首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
A comparative analysis of differentially expressed proteins in a susceptible grapevine (Vitis vinifera ‘Cabernet Sauvignon’) during the infection of Erysiphe necator, the causal pathogen of grapevine powdery mildew (PM), was conducted using iTRAQ. The quantitative labeling analysis revealed 63 proteins that significantly changed in abundance at 24, 36, 48, and 72 h post inoculation with powdery mildew conidiospores. The functional classification of the PM‐responsive proteins showed that they are involved in photosynthesis, metabolism, disease/defense, protein destination, and protein synthesis. A number of the proteins induced in grapevine in response to E. necator are associated with the plant defense response, suggesting that PM‐susceptible Cabernet Sauvignon is able to initiate a basal defense but unable to restrict fungal growth or slow down disease progression.  相似文献   

2.
Ca2+是植物体内重要的第二信使,当植物受到各种环境刺激时,细胞内的Ca2+浓度瞬间产生变化,并被Ca2+信号效应器识别,通过与下游的靶蛋白结合并调节其活性,参与调控植物各种生理活动。钙调素结合蛋白以依赖Ca2+或不依赖Ca2+的方式结合钙调素。对目前已经鉴定的植物钙调素结合蛋白结构特点进行了综述,并着重介绍了钙调素结合蛋白是如何参与调节植物对生物胁迫和非生物胁迫的反应,为提高作物抗病抗逆能力研究提供理论基础。  相似文献   

3.
4.
WRKY基因家族是主要存在于植物中的转录因子,拟南芥中至少有74个成员。根据锌指结构特征和WRKY结构域的数目,可以将WRKY转录因子分为三大类。拟南芥WRKY68属于第Ⅱ类WRKY蛋白。通过GUS染色和qRT PCR分析各组织部位的表达情况,发现WRKY68在根中的表达量是最高的,其次是幼嫩的叶片和老的荚果中。各种处理条件下的表达水平显示,IAA和高温处理后,WRKY68的表达明显上调,PstDC3000、JA、SA、NAA轻微诱导WRKY68的表达,而Botrytis、NaCl、甘露醇、PEG、脱水、ACC、ABA抑制WRKY68的表达,根据以上实验结果,我们推测WRKY68可能参与生长素和温度调控的植物形态建成及发育过程。  相似文献   

5.
The source of infection has always been considered as an important factor in epidemiology and mostly linked to environmental source such as surface water, soil, plants and also animals. The activity of the opportunistic pathogens associated with plant root, their adaptation and survival under hostile environmental condition is poorly understood. In this study the salt tolerance ability of Methylobacterium mesophilicum and its colonization in the root and shoot of plants under severe drought and salt stress conditions were investigated. The colonization of plant by M. mesophilicum was investigated in a gnotobiotic sand system, and their survival in pots with saline soil. Bacterial strain was found to colonize rhizosphere of cucumber, tomato and paprika grown under normal and salt stress condition and reached up to 6.4 × 104 and 2.6 × 104 CFU/g root. The strain was resistant to Gentamicin, Ampicillin, Amoxicillin plus Clavulanic acid, Cefotaxime, neomycin, penicillin and was also tolerant to salinity stress (up to 6% NaCl). These abilities play important roles in enabling persistent colonization of the plant surface by M. mesophilicum strains. In conclusion, this study provides background information on the behaviour of opportunistic pathogen M. mesophilicum on plants and their survival in harsh environmental conditions.  相似文献   

6.
    
