首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chikungunya virus (CHIKV) is a mosquito-borne virus that causes arthralgic fever. Fibroblast-like synoviocytes play a key role in joint damage in inflammatory arthritides and can additionally serve as target cells for CHIKV infection. To gain a better understanding of CHIKV-induced arthralgia, the interaction between CHIKV and synoviocytes was investigated at the protein level. A gel-enhanced liquid chromatography-mass spectrometry (GeLC-MS/MS) approach was used to examine protein expression from primary human fibroblast-like synoviocytes (HFLS) infected with clinical isolates of CHIKV at 12 and 24 hr post infection. Our analysis identified 259 and 241 proteins of known function that were differentially expressed (>1.5 or <−1.5 fold change) following CHIKV infection at 12 and 24 hpi, respectively. These proteins are involved in cellular homeostasis, including cellular trafficking, cytoskeletal organization, immune response, metabolic process, and protein modification. Some of these proteins have previously been reported to participate in arthralgia/arthritis and the death of infected cells. Our results provide information on the CHIKV-induced modulation of cellular proteins of HFLS at an early stage of infection, as well as highlighting biological processes associated with CHIKV infection in the main target cells of the joint.  相似文献   

2.
Inhibition of cellular DNA synthesis began 6 to 8 h after reovirus infection at a multiplicity of infection of 10 PFU per cell. However, as the multiplicity of infection was increased to a maximum of 103 PFU/cell, inhibition of DNA synthesis began earlier after infection (2-4 h postinfection), and the initial rate of inhibition increased. The enhanced inhibition of DNA replication at high virus multiplicities appeared to be selective since RNA synthesis was not detectably altered as late as 9 h postinfection and inhibition of protein synthesis did not begin until 7 to 9 h after infection. Early inhibition of DNA synthesis did not appear to be related to changes in thymidine pool characteristics, thymidine kinase activity, or detectable degradation of cellular DNA. Even though the particle-to-PFU ratio was increased by ultraviolet light inactivation of virus, the ability to induce early inhibition of DNA synthesis was not diminished.  相似文献   

3.
Chikungunya virus (CHIKV; genus Alphavirus, family Togaviridae) has recently caused several major outbreaks affecting millions of people. There are no licensed vaccines or antivirals, and the knowledge of the molecular biology of CHIKV, crucial for development of efficient antiviral strategies, remains fragmentary. CHIKV has a 12 kb positive-strand RNA genome, which is translated to yield a nonstructural (ns) or replicase polyprotein. CHIKV structural proteins are expressed from a subgenomic RNA synthesized in infected cells. Here we have developed CHIKV trans-replication systems, where replicase expression and RNA replication are uncoupled. Bacteriophage T7 RNA polymerase or cellular RNA polymerase II were used for production of mRNAs for CHIKV ns polyprotein and template RNAs, which are recognized by CHIKV replicase and encode for reporter proteins. CHIKV replicase efficiently amplified such RNA templates and synthesized large amounts of subgenomic RNA in several cell lines. This system was used to create tagged versions of ns proteins including nsP1 fused with enhanced green fluorescent protein and nsP4 with an immunological tag. Analysis of these constructs and a matching set of replicon vectors revealed that the replicases containing tagged ns proteins were functional and maintained their subcellular localizations. When cells were co-transfected with constructs expressing template RNA and wild type or tagged versions of CHIKV replicases, formation of characteristic replicase complexes (spherules) was observed. Analysis of mutations associated with noncytotoxic phenotype in CHIKV replicons showed that a low level of RNA replication is not a pre-requisite for reduced cytotoxicity. The CHIKV trans-replicase does not suffer from genetic instability and represents an efficient, sensitive and reliable tool for studies of different aspects of CHIKV RNA replication process.  相似文献   

4.
Chikungunya virus (CHIKV) is the only causative agent of CHIKV fever with persistent arthralgia, and in some cases may lead to neurological complications which can be highly fatal, therefore it poses severe health issues in many parts of the world. CHIKV transmission can be mediated via the Aedes albopictus mosquito; however, very little is currently known about the involvement of mosquito cellular factors during CHIKV-infection within the mosquito cells. Unravelling the neglected aspects of mosquito proteome changes in CHIKV-infected mosquito cells may increase our understanding on the differences in the host factors between arthropod and mammalian cells for successful replication of CHIKV. In this study, the CHIKV-infected C6/36 cells with differential cellular proteins expression were profiled using two-dimensional gel electrophoresis (2DE) coupled with the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). 2DE analysis on CHIKV-infected C6/36 cells has shown 23 mosquito cellular proteins that are differentially regulated, and which are involved diverse biological pathways, such as protein folding and metabolic processes. Among those identified mosquito proteins, spermatogenesis-associated factor, enolase phosphatase e-1 and chaperonin-60kD have been found to regulate CHIKV infection. Furthermore, siRNA-mediated gene knockdown of these proteins has demonstrated the biological importance of these host proteins that mediate CHIKV infection. These findings have provided an insight to the importance of mosquito host factors in the replication of CHIKV, thus providing a potential channel for developing novel antiviral strategies against CHIKV transmission.  相似文献   

5.

