首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Multiple sclerosis (MS) is a neuro-inflammatory and neurodegenerative disease that results in damage to myelin sheaths and axons in the central nervous system and which preferentially affects young adults. We performed a proteomics-based biomarker discovery study in which cerebrospinal fluid (CSF) from MS and control individuals was analyzed (n = 112). Ten candidate biomarkers were selected for evaluation by quantitative immunoassay using an independent cohort of MS and control subjects (n = 209). In relapsing–remitting MS (RRMS) patients there were significant increases in the CSF levels of alpha-1 antichymotrypsin (A1AC), alpha-1 macroglobulin (A2MG) and fibulin 1 as compared to control subjects. In secondary progressive MS (SPMS) four additional proteins (contactin 1, fetuin A, vitamin D binding protein and angiotensinogen (ANGT)) were increased as compared to control subjects. In particular, ANGT was increased 3-fold in SPMS, indicating a potential as biomarker of disease progression in MS. In PPMS, A1AC and A2MG exhibit significantly higher CSF levels than controls, with a trend of increase for ANGT. Classification models based on the biomarker panel could identify 70% of the RRMS and 80% of the SPMS patients correctly. Further evaluation was conducted in a pilot study of CSF from RRMS patients (n = 36), before and after treatment with natalizumab.  相似文献   

2.
Antibody suspension bead arrays have proven to enable multiplexed and high‐throughput protein profiling in unfractionated plasma and serum samples through a direct labeling approach. We here describe the development and application of an assay for protein profiling of cerebrospinal fluid (CSF). While setting up the assay, systematic intensity differences between sample groups were observed that reflected inherent sample specific total protein amounts. Supplementing the labeling reaction with BSA and IgG diminished these differences without impairing the apparent sensitivity of the assay. We also assessed the effects of heat treatment on the analysis of CSF proteins and applied the assay to profile 43 selected proteins by 101 antibodies in 339 CSF samples from a multiple sclerosis (MS) cohort. Two proteins, GAP43 and SERPINA3 were found to have a discriminating potential with altered intensity levels between sample groups. GAP43 was detected at significantly lower levels in secondary progressive MS compared to early stages of MS and the control group of other neurological diseases. SERPINA3 instead was detected at higher levels in all MS patients compared to controls. The developed assay procedure now offers new possibilities for broad‐scale protein profiling of CSF within neurological disorders.  相似文献   

3.

Background

Most patients with relapsing-remitting multiple sclerosis (RRMS) eventually enter a secondary progressive (SPMS) phase, characterized by increasing neurological disability. The mechanisms underlying transition to SPMS are unknown and effective treatments and biomarkers are lacking. Vascular endothelial growth factor-A (VEGF-A) is an angiogenic factor with neuroprotective effects that has been associated with neurodegenerative diseases. SPMS has a prominent neurodegenerative facet and we investigated a possible role for VEGF-A during transition from RRMS to SPMS.

Methodology/Principal Findings

VEGF-A mRNA expression in peripheral blood mononuclear (PBMC) and cerebrospinal fluid (CSF) cells from RRMS (n = 128), SPMS (n = 55) and controls (n = 116) were analyzed using real time PCR. We demonstrate reduced expression of VEGF-A mRNA in MS CSF cells compared to controls (p<0.001) irrespective of disease course and expression levels are restored by natalizumab treatment(p<0.001). VEGF-A was primarily expressed in monocytes and our CSF findings in part may be explained by effects on relative monocyte proportions. However, VEGF-A mRNA expression was also down regulated in the peripheral compartment of SPMS (p<0.001), despite unchanged monocyte counts, demonstrating a particular phenotype differentiating SPMS from RRMS and controls. A possible association of allelic variability in the VEGF-A gene to risk of MS was also studied by genotyping for six single nucleotide polymorphisms (SNPs) in MS (n = 1114) and controls (n = 1234), which, however, did not demonstrate any significant association between VEGF-A alleles and risk of MS.