Grapes (Vitis vinifera) are a valuable fruit crop and wine production is a major industry. Global warming and expanded range of cultivation will expose grapes to more temperature stresses in future. Our study investigated protein level responses to abiotic stresses, with particular reference to proteomic changes induced by the impact of four different temperature stress regimes, including both hot and cold temperatures, on cultured grape cells. Cabernet Sauvignon cell suspension cultures grown at 26°C were subjected to 14 h of exposure to 34 and 42°C for heat stress, and 18 and 10°C for cold stress. Cells from the five temperatures were harvested in biological triplicates and label‐free quantitative shotgun proteomic analysis was performed. A total of 2042 non‐redundant proteins were identified from the five temperature points. Fifty‐five proteins were only detected in extreme heat stress conditions (42°C) and 53 proteins were only detected at extreme cold stress conditions (10°C). Gene Ontology (GO) annotations of differentially expressed proteins provided insights into the metabolic pathways that are involved in temperature stress in grape cells. Sugar metabolism displayed switching between alternative and classical pathways during temperature stresses. Additionally, nine proteins involved in the phenylpropanoid pathway were greatly increased in abundance at extreme cold stress, and were thus found to be cold‐responsive proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD000977 ( http://proteomecentral.proteomexchange.org/dataset/PXD000977 ).  相似文献   

7.
Rapid climate change threatens plant communities. While many studies address the impact of climate change on plants and mechanisms of their resilience to climate stressors, the role of the plant microbiome in aiding plants' adaptation to climate change has been less investigated. We argue here that fungal endophytes, an important constituent of the plant microbiome, may be key to the ability of plants to adapt to climatic stressors. The rapid adaptive response of endophytes coupled with their ability to ‘transfer’ resistance to their hosts may fast-track plants' adaptation to climate change. We briefly review the importance of Class 3 fungal endophytes of terrestrial plants and discuss how they may accelerate adaptations to climate change in crops and natural plant communities and call for efforts directed at improving the understanding of fungal endophyte-facilitated plant health. Such information could aid in devising improved strategies for mitigating climate change effects on plant communities.  相似文献   

8.
  总被引:1,自引:0,他引:1  
Drought is a major threat to world agriculture. In order to identify proteins associated with plant drought tolerance, barley varieties bred in the UK (Golden Promise) and Iraq (Basrah) were compared. The variety Basrah showed physiological adaptations to drought when compared to Golden Promise, for example relative water content of roots and shoots after 1 week of drought was much higher for Basrah than for Golden Promise. DIGE analysis was carried out on proteins from roots and leaves under control and drought conditions. Twenty‐four leaf and 45 root proteins were identified by MALDI‐TOF MS. The relative expression patterns of the identified proteins fell into a number of distinct classes. The variety Basrah is characterised by constitutive expression or higher drought‐induced expression levels of proteins regulating ROS production and protein folding. Photosynthetic enzymes, by contrast, were downregulated in Basrah. Enzyme assays showed a good correlation between DIGE‐derived protein abundance estimates and enzyme activity in extracts. Overall, this study shows that the enhanced drought tolerance of variety Basrah is driven by an enhanced regulation of ROS under drought.  相似文献   

9.
    
Banana (Musa spp.) multiple shoot meristems are an excellent model to study the meristem proteome. Using a 2-DE protocol developed for small amounts of tissue and MS-based cross species polypeptide identification, we have revealed the meristem proteome and investigated the influence of sucrose-mediated osmotic stress in a dehydration-tolerant variety. Proteins that were significantly up- or down-regulated due to the high-sucrose treatment were classified using non-parametric univariate statistics. Our results suggest that the maintenance of an osmoprotective intracellular sucrose concentration, the enhanced expression of particular genes of the energy-conserving glycolysis and the conservation of the cell wall integrity are essential to maintain homeostasis, to acclimate and to survive dehydration. By comparing the dehydration-tolerant variety with a dehydration-sensitive variety, we were able to distinguish several genotype-specific proteins (isoforms), and could associate the dehydration-tolerant variety with proteins involved in energy metabolism (e.g., phosphoglycerate kinase, phosphoglucomutase, UDP-glucose pyrophosphorylase) and proteins that are associated with stress adaptation (e.g., OSR40-like protein, abscisic stress ripening protein-like protein). This work shows that proteome analysis can be used successfully to perform quantitative difference analysis and to characterize genetic variations in a recalcitrant crop.  相似文献   

10.
11.
  总被引:1,自引:0,他引:1  
  相似文献   

12.
    
