首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
The vacuolar H(+)-ATPase (V-ATPase) along with ion channels and transporters maintains vacuolar pH. V-ATPase ATP hydrolysis is coupled with proton transport and establishes an electrochemical gradient between the cytosol and vacuolar lumen for coupled transport of metabolites. Btn1p, the yeast homolog to human CLN3 that is defective in Batten disease, localizes to the vacuole. We previously reported that Btn1p is required for vacuolar pH maintenance and ATP-dependent vacuolar arginine transport. We report that extracellular pH alters both V-ATPase activity and proton transport into the vacuole of wild-type Saccharomyces cerevisiae. V-ATPase activity is modulated through the assembly and disassembly of the V(0) and V(1) V-ATPase subunits located in the vacuolar membrane and on the cytosolic side of the vacuolar membrane, respectively. V-ATPase assembly is increased in yeast cells grown in high extracellular pH. In addition, at elevated extracellular pH, S. cerevisiae lacking BTN1 (btn1-Delta), have decreased V-ATPase activity while proton transport into the vacuole remains similar to that for wild type. Thus, coupling of V-ATPase activity and proton transport in btn1-Delta is altered. We show that down-regulation of V-ATPase activity compensates the vacuolar pH imbalance for btn1-Delta at early growth phases. We therefore propose that Btn1p is required for tight regulation of vacuolar pH to maintain the vacuolar luminal content and optimal activity of this organelle and that disruption in Btn1p function leads to a modulation of V-ATPase activity to maintain cellular pH homeostasis and vacuolar luminal content.  相似文献   

3.
Like numerous other eukaryotic organelles, the vacuole of the yeast Saccharomyces cerevisiae undergoes coordinated cycles of membrane fission and fusion in the course of the cell cycle and in adaptation to environmental conditions. Organelle fission and fusion processes must be balanced to ensure organelle integrity. Coordination of vacuole fission and fusion depends on the interactions of vacuolar SNARE proteins and the dynamin-like GTPase Vps1p. Here, we identify a novel factor that impinges on the fusion-fission equilibrium: the vacuolar H(+)-ATPase (V-ATPase) performs two distinct roles in vacuole fission and fusion. Fusion requires the physical presence of the membrane sector of the vacuolar H(+)-ATPase sector, but not its pump activity. Vacuole fission, in contrast, depends on proton translocation by the V-ATPase. Eliminating proton pumping by the V-ATPase either pharmacologically or by conditional or constitutive V-ATPase mutations blocked salt-induced vacuole fragmentation in vivo. In living cells, fission defects are epistatic to fusion defects. Therefore, mutants lacking the V-ATPase display large single vacuoles instead of multiple smaller vacuoles, the phenotype that is generally seen in mutants having defects only in vacuolar fusion. Its dual involvement in vacuole fission and fusion suggests the V-ATPase as a potential regulator of vacuolar morphology and membrane dynamics.  相似文献   

4.
Arabidopsis thaliana vacuolar H(+)-translocating pyrophosphatase (V-PPase) was expressed functionally in yeast vacuoles with endogenous vacuolar H(+)-ATPase (V-ATPase), and the regulation and reversibility of V-ATPase were studied using these vacuoles. Analysis of electrochemical proton gradient (DeltamuH) formation with ATP and pyrophosphate indicated that the proton transport by V-ATPase or V-PPase is not regulated strictly by the proton chemical gradient (DeltapH). On the other hand, vacuolar membranes may have a regulatory mechanism for maintaining a constant membrane potential (DeltaPsi). Chimeric vacuolar membranes showed ATP synthesis coupled with DeltamuH established by V-PPase. The ATP synthesis was sensitive to bafilomycin A(1) and exhibited two apparent K(m) values for ADP. These results indicate that V-ATPase is a reversible enzyme. The ATP synthesis was not observed in the presence of nigericin, which dissipates DeltapH but not DeltaPsi, suggesting that DeltapH is essential for ATP synthesis.  相似文献   