Conclusions/Significance

Expression of VEGF-A in CSF cells is reduced in MS patients compared to controls irrespective of disease course. In addition, SPMS patients display reduced VEGF-A mRNA expression in PBMC, which distinguish them from RRMS and controls. This indicates a possible role for VEGF-A in the mechanisms regulating transition to SPMS. Decreased levels of PBMC VEGF-A mRNA expression should be further evaluated as a biomarker for SPMS.  相似文献   

4.
The aims of the study were to: (i) identify differentially regulated proteins in cerebrospinal fluid (CSF) between multiple sclerosis (MS) patients and non‐MS controls; (ii) examine the effect of matching the CSF samples on either total protein amount or volume, and compare four protein normalization strategies for CSF protein quantification. CSF from MS patients (n = 37) and controls (n = 64), consisting of other noninflammatory neurological diseases (n = 50) and non neurological spinal anesthetic subjects (n = 14), were analyzed using label‐free proteomics, quantifying almost 800 proteins. In total, 122 proteins were significantly regulated (p < 0.05), where 77 proteins had p‐value <0.01 or AUC value >0.75. Hierarchical clustering indicated that there were two main groups of MS patients, those with increased levels of inflammatory response proteins and decreased levels of proteins involved in neuronal tissue development (n = 30), and those with normal protein levels for both of these protein groups (n = 7). The main subgroup of controls clustering with the MS patients showing increased inflammation and decreased neuronal tissue development were patients suffering from chronic fatigue. Our data indicate that the preferable way to quantify proteins in CSF is to first match the samples on total protein amount and then normalize the data based on the median intensities, preferably from the CNS‐enriched proteins.  相似文献   

5.
The presence of Epstein-Barr Virus (EBV) DNA in cerebrospinal fluid (CSF) and peripheral blood (PB) samples collected from 55 patients with clinical and radiologically-active relapsing-remitting MS (RRMS) and 51 subjects with other neurological diseases was determined using standardized commercially available kits for viral nucleic acid extraction and quantitative EBV DNA detection. Both cell-free and cell-associated CSF and PB fractions were analyzed, to distinguish latent from lytic EBV infection. EBV DNA was detected in 5.5% and 18.2% of cell-free and cell-associated CSF fractions of patients with RRMS as compared to 7.8% and 7.8% of controls; plasma and peripheral blood mononuclear cells (PBMC) positivity rates were 7.3% and 47.3% versus 5.8% and 31.4%, respectively. No significant difference in median EBV viral loads of positive samples was found between RRMS and control patients in all tested samples. Absence of statistically significant differences in EBV positivity rates between RRMS and control patients, despite the use of highly sensitive standardized methods, points to the lack of association between EBV and MS disease activity.  相似文献   

6.

Background

Expression of soluble CD163 (sCD163), a macrophage/microglia biomarker, is increased in inflammatory conditions, and sCD163 levels in the cerebrospinal fluid (CSF) have recently been shown to be elevated in patients with multiple sclerosis (MS): the sCD163 CSF/serum ratio was elevated in patients with relapsing-remitting MS (RRMS), primary progressive MS (PPMS), and clinically isolated syndrome (CIS) compared with symptomatic controls.

Objective

To investigate the contributions of the sCD163 CSF/serum ratio to a biomarker panel focusing on inflammation and axonal degeneration in newly diagnosed MS; thus optimising a diagnostic biomarker panel for MS.

Methods

After a full MS diagnostic work-up, including collection of paired samples of CSF and serum, 125 patients were included in this study. Patients were divided into groups based on their diagnosis, and patients with normal clinical and paraclinical findings were defined as symptomatic controls. Serum and CSF levels, ratios, and indices of sCD163, CXCL13, osteopontin, neopterin, and CSF levels of neurofilament light polypeptide were determined by enzyme-linked immunosorbent assays (ELISAs). For sCD163 the results constitute a post-hoc analysis of already published data.

Results

All tested biomarkers, notably the sCD163 ratio, the CXCL13 ratio, the NEO ratio, the CSF level of NfL, the IgG index, and the serum level of OPN, were significantly correlated to RRMS, PPMS, and/or CIS. The individual biomarkers in single tests had a lower performance than the IgG index, however, their combined receiver operating characteristic (ROC) curve demonstrated excellent diagnostic discriminatory power.