Although canola is a moderately salt‐tolerant species, its growth, seed yield, and oil production are markedly reduced under salt stress, particularly during the early vegetative growth stage. To identify the mechanisms of salt responsiveness in canola, the proteins expressed in the second and third newly developed leaves of salt‐tolerant, Hyola 308, and salt‐sensitive, Sarigol, cultivars were analyzed. Plants were exposed to 0, 175, and 350 mM NaCl during the vegetative stage. An increase in the Na content and a reduction in growth were observed in the third leaves compared to the second leaves. The accumulation of Na was more pronounced in the salt‐sensitive compared with the salt‐tolerant genotype. Out of 900 protein spots detected on 2‐DE gels, 44 and 31 proteins were differentially expressed in the tolerant and susceptible genotypes, respectively. Cluster analysis based on the expression level of total and responsive proteins indicated that the second leaves had a discriminator role between the two genotypes at both salinity levels. Using MS analysis, 46 proteins could be identified including proteins involved in responses to oxidative stress, energy production, electron transport, translation, and photosynthesis. Our results suggest that these proteins might play roles in canola adaptation to salt stress.  相似文献   

13.
    
  相似文献   

14.
    
Biologists who study insect-induced plant galls are faced with the overwhelming diversity of plant forms and insect species. A challenge is to find common themes amidst this diversity. We discuss common themes that have emerged from our cytological and histochemical studies of diverse neotropical insect-induced galls. Gall initiation begins with recognition of reactive plant tissues by gall inducers, with subsequent feeding and/or oviposition triggering a cascade of events. Besides, to induce the gall structure insects have to synchronize their life cycle with plant host phenology. We predict that reactive oxygen species (ROS) play a role in gall induction, development and histochemical gradient formation. Controlled levels of ROS mediate the accumulation of (poly)phenols, and phytohormones (such as auxin) at gall sites, which contributes to the new cell developmental pathways and biochemical alterations that lead to gall formation. The classical idea of an insect-induced gall is a chamber lined with a nutritive tissue that is occupied by an insect that directly harvests nutrients from nutritive cells via its mouthparts, which function mechanically and/or as a delivery system for salivary secretions. By studying diverse gall-inducing insects we have discovered that insects with needle-like sucking mouthparts may also induce a nutritive tissue, whose nutrients are indirectly harvested as the gall-inducing insects feeds on adjacent vascular tissues. Activity of carbohydrate-related enzymes across diverse galls corroborates this hypothesis. Our research points to the importance of cytological and histochemical studies for elucidating mechanisms of induced susceptibility and induced resistance.  相似文献   

15.
    
An excess of NaCl in the soil is detrimental for plant growth. It interferes with mineral nutrition and water uptake and leads to accumulation of toxic ions in the plant. Understanding the response of roots to NaCl stress may facilitate the development of crops with increased tolerance to this and other stresses. Since controls achieved at the posttranslational level are of critical importance for regulating protein function, the present work used a robust label‐free quantitative proteomic methodology to quantify phosphorylation events that affect root membrane proteins in Arabidopsis, in response to short‐term (up to 2 h) NaCl treatments. This work identified 302 proteotypic phosphopeptides including 77 novel phosphorylated sites. NaCl treatment significantly altered the abundance of 74 phosphopeptides, giving novel insights into the regulation of major classes of membrane proteins, including ATPases, sodium transporters, and aquaporins. The data provide a unique access to phosphorylation reprogramming of ionic equilibrium in plant cells under NaCl stress. The use of predictive bioinformatic tools for kinase motifs suggested that root membrane proteins are substrates of cAMP‐dependent protein kinase, cGMP‐dependent protein kinase, and protein kinase C families, also called AGC kinases, arguing for an important role of lipid signaling in abiotic stress responses. It also pointed to cross‐talks between protein kinase families during NaCl stress.  相似文献   