5.
Vacuolar proton-translocating ATPases (V-ATPases) play a central role in organelle acidification in all eukaryotic cells. To address the role of the yeast V-ATPase in vacuolar and cytosolic pH homeostasis, ratiometric pH-sensitive fluorophores specific for the vacuole or cytosol were introduced into wild-type cells and vma mutants, which lack V-ATPase subunits. Transiently glucose-deprived wild-type cells respond to glucose addition with vacuolar acidification and cytosolic alkalinization, and subsequent addition of K(+) ion increases the pH of both the vacuole and cytosol. In contrast, glucose addition results in an increase in vacuolar pH in both vma mutants and wild-type cells treated with the V-ATPase inhibitor concanamycin A. Cytosolic pH homeostasis is also significantly perturbed in the vma mutants. Even at extracellular pH 5, conditions optimal for their growth, cytosolic pH was much lower, and response to glucose was smaller in the mutants. In plasma membrane fractions from the vma mutants, activity of the plasma membrane proton pump, Pma1p, was 65-75% lower than in fractions from wild-type cells. Immunofluorescence microscopy confirmed decreased levels of plasma membrane Pma1p and increased Pma1p at the vacuole and other compartments in the mutants. Pma1p was not mislocalized in concanamycin-treated cells, but a significant reduction in cytosolic pH under all conditions was still observed. We propose that short-term, V-ATPase activity is essential for both vacuolar acidification in response to glucose metabolism and for efficient cytosolic pH homeostasis, and long-term, V-ATPases are important for stable localization of Pma1p at the plasma membrane.  相似文献   

6.
The intra-luminal acidic pH of endomembrane organelles is established by a proton pump, vacuolar H(+)-ATPase (V-ATPase), in combination with other ion transporter(s). The proton gradient (DeltapH) established in yeast vacuolar vesicles decreased and reached the lower value after the addition of alkaline cations including Na(+). As expected, the uptake of (22)Na(+) was coupled with DeltapH generated by V-ATPase. Disruption of NHX1 or NHA1, encoding known Na(+)/H(+) antiporters, did not result in the loss of (22)Na(+) uptake or the alkaline cation-dependent DeltapH decrease. Upon the addition of sulfate ions, the V-ATPase-dependent DeltapH in the vacuolar vesicles increased, but the membrane potential (DeltaPsi) decreased. Consistent with this observation, radioactive sulfate was transported into the vesicles with a K(m) value of 0.07 mM. The transport activity was unaffected upon disruption of the putative genes coding for homologues of plasma membrane sulfate transporters. These results indicate that the vacuoles exhibit unique Na(+)/H(+) antiport and sulfate transport, which regulate the luminal pH and ion homeostasis in yeast.  相似文献   

7.
The plant vacuolar proton pump can be subjected to reversible redox regulation in vitro. The redox-dependent activity change involves disulfide bridge formation not only in Vatp A, as reported for bovine V-ATPase, but also in the stalk subunit Vatp E. Microsomal membranes isolated from barley leaves were analysed for their activity of bafilomycin-sensitive ATP hydrolysis and proton pumping using quinacrine fluorescence quenching in vesicle preparations. ATP hydrolysis and proton pumping activity were inhibited by H2O2. H2O2-deactivated ATPase was reactivated by cysteine and glutathione. The glutathione concentration needed for half maximal reactivation was 1 mmol l-1. The activity loss was accompanied by shifts in electrophoretic mobility of Vatp A and E which were reversed upon reductive reactivation. The redox-dependent shift was also seen with recombinant Vatp E, and was absent following site-directed mutagenesis of either of the two cys residues conserved throughout all plant Vatp E sequences. V-ATPase was also inhibited by oxidized thioredoxin. These results support the hypothesis that tuning of vacuolar ATPase activity can be mediated by redox control depending on the metabolic requirements.  相似文献   