Background

Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus that has caused multiple unprecedented and re-emerging outbreaks in both tropical and temperate countries. Despite ongoing research efforts, the underlying factors involved in facilitating CHIKV replication during early infection remains ill-characterized. The present study serves to identify host proteins modulated in response to early CHIKV infection using a proteomics approach.

Methodology and Principal Findings

The whole cell proteome profiles of CHIKV-infected and mock control WRL-68 cells were compared and analyzed using two-dimensional gel electrophoresis (2-DGE). Fifty-three spots were found to be differentially modulated and 50 were successfully identified by MALDI-TOF/TOF. Eight were significantly up-regulated and 42 were down-regulated. The mRNA expressions of 15 genes were also found to correlate with the corresponding protein expression. STRING network analysis identified several biological processes to be affected, including mRNA processing, translation, energy production and cellular metabolism, ubiquitin-proteasome pathway (UPP) and cell cycle regulation.

Conclusion/Significance

This study constitutes a first attempt to investigate alteration of the host cellular proteome during early CHIKV infection. Our proteomics data showed that during early infection, CHIKV affected the expression of proteins that are involved in mRNA processing, host metabolic machinery, UPP, and cyclin-dependent kinase 1 (CDK1) regulation (in favour of virus survival, replication and transmission). While results from this study complement the proteomics results obtained from previous late host response studies, functional characterization of these proteins is warranted to reinforce our understanding of their roles during early CHIKV infection in humans.  相似文献   

6.
7.
8.
ABSTRACT: BACKGROUND: Double-stranded RNA (dsRNA) and its mimic, polyinosinic acid: polycytidylic acid [Poly (I:C)], are recognized by toll-like receptor 3 (TLR3) and induce interferon (IFN)-beta in many cell types. Poly (I:C) is the most potent IFN inducer. In in vivo mouse studies, intraperitoneal injection of Poly (I:C) elicited IFN-alpha/beta production and natural killer (NK) cells activation. The TLR3 pathway is suggested to contribute to innate immune responses against many viruses, including influenza virus, respiratory syncytial virus, herpes simplex virus 2, and murine cytomegalovirus. In Chikungunya virus (CHIKV) infection, the viruses are cleared within 7-10 days postinfection before adaptive immune responses emerge. The innate immune response is important for CHIKV clearance. RESULTS: The effects of Poly (I:C) on the replication of CHIKV in human bronchial epithelial cells, BEAS-2B, were studied. Poly (I:C) suppressed cytopathic effects (CPE) induced by CHIKV infection in BEAS-2B cells in the presence of Poly (I:C) and inhibited the replication of CHIKV in the cells. The virus titers of Poly (I:C)-treated cells were much lower compared with those of untreated cells. CHIKV infection and Poly (I:C) treatment of BEAS-2B cells induced the production of IFN-beta and increased the expression of anti-viral genes, including IFN-alpha, IFN-beta, MxA, and OAS. Both Poly (I:C) and CHIKV infection upregulate the expression of TLR3 in BEAS-2B cells. CONCLUSIONS: CHIKV is sensitive to innate immune response induced by Poly (I:C). The inhibition of CHIKV replication by Poly (I:C) may be through the induction of TLR3, which triggers the production of IFNs and other anti-viral genes. The innate immune response is important to clear CHIKV in infected cells.  相似文献   

9.
10.

Background

Chikungunya virus (CHIKV) is a re-emerging alphavirus that causes chikungunya fever and persistent arthralgia in humans. Currently, there is no effective vaccine or antiviral against CHIKV infection. Therefore, this study evaluates whether RNA interference which targets at viral genomic level may be a novel antiviral strategy to inhibit the medically important CHIKV infection.

Methods

Plasmid-based small hairpin RNA (shRNA) was investigated for its efficacy in inhibiting CHIKV replication. Three shRNAs designed against CHIKV Capsid, E1 and nsP1 genes were transfected to establish stable shRNA-expressing cell clones. Following infection of stable shRNA cells clones with CHIKV at M.O.I. 1, viral plaque assay, Western blotting and transmission electron microscopy were performed. The in vivo efficacy of shRNA against CHIKV replication was also evaluated in a suckling murine model of CHIKV infection.

