial biomass production (= 0.05) and nitrogen-fixing capacity (= 0.01), suggesting a protective role of these enzymes in nodules. Superoxide dismutase (SOD) was also activated in stressed nodules. However, the spectacular decrease in catalase (CAT) activity discounts its involvement in osmotic stress response.  相似文献   

19.
20.
Mitochondria have long been considered to be the powerhouse of the living cell, generating energy in the form of the molecule ATP via the process of oxidative phosphorylation. In the past 20 years, it has been recognised that they also play an important role in the implementation of apoptosis, or programmed cell death. More recently it has become evident that mitochondria also participate in the orchestration of cellular defence responses. At physiological concentrations, the gaseous molecule nitric oxide (NO) inhibits the mitochondrial enzyme cytochrome c oxidase (complex Ⅳ) in competition with oxygen. This interaction underlies the mitochondrial actions of NO, which range from the physiological regulation of cell respiration, through mitochondrial signalling, to the development of “metabolic hypoxia”-a situation in which, although oxygen is available, the cell is unable to utilise it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号