8.
In yeast cells, subunit a of the vacuolar proton pump (V-ATPase) is encoded by two organelle-specific isoforms, VPH1 and STV1. V-ATPases containing Vph1 and Stv1 localize predominantly to the vacuole and the Golgi apparatus/endosomes, respectively. Ratiometric measurements of vacuolar pH confirm that loss of STV1 has little effect on vacuolar pH. Loss of VPH1 results in vacuolar alkalinization that is even more rapid and pronounced than in vma mutants, which lack all V-ATPase activity. Cytosolic pH responses to glucose addition in the vph1Δ mutant are similar to those in vma mutants. The extended cytosolic acidification in these mutants arises from reduced activity of the plasma membrane proton pump, Pma1p. Pma1p is mislocalized in vma mutants but remains at the plasma membrane in both vph1Δ and stv1Δ mutants, suggesting multiple mechanisms for limiting Pma1 activity when organelle acidification is compromised. pH measurements in early prevacuolar compartments via a pHluorin fusion to the Golgi protein Gef1 demonstrate that pH responses of these compartments parallel cytosolic pH changes. Surprisingly, these compartments remain acidic even in the absence of V-ATPase function, possibly as a result of cytosolic acidification. These results emphasize that loss of a single subunit isoform may have effects far beyond the organelle where it resides.  相似文献   

9.
Vacuolar H(+)-ATPases (V-ATPases) are a family of highly conserved proton pumps that couple hydrolysis of cytosolic ATP to proton transport out of the cytosol. How ATP is supplied for V-ATPase-mediated hydrolysis and for coupling of proton transport is poorly understood. We have reported that the glycolytic enzyme aldolase physically associates with V-ATPase. Here we show that aldolase interacts with three different subunits of V-ATPase (subunits a, B, and E). The binding sites for the V-ATPase subunits on aldolase appear to be on distinct interfaces of the glycolytic enzyme. Aldolase deletion mutant cells were able to grow in medium buffered at pH 5.5 but not at pH 7.5, displaying a growth phenotype similar to that observed in V-ATPase subunit deletion mutants. Abnormalities in V-ATPase assembly and protein expression observed in aldolase deletion mutant cells could be fully rescued by aldolase complementation. The interaction between aldolase and V-ATPase increased dramatically in the presence of glucose, suggesting that aldolase may act as a glucose sensor for V-ATPase regulation. Taken together, these findings provide functional evidence that the ATP-generating glycolytic pathway is directly coupled to the ATP-hydrolyzing proton pump through physical interaction between aldolase and V-ATPase.  相似文献   

10.
The vacuolar ATPase (V-ATPase) is a multisubunit enzyme that couples ATP hydrolysis to proton pumping across membranes. Recently, there is increasing evidence that V-ATPase may contribute to the pathogenesis of bone resorption disorders due to it is predominantly expressed in osteoclasts also function in bone resorption making it a good candidate in a therapeutic target for osteoporosis. Osteoclasts are capable of generating an acidic microenvironment necessary for bone resorption by utilizing V-ATPases to pump protons into the resorption lacuna. In addition, it has been shown that therapeutic interventions have been proposed that specifically target inhibition of the osteoclast proton pump. Modulation of osteoclastic V-ATPase activity has been considered to be a suitable therapy for the treatment of osteoporosis. All theses findings suggest that V-ATPase have important biological effects in bone resorption that might be a promising therapeutic target for osteoporosis. In this review, we will briefly discuss the biological features of osteoporosis and summarize recent advances on the role of V-ATPase in the pathogenesis and treatment of osteoporosis.  相似文献   

11.
12.
The stimulation of the activity of the H(+)-ATPase present in the vacuolar membrane (V-ATPase) of Saccharomyces cerevisiae is here described in response to a moderate stress induced by 2,4-dichlorophenoxyacetic acid (2,4-D). This in vivo activation (up to 5-fold) took place essentially during the adaptation period, preceding cell division under herbicide stress, in coordination with a marked activation of plasma membrane H(+)-ATPase (PM-ATPase) (up to 30-fold) and the decrease of intracellular and vacuolar pH values, suggesting that activation may be triggered by acidification. Single deletion of VMA1 and genes encoding other V-ATPase subunits led to a more extended period of adaptation and to slower growth under 2,4-D stress. Results suggest that a functional V-ATPase is required to counteract, more rapidly and efficiently, the dissipation of the physiological H(+)-gradient across vacuolar membrane registered during 2,4-D adaptation.  相似文献   