Conclusion

The biomarker panel showed distinct profiles for each patient group and could be a valuable tool for clinical differentiation of MS subgroups. The combined ROC analysis showed that sCD163 contributes positively as a diagnostic marker to a panel of established MS biomarkers. Patients with PPMS were demonstrated to have significantly elevated levels of both inflammatory and degenerative markers.  相似文献   

7.
Demyelination is the main pathological feature of multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. Tumor necrosis factor-alpha (TNF-alpha) can cause myelin damage and contribute to MS pathogenesis. We measured plasma and cerebrospinal fluid (CSF) levels of TNF-alpha and its soluble receptors, TNF-sRp55 and TNF-sRp75, in 18 patients with active MS, and in neurological and healthy controls. The same determinations were repeated on plasma and on CSF samples that were collected after the MS patients had ended a six-day treatment with high-dose methylprednisolone (MP). Pre- and post-treatment plasma and CSF TNF-alpha levels, when detectable, and those of TNF-sRp75, did not vary, and were similar to those of controls. CSF TNF-sRp55 levels were higher in acute MS patients than in controls. Post-treatment CSF TNF-sRp55 levels were higher than in the active phase of the disease. The MS patients, who clinically improved, tended to have the highest CSF TNF-sRp55 levels. The increase was due to intrathecal TNF-sRp55 synthesis. Although it is involved in MS pathogenesis, TNF-alpha is not detectable in plasma or in CSF samples from MS patients in various phases of the disease. A better marker of disease activity seems to be CSF TNF-sRp55 levels. The increased CSF levels of TNF-sRp55 in response to MP circumstantially suggest that this receptor could partially account for the beneficial effects of MP in acute MS.  相似文献   

8.
Multiple sclerosis (MS ) is an inflammatory demyelinating disease of the central nervous system (CNS ). Several biomarkers including proteins and lipids have been reported in MS cerebrospinal fluid (CSF ), reflecting different aspects of the pathophysiology particularly of relapsing‐remitting MS (RRMS ). Sulfatide, abundant in the myelin sheath and a proposed target for autoimmune attack in MS , has been reported altered in MS CSF . Here, we investigated the potential of CSF sulfatide and its isoforms as biomarkers in MS . A highly sensitive and quantitative mass spectrometry method was employed to determine levels of sulfatide isoforms in CSF from RRMS and progressive MS (PMS ) patients, and healthy donors (HD ). We demonstrate that levels of total CSF sulfatide and C24:1, C26:1, and C26:1‐OH isoforms were significantly increased in PMS compared with RRMS patients and HD , while C23:0‐OH was significantly decreased in CSF from PMS patients compared to the other two groups. Multivariate discriminant analysis showed that CSF sulfatide isoform pattern in PMS patients was distinct and non‐overlapping with that of RRMS patients and HD . Sulfatide levels did not correlate with tested biomarkers or clinical parameters. The results suggest that CSF sulfatide isoform levels may be used to discriminate the phenotype of MS and might play a role in the progression of the disease.

  相似文献   

9.

Background

There is accumulating evidence from immunological, pathological and therapeutic studies that B cells are key components in the pathophysiology of multiple sclerosis (MS).

Methodology/Principal Findings

In this prospective study we have for the first time investigated the differences in the inflammatory response between relapsing and progressive MS by comparing cerebrospinal fluid (CSF) cell profiles from patients at the onset of the disease (clinically isolated syndrome, CIS), relapsing-remitting (RR) and chronic progressive (CP) MS by flow cytometry. As controls we have used patients with other neurological diseases. We have found a statistically significant accumulation of CSF mature B cells (CD19+CD138−) and plasma blasts (CD19+CD138+) in CIS and RRMS. Both B cell populations were, however, not significantly increased in CPMS. Further, this accumulation of B cells correlated with acute brain inflammation measured by magnetic resonance imaging and with inflammatory CSF parameters such as the number of CSF leukocytes, intrathecal immunoglobulin M and G synthesis and intrathecal production of matrix metalloproteinase (MMP)-9 and the B cell chemokine CxCL-13.

Conclusions

Our data support an important role of CSF B cells in acute brain inflammation in CIS and RRMS.  相似文献   

10.
Until today, a definite diagnosis of Creutzfeldt–Jakob disease (CJD) can only be made neuropathologically. At lifetime the early and differential diagnosis is often a problem. With SELDI we analyzed cerebrospinal fluid (CSF) from 32 CJD patients, 32 patients having other dementive diseases and 31 non‐demented control subjects for diagnosis‐dependent protein pattern differences. In a screening set of patients, peaks that discriminate best between groups were identified. These peaks were subsequently analyzed using an independent validation set of patients. Diagnostic accuracies were compared with established markers like tau protein and 14‐3‐3‐protein. Potential marker proteins were purified and identified by LC‐MS/MS. In the validation set only one peak of 8.6 kDa out of ten in the screening set could be confirmed. This protein was identified to be ubiquitin and increased levels in CSF (but not in serum) of CJD patients were confirmed by Western blot. Ubiquitin allows the correct diagnoses of that CJD cases missed by tau protein or 14‐3‐3‐protein. We conclude that ubiquitin is a promising additional CSF biomarker for diagnosis of CJD, especially in differential diagnostically difficult cases. The selective increase of ubiquitin in CSF of CJD patients might point to an involvement of ubiquitin in pathophysiological process.  相似文献   