16.
17.
  总被引:2,自引:0,他引:2  
Zörb C  Schmitt S  Mühling KH 《Proteomics》2010,10(24):4441-4449
It is of fundamental importance to understand adaptation processes leading to salt resistance. The initial effects on maize roots in the first hour after the adjustment to saline conditions were monitored to elucidate initial responses. The subsequent proteome change was monitored using a 2‐D proteomic approach. We found several new salt‐inducible proteins, whose expression has not been previously reported to be modulated by salt. A set of phosphoproteins in maize was detected but only ten proteins were phosphorylated and six proteins were dephosphorylated after the application of 25 mM NaCl for 1 h. Some of the phosphorylated maize proteins such as fructokinase, UDP‐glucosyl transferase BX9, and 2‐Cys‐peroxyredoxine were enhanced, whereas an isocitrate‐dehydrogenase, calmodulin, maturase, and a 40‐S‐ribosomal protein were dephosphorylated after adjustment to saline conditions. The initial reaction of the proteome and phosphoproteome of maize after adjustment to saline conditions reveals members of sugar signalling and cell signalling pathways such as calmodulin, and gave hint to a transduction chain which is involved in NaCl‐induced signalling. An alteration of 14‐3‐3 proteins as detected may change plasma membrane ATPase activity and cell wall growth regulators such as xyloglucane endotransglycosylase were also found to be changed immediately after the adjustment to salt stress.  相似文献   

18.
  总被引:1,自引:0,他引:1  
Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS‐based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome  相似文献   

19.
    
To better understand the pathogen-stress response of Brassica species against the ubiquitous hemi-biotroph fungus Leptosphaeria maculans, we conducted a comparative proteomic analysis between blackleg-susceptible Brassica napus and blackleg-resistant Brassica carinata following pathogen inoculation. We examined temporal changes (6, 12, 24, 48 and 72 h) in protein profiles of both species subjected to pathogen-challenge using two-dimensional gel electrophoresis. A total of 64 proteins were found to be significantly affected by the pathogen in the two species, out of which 51 protein spots were identified using tandem mass spectrometry. The proteins identified included antioxidant enzymes, photosynthetic and metabolic enzymes, and those involved in protein processing and signaling. Specifically, we observed that in the tolerant B. carinata, enzymes involved in the detoxification of free radicals increased in response to the pathogen whereas no such increase was observed in the susceptible B. napus. The expression of genes encoding four selected proteins was validated using quantitative real-time PCR and an additional one by Western blotting. Our findings are discussed with respect to tolerance or susceptibility of these species to the pathogen.  相似文献   

20.
    
The existence of a gamma‐glutamyl cycle consisting of intracellular GSH synthesis, extrusion to the apoplastic space and recovery by gamma‐glutamyl transferase (GGT)‐assisted degradation into its constituent amino acids, has been demonstrated in plants. To address the significance of this cycle in plant cells, we performed integrated biochemical, immunocytochemical, and quantitative proteomics analyses in the Arabidopsis thaliana ggt1 knockout mutant (lacking apoplastic GGT1 isoform) and its corresponding wild‐type (WT). The ggt1 knockout leaves exhibited an increased ascorbate and GSH content, increased apoplastic GSH content, and enhanced protein carbonylations in the low‐molecular weight range compared to WT. The combined iTRAQ and LC‐MS/MS‐based quantitative proteomics approach identified 70 proteins (out of 1013 identified proteins) whose abundance was significantly different in leaves of ggt1 mutant compared to WT, with a fold change ≥1.5. Mining of the proteome data for GSH‐associated genes showed that disruption of gamma‐glutamyl cycle in ggt1 knockout‐leaves was associated with the induction of genes encoding four GSTs in the phi class (GSTF2, GSTF6, GSTF9, and GSTF10), a GSH peroxidase (GPX1), and glyoxylase II. Proteins with a lower abundance compared to the WT are involved in chloroplast functions, carbohydrate/maltose metabolism, and vegetative storage protein synthesis. Present findings suggest that GGT1 plays a role in redox signaling. The disruption of the gamma‐glutamyl cycle in the ggt1 mutant results in pleiotropic effects related to biotic and abiotic stress response, antioxidant metabolism, senescence, carbohydrate metabolism, and photosynthesis, with strong implications for plant adaptation to the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号