13.
W Laubinger  P Dimroth 《Biochemistry》1989,28(18):7194-7198
The purified ATPase (F1F0) of Propionigenium modestum has its pH optimum at pH 7.0 or at pH 6.0 in the presence or absence of 5 mM NaCl, respectively. The activation by 5 mM NaCl was 12-fold at pH 7.0, 3.5-fold at pH 6.0, and 1.5-fold at pH 5.0. In addition to its function as a primary Na+ pump, the ATPase was capable of pumping protons. This activity was demonstrated with reconstituted proteoliposomes by the ATP-dependent quenching of the fluorescence of 9-amino-6-chloro-2-methoxyacridine. No delta pH was formed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone or by blocking the ATPase with dicyclohexylcarbodiimide. In the presence of valinomycin and K+, the delta pH increased, in accord with the operation of an electrogenic proton pump. The proton pump was only operative at low Na+ concentrations (less than 1 mM), and its activity increased as the Na+ concentration decreased. Parallel to the decrease of H+ pumping, the velocity of the Na+ transport increased about 6-fold from 0.1 to 4 mM NaCl, indicating a switch from H+ to Na+ pumping, as the Na+ concentration increases. Due to proton leaks in the proteoliposomal membranes, fluorescence quenching was released after blocking the ATPase with dicyclohexylcarbodiimide, by trapping residual ATP with glucose and hexokinase, or by the Na+-induced conversion of the proton pump onto a Na+ pump. Amiloride, an inhibitor of various Na+-coupled transport systems, was without effect on the kinetics of Na+ transport by the P. modestum ATPase.  相似文献   

14.
The V-ATPase H subunit (encoded by the VMA13 gene) activates ATP-driven proton pumping in intact V-ATPase complexes and inhibits MgATPase activity in cytosolic V1 sectors (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761-21767). Yeast diploids heterozygous for a vma13Delta mutation show the pH- and calcium-dependent conditional lethality characteristic of mutants lacking V-ATPase activity, although they still contain one wild-type copy of VMA13. Vacuolar vesicles from this strain have approximately 50% of the ATPase activity of those from a wild-type diploid but do not support formation of a proton gradient. Compound heterozygotes with a second heterozygous deletion in another V1 subunit gene exhibit improved growth, vacuolar acidification, and ATP-driven proton transport in vacuolar vesicles. In contrast, compound heterozygotes with a second deletion in a Vo subunit grow even more poorly than the vma13Delta heterozygote, have very little vacuolar acidification, and have very low levels of V-ATPase subunits in isolated vacuoles. In addition, cytosolic V1 sectors from this strain and from the strain containing only the heterozygous vma13Delta mutation have elevated MgATPase activity. The results suggest that balancing levels of subunit H with those of other V-ATPase subunits is critical, both for allowing organelle acidification and for preventing unproductive hydrolysis of cytosolic ATP.  相似文献   

15.
The vacuolar H(+)-ATPase (V-ATPase) is a multisubunit complex composed of two sectors: V(1), a peripheral membrane sector responsible for ATP hydrolysis, and V(0), an integral membrane sector that forms a proton pore. Vma5p and Vma13p are V(1) sector subunits that have been implicated in the structural and functional coupling of the V-ATPase. Cells overexpressing Vma5p and Vma13p demonstrate a classic Vma(-) growth phenotype. Closer biochemical examination of Vma13p-overproducing strains revealed a functionally uncoupled V-ATPase in vacuolar vesicles. The ATP hydrolysis rate was 72% of the wild-type rate; but there was no proton translocation, and two V(1) subunits (Vma4p and Vma8p) were present at lower levels. Vma5p overproduction moderately affected both V-ATPase activity and proton translocation without affecting enzyme assembly. High level overexpression of Vma5p and Vma13p was lethal even in wild-type cells. In the absence of an intact V(0) sector, overproduction of Vma5p and Vma13p had a more detrimental effect on growth than their deletion. Overproduced Vma5p associated with cytosolic V(1) complexes; this association may cause the lethality.  相似文献   