11.
Meningeal inflammation, including the presence of semi-organized tertiary lymphoid tissue, has been associated with cortical pathology at autopsy in secondary progressive multiple sclerosis (SPMS).  Accessible and robust biochemical markers of cortical inflammation for use in SPMS clinical trials are needed.  Increased levels of chemokines in the cerebrospinal fluid (CSF) can report on inflammatory processes occurring in the cerebral cortex of MS patients.  A multiplexed chemokine array that included BAFF, a high sensitivity CXCL13 assay and composite chemokine scores were developed to explore differences in lymphoid (CXCL12, CXCL13, CCL19 and CCL21) and inflammatory (CCL2, CXCL9, CXCL10 and CXCL11) chemokines in a small pilot study.  Paired CSF and serum samples were obtained from healthy controls (n=12), relapsing-remitting MS (RRMS) (n=21) and SPMS (N=12). A subset of the RRMS patients (n = 9) was assessed upon disease exacerbation and 1 month later following iv methylprednisone. SPMS patients were sampled twice to ascertain stability. Both lymphoid and inflammatory chemokines were elevated in RRMS and SPMS with the highest levels found in the active RRMS group. Inflammatory and lymphoid chemokine signatures were defined and generally correlated with each other. This small exploratory clinical study shows the feasibility of measuring complex and potentially more robust chemokine signatures in the CSF of MS patients during clinical trials. No differences were found between stable RRMS and SPMS. Future trials with larger patient cohorts with this chemokine array are needed to further characterize the differences, or the lack thereof, between stable RRMS and SPMS.     相似文献   

12.
DJ-1 is an antioxidant protein whose loss of function by gene mutations has been linked to familial Parkinson's disease (PD). The main objective of the present study was to determine if this molecule was also involved in the pathogenesis of sporadic PD. For this purpose, quantitative immunoblot assays were performed to evaluate DJ-1 in cerebrospinal fluids (CSF) collected from sporadic PD patients (n=40) and non-PD controls (n=38). The results showed that the CSF DJ-1 levels in PD were significantly higher than those in non-PD controls. Especially, upregulation of CSF DJ-1 in the early stage of PD (Yahr I-II) were distinct compared to those in the advanced stage of PD (Yahr III-IV) and non-PD controls (p<0.001 by ANOVA with post hoc Bonferroni's test), suggesting a protective role of DJ-1 against oxidative stress during the early stage. Thus, we propose that CSF DJ-1 could be a possible biomarker for early sporadic PD.  相似文献   

13.
The objective of this study was to develop and apply a novel multiplex panel of solid-phase proximity ligation assays (SP-PLA) requiring only 20 μL of samples, as a tool for discovering protein biomarkers for neurological disease and treatment thereof in cerebrospinal fluid (CSF). We applied the SP-PLA to samples from two sets of patients with poorly understood nervous system pathologies amyotrophic lateral sclerosis (ALS) and neuropathic pain, where patients were treated with spinal cord stimulation (SCS). Forty-seven inflammatory and neurotrophic proteins were measured in samples from 20 ALS patients and 15 neuropathic pain patients, and compared to normal concentrations in CSF from control individuals. Nineteen of the 47 proteins were detectable in more than 95% of the 72 controls. None of the 21 proteins detectable in CSF from neuropathic pain patients were significantly altered by SCS. The levels of the three proteins, follistatin, interleukin-1 alpha, and kallikrein-5 were all significantly reduced in the ALS group compared to age-matched controls. These results demonstrate the utility of purpose designed multiplex SP-PLA panels in CSF biomarker research for understanding neuropathological and neurotherapeutic mechanisms. The protein changes found in the CSF of ALS patients may be of diagnostic interest.  相似文献   