Results

Cell clones expressing shRNAs against CHIKV E1 and nsP1 genes displayed significant inhibition of infectious CHIKV production, while shRNA Capsid demonstrated a modest inhibitory effect as compared to scrambled shRNA cell clones and non-transfected cell controls. Western blot analysis of CHIKV E2 protein expression and transmission electron microscopy of shRNA E1 and nsP1 cell clones collectively demonstrated similar inhibitory trends against CHIKV replication. shRNA E1 showed non cell-type specific anti-CHIKV effects and broad-spectrum silencing against different geographical strains of CHIKV. Furthermore, shRNA E1 clones did not exert any inhibition against Dengue virus and Sindbis virus replication, thus indicating the high specificity of shRNA against CHIKV replication. Moreover, no shRNA-resistant CHIKV mutant was generated after 50 passages of CHIKV in the stable cell clones. More importantly, strong and sustained anti-CHIKV protection was conferred in suckling mice pre-treated with shRNA E1.

Conclusion

Taken together, these data suggest the promising efficacy of anti-CHIKV shRNAs, in particular, plasmid-shRNA E1, as a novel antiviral strategy against CHIKV infection.  相似文献   

11.
Maximum amounts of 42S and 26S single-stranded viral RNA and viral structural proteins were synthesized in Aedes albopictus cells at 24 h after Sindbis virus infection. Thereafter, viral RNA and protein syntheses were inhibited. By 3 days postinfection, only small quantities of 42S RNA and no detectable 26S RNA or structural proteins were synthesized in infected cells. Superinfection of A. albopictus cells 3 days after Sindbis virus infection with Sindbis, Semliki Forest, Una, or Chikungunya alphavirus did not lead to the synthesis of intracellular 26S viral RNA. In contrast, infection with snowshoe hare virus, a bunyavirus, induced the synthesis of snowshoe hare virus RNA in both A. Ablpictus cells 3 days after Sindbis virus infection and previously uninfected mosquito cells. These results suggested that at 3 days after infection with Sindbis virus, mosquito cells restricted the replication of both homologous and heterologous alphaviruses but remained susceptible to infection with a bunyavirus. In superinfection experiments the the alphaviruses were differentiated on the basis of plaque morphology and the electrophoretic mobility of their intracellular 26S viral RNA species. Thus, it was shown that within 1 h after infection with eigher Sindbis or Chikungunya virus, A. albopictus cells were resistant to superinfection with Sindbis, Chikungunya, Una, and Semliki Forest viruses. Infected cultures were resistant to superinfection with the homologous virus indefinitely, but maximum resistance to superinfection with heterologous alphaviruses lasted for approximately 8 days. After that time, infected cultures supported the replication of heterologous alphaviruses to the same extent as did persistently infected cultures established months previously. However, the titer of heterologous alphavirus produced after superinfection of persistently infected cultures was 10- to 50-fold less than that produced by an equal number of previously uninfected A. albopictus cells. Only a small proportion (8 to 10%) of the cells in a persistently infected culture was capable of supporting the replication of a heterologous alphavirus.  相似文献   

12.
Chronic infection by hepatitis C virus (HCV) is the leading cause of severe hepatitis that often develops into liver cirrhosis and hepatocellular carcinoma. The molecular mechanisms underlying HCV replication and pathogenesis are poorly understood. Similarly, the role(s) of host factors in the replication of HCV remains largely undefined. Based on our knowledge of other RNA viruses, it is likely that a number of cellular factors may be involved in facilitating HCV replication. It has been demonstrated that elements within the 3'-nontranslated region (3'-NTR) of the (+) strand HCV genome are essential for initiation of (-) strand synthesis. The RNA signals within the highly conserved 3'-NTR may be the site for recruiting cellular factors that mediate virus replication/pathogenesis. However, the identities of putative cellular factors interacting with these RNA signals remain unknown. In this report, we demonstrate that an RNA affinity capture system developed in our laboratory used in conjunction with LC/MS/MS allowed us to positively identify more than 70 cellular proteins that interact with the 3'-NTR (+) of HCV. Binding of these cellular proteins was not competed out by a 10-fold excess of nonspecific competitor RNA. With few exceptions, all of the identified cellular proteins are RNA-binding proteins whose reported cellular functions provide unique insights into host cell-virus interactions and possible mechanisms influencing HCV replication and HCV-associated pathogenesis. Small interfering RNA-mediated silencing of selected 3'-NTR-binding proteins in an HCV replicon cell line reduced replicon RNA to undetectable levels, suggesting important roles for these cellular factors in HCV replication.  相似文献   