16.
We provide experimental support for the proposal that ATP production in Methanococcus voltae, a methanogenic member of the archaea, is based on an energetic system in which sodium ions, not protons, are the coupling ions. We show that when grown at a pH of 6.0, 7.1, or 8.2, M. voltae cells maintain a membrane potential of approximately -150 mV. The cells maintain a transmembrane pH gradient (pH(in) - pH(out)) of -0.1, -0.2, and -0.2, respectively, values not favorable to the inward movement of protons. The cells maintain a transmembrane sodium concentration gradient (sodium(out)/sodium(in)) of 1.2, 3.4, and 11.6, respectively. While the protonophore 3,3',4',5-tetrachlorosalicylanilide inhibits ATP formation in cells grown at pH 6.5, neither ATP formation nor growth is inhibited in cells grown in medium at pH 8.2. We show that when grown at pH 8.2, cells synthesize ATP in the absence of a favorably oriented proton motive force. Whether grown at pH 6.5 or pH 8.2, M. voltae extrudes Na+ via a primary pump whose activity does not depend on a proton motive force. The addition of protons to the cells leads to a harmaline-sensitive efflux of Na+ and vice versa, indicating the presence of Na+/H+ antiporter activity and, thus, a second mechanism for the translocation of Na+ across the cell membrane. M. voltae contains a membrane component that is immunologically related to the H(+)-translocating ATP synthase of the archaeabacterium Sulfolobus acidocaldarius. Since we demonstrated that ATP production can be driven by an artificially imposed membrane potential only in the presence of sodium ions, we propose that ATP production in M. voltae is mediated by an Na+-translocating ATP synthase whose function is coupled to a sodium motive force that is generated through a primary Na+ pump.  相似文献   

17.
The factors contributing to the establishment of the steady state Golgi pH (pH(G)) were studied in intact and permeabilized mammalian cells by fluorescence ratio imaging. Retrograde transport of the nontoxic B subunit of verotoxin 1 was used to deliver pH-sensitive probes to the Golgi complex. To evaluate whether counter-ion permeability limited the activity of the electrogenic V-ATPase, we determined the concentration of K(+) in the lumen of the Golgi using a null point titration method. The [K(+)] inside the Golgi was found to be close to that of the cytosol, and increasing its permeability had no effect on pH(G). Moreover, the capacity of the endogenous counter-ion permeability exceeded the rate of H(+) pumping, implying that the potential across the Golgi membrane is negligible and has little influence on pH(G). The V-ATPase does not reach thermodynamic equilibrium nor does it seem to be allosterically inactivated at the steady state pH(G). In fact, active H(+) pumping was detectable even below the resting pH(G). A steady state pH was attained when the rate of pumping was matched by the passive backflux of H(+) (equivalents) or "leak." The nature of this leak pathway was investigated in detail. Neither vesicular traffic nor H(+)/cation antiporters or symporters were found to contribute to the net loss of H(+) from the Golgi. Instead, the leak was sensitive to voltage changes and was inhibited by Zn(2+), resembling the H(+) conductive pathway of the plasma membrane. We conclude that a balance between an endogenous leak, which includes a conductive component, and the H(+) pump determines the pH at which the Golgi lumen attains a steady state.  相似文献   