14.
Wang H  Wang K  Xu W  Wang C  Qiu W  Zhong X  Dai Y  Wu A  Hu X 《Journal of neurochemistry》2012,122(1):19-23
The concept that the immune system plays a central role in the pathogenesis of multiple sclerosis (MS) and neuromyelitis optica (NMO) was indisputable. However, neurodegenerative pathological features including loss of axons and neurons were also found in the lesions of these diseases. α-Synuclein is one of the most abundant proteins in pre-synaptic terminals. Recently, many research show α-synuclein level in CSF may reflect the progression of synaptic dysfunction and neuronal apoptosis. Whether the levels of CSF α-synuclein are changed in MS and NMO patients remain unknown. In this study, CSF α-synuclein was measured by an enzyme-linked immunosorbent assay (ELISA) in MS (n = 18) patients, NMO (n = 22) patients, Parkinson's disease patients (n = 9), and the controls (n = 11). We found concentration of α-synuclein in MS and NMO patients were significantly higher than Parkinson's disease subgroup and the controls. Both MS and NMO revealed an increased disease disability with increased CSF α-synuclein. Thus, CSF α-synuclein may be reflect injure axons and neurons in inflammatory demyelinating diseases.  相似文献   

15.
Biomarkers of neurodegenerative disorders are needed to assist in diagnosis, to monitor disease progression and therapeutic interventions, and to provide insight into disease mechanisms. One route to identify such biomarkers is by proteomic and peptidomic analysis of cerebrospinal fluid (CSF). In the current study, we performed an in‐depth analysis of the human CSF endopeptidome to establish an inventory that may serve as a basis for future targeted biomarker studies. High‐pH RP HPLC was employed for off‐line sample prefractionation followed by low‐pH nano‐LC‐MS analysis. Different software programs and scoring algorithms for peptide identification were employed and compared. A total of 18 031 endogenous peptides were identified at a FDR of 1%, increasing the number of known endogenous CSF peptides 10‐fold compared to previous studies. The peptides were derived from 2 053 proteins of which more than 60 have been linked to neurodegeneration. Notably, among the findings were six peptides derived from microtubule‐associated protein tau, three of which span the diagnostically interesting threonine‐181 (Tau‐F isoform). Also, 213 peptides from amyloid precursor protein were identified, 58 of which were partially or completely within the sequence of amyloid β 1–40/42, as well as 109 peptides from apolipoprotein E, spanning sequences that discriminate between the E2/E3/E4 isoforms of the protein.  相似文献   

16.
We evaluated the spontaneous IL17, IFNgamma and IL10 production by peripheral blood mononuclear cells from patients affected by clinically isolated syndromes (CIS) suggestive of multiple sclerosis (MS) both in acute phase and in remission, relapsing remitting MS (RRMS) both in relapse and in remission, not-relapsing secondary progressive MS (SPMS) and controls. We observed higher IL17 levels in CIS patients both in acute phase and in remission than in SPMS patients and controls. On the contrary no difference in IL17 production was observed among RRMS patients and CIS, SPMS patients and controls. IFNgamma levels were significantly higher in CIS patients in acute phase than in CIS and RRMS patients in remission, SPMS patients and controls. Moreover, we observed higher IFNgamma spontaneous production in relapsing RRMS patients than in remitting RRMS and SPMS patients and controls. IL10 levels were significantly higher in remitting CIS and in relapsing RRMS patients than in SPMS patients and controls. There was no difference in IFNgamma, IL10 and IL17 levels between SPMS patients and controls. Our data suggest that IL17 might play a crucial role mainly in the early phase of MS, while IFNgamma seems to be involved both in the early phase and in the following relapses of the disease.  相似文献   

17.
ABSTRACT: BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system (CNS). It involves damage to the myelin sheath surrounding axons and to the axons themselves. MS most often presents with a series of relapses and remissions but then evolves over a variable period of time into a slowly progressive form of neurological dysfunction termed secondary progressive MS (SPMS). The reasons for this change in clinical presentation are unclear. The absence of a diagnostic marker means that there is a lag time of several years before the diagnosis of SPMS can be established. At the same time, understanding the mechanisms that underlie SPMS is critical to the development of rational therapies for this untreatable stage of the disease. RESULTS: Using LC coupled mass spectrometry; we have established a highly specific and sensitive multiplex selected reaction monitoring (SRM) assay. Our SRM assay has facilitated the simultaneous detection of surrogate peptides originating from 28 proteins present in cerebrospinal fluid (CSF). Protein levels in CSF are generally ~200-fold lower than that in human sera. A limit of detection (LOD) was determined to be as low as one femtomole per uL. We processed and analysed CSF samples from a total of 22 patients with SPMS, 12 patients with non-inflammatory neurological disorders (NIND) and 10 age-matched healthy controls in parallel for the levels of 28 selected potential protein biomarkers, followed by principal component analysis (PCA) for clustering protein biomarkers. Our SRM data suggested different levels of agrin, kallikrein and putative myosin-XVB in SPMS patients as compared to healthy controls. PCA reveals that these proteins are correlated, can be grouped into four principal components. Overall, we established an efficient platform to verify protein biomarkers in CSF, which can be easily adapted to other proteins of interest related to neurodegenerative diseases. CONCLUSIONS: A highly specific and sensitive multiplex SRM-MS assay was established for verifying CSF protein biomarkers in SPMS. Three proteins were found to be expressed significantly differently in SPMS patients as compared to health controls, which will help further our current understanding of SPMS disease pathology and/or therapeutic intervention.  相似文献   