13.
Bunyamwera virus replication was examined in Aedes albopictus (mosquito) cell cultures in which a persistent infection is established and in cytopathically infected BHK cells. During primary infection of A. albopictus cells, Bunyamwera virus reached relatively high titers (107 PFU/ml), and autointerference was not observed. Three virus-specific RNAs (L, M, and S) and two virion proteins (N and G1) were detected in infected cells. Maximum rates of viral RNA synthesis and viral protein synthesis were extremely low, corresponding to <2% of the synthetic capacities of uninfected control cells. Viral protein synthesis was maximal at 12 h postinfection and was shut down to barely detectable levels at 24 h postinfection. Virus-specific RNA and nucleocapsid syntheses showed similar patterns of change, but later in infection. The proportions of cells able to release a single PFU at 3, 6, and 54 days postinfection were 100, 50, and 1.5%, respectively. Titers fell to 103 to 105 PFU/ml in carrier cultures. Persistently infected cultures were resistant to superinfection with homologous virus but not with heterologous virus. No changes in host cell protein synthesis or other cytopathic effects were observed at any stage of infection. Small-plaque variants of Bunyamwera virus appeared at approximately 7 days postinfection and increased gradually until they were 75 to 95% of the total infectious virus at 66 days postinfection. Temperature-sensitive mutants appeared between 23 and 49 days postinfection. No antiviral activity similar to that reported in A. albopictus cell cultures persistently infected with Sindbis virus (R. Riedel and D. T. Brown, J. Virol. 29: 51-60, 1979) was detected in culture fluids by 3 months after infection. Bunyamwera virus replicated more rapidly in BHK cells than in mosquito cells but reached lower titers. Autointerference occurred at multiplicities of infection of 10. Virus-specific RNA and protein syntheses were at least 20% of the levels in uninfected control cells. Host cell protein synthesis was completely shut down, and nucleocapsid protein accumulated until it was 4% of the total cell protein. We discuss these results in relation to possible mechanisms involved in determining the outcome of arbovirus infection of vertebrate and mosquito cells.  相似文献   

14.
Chikungunya virus (CHIKV) is primarily transmitted by Aedes spp. mosquitoes. The present study investigated vector competence for CHIKV in Aedes aegypti and Aedes albopictus mosquitoes found in Madurai, South India. The role of receptor proteins on midguts contributing to permissiveness of CHIKV to Aedes spp. mosquitoes was also undertaken. Mosquitoes were orally infected with CHIKV DRDE‐06. Infection of midguts and dissemination to heads was confirmed by immunofluorescence assay at different time points. A plaque assay was performed from mosquito homogenates at different time points to study CHIKV replication. Presence of putative CHIKV receptor proteins on mosquito midgut epithelial cells was detected by virus overlay protein binding assay (VOPBA). The identity of these proteins was established using mass spectrometry. CHIKV infection of Ae. aegypti and Ae. albopictus midguts and dissemination to heads was observed to be similar. A plaque assay performed with infected mosquito homogenates revealed that CHIKV replication dynamics was similar in Aedes sp. mosquitoes until 28 days post infection. VOPBA performed with mosquito midgut membrane proteins revealed that prohibitin could serve as a putative CHIKV receptor on Aedes mosquito midguts, whereas an absence of CHIKV binding protein/s on Culex quinquefasciatus midguts can partially explain the non‐permissiveness of these mosquitoes to infection.  相似文献   

15.
16.
Although xenotropic murine leukemia virus-related virus (XMRV) has been previously linked to prostate cancer and myalgic encephalomyelitis/chronic fatigue syndrome, recent data indicate that results interpreted as evidence of human XMRV infection reflect laboratory contamination rather than authentic in vivo infection. Nevertheless, XMRV is a retrovirus of undefined pathogenic potential that is able to replicate in human cells. Here we describe a comprehensive analysis of two male pigtailed macaques (Macaca nemestrina) experimentally infected with XMRV. Following intravenous inoculation with >10(10) RNA copy equivalents of XMRV, viral replication was limited and transient, peaking at ≤2,200 viral RNA (vRNA) copies/ml plasma and becoming undetectable by 4 weeks postinfection, though viral DNA (vDNA) in peripheral blood mononuclear cells remained detectable through 119 days of follow-up. Similarly, vRNA was not detectable in lymph nodes by in situ hybridization despite detectable vDNA. Sequencing of cell-associated vDNA revealed extensive G-to-A hypermutation, suggestive of APOBEC-mediated viral restriction. Consistent with limited viral replication, we found transient upregulation of type I interferon responses that returned to baseline by 2 weeks postinfection, no detectable cellular immune responses, and limited or no spread to prostate tissue. Antibody responses, including neutralizing antibodies, however, were detectable by 2 weeks postinfection and maintained throughout the study. Both animals were healthy for the duration of follow-up. These findings indicate that XMRV replication and spread were limited in pigtailed macaques, predominantly by APOBEC-mediated hypermutation. Given that human APOBEC proteins restrict XMRV infection in vitro, human XMRV infection, if it occurred, would be expected to be characterized by similarly limited viral replication and spread.  相似文献   