18.
Phagosomes formed by neutrophils are much less acidic than those of other phagocytic cells. The defective acidification seen in neutrophils has been attributed to consumption of protons during the dismutation of superoxide, because a large, sustained acidification is unmasked when the cells are treated with inhibitors of the NADPH oxidase. Consumption of protons transported into the phagosome by dismutation would tightly couple the activities of the NADPH oxidase and the vacuolar type H(+)-pump (or V-ATPase). We tested the existence of the predicted coupling using microfluorimetry and digital imaging and found that the rate of superoxide generation was independent of the activity of the H(+)-pump. Moreover, we failed to detect the alkalinization predicted to develop through dismutation when the pump was inhibited. Instead, two other mechanisms were found to contribute to the inability of neutrophil phagosomes to acidify. First, the insertion of V-ATPases into the phagosomal membrane was found to be reduced when the oxidase is active. Second, the passive proton (equivalent) permeability of the phagosomal membrane increased when the oxidase was activated. The increased permeability cannot be entirely attributed to the conductive H(+) channels associated with the oxidase, since it is not eliminated by Zn(2+). We conclude that the NADPH oxidase controls the phagosomal pH by multiple mechanisms that include reduced proton delivery to the lumen, increased luminal proton consumption, and enhanced backflux (leak) into the cytosol.  相似文献   

19.
Recent biochemical studies involving 2',7'-bis-(2-carboxyethyl)-5, 6-carboxylfluorescein (BCECF)-labeled saponin-permeabilized and parasitized erythrocytes indicated that malaria parasite cells maintain the resting cytoplasmic pH at about 7.3, and treatment with vacuolar proton-pump inhibitors reduces the resting pH to 6.7, suggesting proton extrusion from the parasite cells via vacuolar H(+)-ATPase (Saliba, K. J., and Kirk, K. (1999) J. Biol. Chem. 274, 33213-33219). In the present study, we investigated the localization of vacuolar H(+)-ATPase in Plasmodium falciparum cells infecting erythrocytes. Antibodies against vacuolar H(+)-ATPase subunit A and B specifically immunostained the infecting parasite cells and recognized a single 67- and 55-kDa polypeptide, respectively. Immunoelectron microscopy indicated that the immunological counterpart of V-ATPase subunits A and B is localized at the plasma membrane, small clear vesicles, and food vacuoles, a lower extent being detected at the parasitophorus vacuolar membrane of the parasite cells. We measured the cytoplasmic pH of both infected erythrocytes and invading malaria parasite cells by microfluorimetry using BCECF fluorescence. It was found that a restricted area of the erythrocyte cytoplasm near a parasite cell is slightly acidic, being about pH 6.9. The pH increased to pH 7.3 upon the addition of either concanamycin B or bafilomycin A(1), specific inhibitors of vacuolar H(+)-ATPase. Simultaneously, the cytoplasmic pH of the infecting parasite cell decreased from pH 7.3 to 7.1. Neither vanadate at 0.5 mm, an inhibitor of P-type H(+)-ATPase, nor ethylisopropylamiloride at 0.2 mm, an inhibitor of Na(+)/H(+)-exchanger, affected the cytoplasmic pH of erythrocytes or infecting parasite cells. These results constitute direct evidence that plasma membrane vacuolar H(+)-ATPase is responsible for active extrusion of protons from the parasite cells.  相似文献   

20.
V-ATPases are membrane protein complexes that pump protons in the lumen of various subcellular compartments at the expense of ATP. Proton pumping is done by a rotary mechanism that requires a static connection between the membrane pumping domain (V(0)) and the extrinsic catalytic head (V(1)). This static connection is composed of several known subunits of the V-ATPase, but their location and topological relationships are still a matter of controversy. Here, we propose a model for the V-ATPase of Neurospora crassa on the basis of single-particle analysis by electron microscopy. Comparison of the resulting map to that of the A-ATPase from Thermus thermophilus allows the positioning of two subunits in the static connecting region that are unique to eukaryotic V-ATPases (C and H). These two subunits seem to be located on opposite sides of a semicircular arrangement of the peripheral connecting elements, suggesting a role in stabilizing the stator in V-ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号