18.
To better understand the pathophysiologic mechanisms underlying Guillain-Barré syndrome (GBS), Comparative proteomic analysis of cerebrospinal fluid (CSF) between patients with GBS (the experiment group) and control subjects suffering from other neurological disorders (the control group) was carried out using two-dimensional gel electrophoresis (2-DE) technique, in combination with matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) and database searching to determine abnormal CSF proteins in GBS patients. Image analysis of 2-DE gels silver stained revealed that 10 protein spots showed significant differential expression between the two groups of CSF samples. The expression of cystatin C, transthyretin, apolipoprotein E and heat shock protein 70 were decreased. However, haptoglobin, alpha-1-antitrypsin, apolipoprotein A-IV and neurofilaments were elevated. The subsequent ELISA measured the concentration of cystatin C and confirmed the result of the proteomic analysis. These identified proteins may be involved in the pathophysiological process of GBS and call for further studying the role of these proteins in the pathogenesis of the disease.  相似文献   

19.

Background

Differences in cytokine/chemokine profiles among patients with neuromyelitis optica (NMO), relapsing remitting multiple sclerosis (RRMS), and primary progressive MS (PPMS), and the relationships of these profiles with clinical and neuroimaging features are unclear. A greater understanding of these profiles may help in differential diagnosis.

Methods/Principal Findings

We measured 27 cytokines/chemokines and growth factors in CSF collected from 20 patients with NMO, 26 with RRMS, nine with PPMS, and 18 with other non-inflammatory neurological diseases (OND) by multiplexed fluorescent bead-based immunoassay. Interleukin (IL)-17A, IL-6, CXCL8 and CXCL10 levels were significantly higher in NMO patients than in OND and RRMS patients at relapse, while granulocyte-colony stimulating factor (G-CSF) and CCL4 levels were significantly higher in NMO patients than in OND patients. In NMO patients, IL-6 and CXCL8 levels were positively correlated with disability and CSF protein concentration while IL-6, CXCL8, G-CSF, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IFN-γ were positively correlated with CSF neutrophil counts at the time of sample collection. In RRMS patients, IL-6 levels were significantly higher than in OND patients at the relapse phase while CSF cell counts were negatively correlated with the levels of CCL2. Correlation coefficients of cytokines/chemokines in the relapse phase were significantly different in three combinations, IL-6 and GM-CSF, G-CSF and GM-CSF, and GM-CSF and IFN-γ, between RRMS and NMO/NMOSD patients. In PPMS patients, CCL4 and CXCL10 levels were significantly higher than in OND patients.

Conclusions

Our findings suggest distinct cytokine/chemokine alterations in CSF exist among NMO, RRMS and PPMS. In NMO, over-expression of a cluster of Th17- and Th1-related proinflammatory cytokines/chemokines is characteristic, while in PPMS, increased CCL4 and CXCL10 levels may reflect on-going low grade T cell and macrophage/microglia inflammation in the central nervous system. In RRMS, only a mild elevation of proinflammatory cytokines/chemokines was detectable at relapse.  相似文献   

20.
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with complex immunopathogenesis. Using the 2‐D DIGE technology, we separate CSF proteins from patients with active MS and control subjects. Three of the seven differential proteins identified were related with complement system, and the network analysis of the differential proteins revealed complement activation involvement in active MS. Complement C4b (gamma chain) was confirmed elevated by performing western blotting analysis (P < 0.01). The present results are an independent quantitative proteomic measure in CSF from active MS patients. The differential expression of the complement C4b and related proteins in CSF provides potential biomarkers as well as evidence for the involvement of complement activation in the pathogenesis of MS disease. J. Cell. Biochem. 112: 1930–1937, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号