17.
Alterations in the functional capacity of pancreatic beta cells appear to contribute to coxsackievirus B4-induced, long-term hyperglycemia in mice. Mice infected with prototype B4 or its diabetogenic E2 variant were monitored for abnormalities in sugar metabolism (by the glucose tolerance test), for total protein and insulin synthesis in intact beta cells, for alterations in beta cell proteins, and for virus replication. The infected mice were hypoglycemic at 72 h postinfection and hyperglycemic at 6 weeks. At 8 weeks postinfection, few of the prototype- but most of the E2-infected mice remained hyperglycemic. Total protein and synthesis of immunoprecipitable insulin decreased during early infection. At 8 weeks postinfection, insulin synthesis in the prototype-infected mice increased almost to the level of control mice. Although insulin synthesis increased likewise in the E2-infected mice, it remained well below the control level. Two-dimensional gel electrophoresis revealed the disappearance of many cellular proteins in beta cells from E2-infected mice but of very few in cells from prototype-infected mice at 72 h postinfection. Many of the disappearing proteins reappeared gradually in the E2-infected group. Infectious virus was recovered from the infected beta cells only at 72 h postinfection. Functional impairment in these cells appears to be a factor in virus-induced hyperglycemia.  相似文献   

18.
During infection by herpes simplex virus type‐1 (HSV‐1) the host cell undergoes widespread changes in gene expression and morphology in response to viral replication and release. However, relatively little is known about the specific proteome changes that occur during the early stages of HSV‐1 replication prior to the global damaging effects of virion maturation and egress. To investigate pathways that may be activated or utilised during the early stages of HSV‐1 replication, 2‐DE and LC‐MS/MS were used to identify cellular proteome changes at 6 h post infection. Comparative analysis of multiple gels representing whole cell extracts from mock‐ and HSV‐1‐infected HEp‐2 cells revealed a total of 103 protein spot changes. Of these, 63 were up‐regulated and 40 down‐regulated in response to infection. Changes in selected candidate proteins were verified by Western blot analysis and their respective cellular localisations analysed by confocal microscopy. We have identified differential regulation and modification of proteins with key roles in diverse cellular pathways, including DNA replication, chromatin remodelling, mRNA stability and the ER stress response. This work represents the first global comparative analysis of HSV‐1 infected cells and provides an important insight into host cell proteome changes during the early stages of HSV‐1 infection.  相似文献   

19.
20.
Infection of susceptible strains of mice with Daniel's (DA) strains of Theiler's murine encephalomyelitis virus (DAV) results in virus persistence in the central nervous system (CNS) white matter and chronic demyelination similar to that observed in multiple sclerosis. We investigated whether persistence is due to the immune system more efficiently clearing DAV from gray than from white matter of the CNS. Severe combined immunodeficient (SCID) and immunocompetent C.B-17 mice were infected with DAV to determine the kinetics, temporal distribution, and tropism of the virus in CNS. In early disease (6 h to 7 days postinfection), DAV replicated with similar kinetics in the brains and spinal cords of SCID and immunocompetent mice and in gray and white matter. DAV RNA was localized within 48 h in CNS cells of all phenotypes, including neurons, oligodendrocytes, astrocytes, and macrophages/microglia. In late disease (13 to 17 days postinfection), SCID mice became moribund and permitted higher DAV replication in both gray and white matter. In contrast, immunocompetent mice cleared virus from the gray matter but showed replication in the white matter of their brains and spinal cords. Reconstitution of SCID mice with nonimmune splenocytes or anti-DAV antibodies after establishment of infection demonstrated that both cellular and humoral immune responses decreased virus from the gray matter; however, the cellular responses were more effective. SCID mice reconstituted with splenocytes depleted of CD4+ or CD8+ T lymphocytes cleared virus from the gray matter but allowed replication in the white matter. These studies demonstrate that both neurons and glia are infected early following DAV infection but that virus persistence in the white matter is due to preferential clearance of virus from the gray matter by the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号