首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the concentration-response relationship of angiotensin II with respect to its chronotropic effects, the sinus rate was recorded from canine isolated right atrial preparations perfused through the sinus node artery. Nicotine (5 x 10(-5) M) injection induced an early, atropine-sensitive bradycardic response and a more delayed propranolol-sensitive tachycardic response, suggesting that the preparations contained both cholinergic and adrenergic neurons. The former response, but not the latter, was markedly reduced in preparations in which the right atrial ganglionated plexus was removed. Positive chronotropic responses were induced by angiotensin II over a wide range of concentrations (10(-12) - 5 x 10(-6) M), with a maximum increment of 29.9 +/- 9.6 beats/min. Responses to low concentrations (angiotensin II, 10(-11) M) were monophasic and were abolished by propranolol. In contrast, the responses to higher concentrations (angiotensin II, 10(-6) M) were not abolished by propranolol and were biphasic (early response, 29.9 +/- 12.1 beats/min; later response, 18.6 +/- 9.0 beats/min), the early response being blocked by losartan (AT1 antagonist) but not the later one, both being blocked by saralasin (nonselective angiotensin II antagonist). In conclusion, the data suggest that angiotensin II exerts its stimulant effects on the heart through receptors located either on cardiomyocytes or neurons, depending on the agonist concentration.  相似文献   

2.
腺苷易化大鼠颈动脉窦压力感受器的活动   总被引:8,自引:5,他引:3  
Chen S  Fan ZZ  He RR 《生理学报》1998,50(5):525-531
在36只麻醉大鼠,以隔离灌流颈动脉窦区记录窦神经传入放电的方法观察了腺苷(adenosine,Ado)对颈动脉窦压力感受器传入放电的影响。所得结果如下:(1)以75μmol/LAdo隔离灌流大鼠左侧颈动脉窦区时,窦内压-窦神经传入放电积分(ISP-ISNA)关系曲线向左上方移位,曲线最大斜率(PS)由(18.75±0.12)%/kPa增至(22.21±0.11)%/kPa(P<0.001),最大积分值(PIV)由(209.83±2.57)%增至(239.17±1.75)%;阈压(TP)和饱和压(SP)则分别从(8.57±0.24)和(22.99±0.34)下降至(7.15±0.23)kPa(P<0.001)和(21.21±0,43)kPa(P<0.01)。再分别以125和175μmol/LAdo灌流,机能曲线进一步向左上方移位,PS、TP和SP的变化均呈明显的剂量依赖性。(2)用腺苷选择性A1受体拮抗剂8-cyclopentyl-1,3-dipropylxanthine(0.134mmol/L)预处理后,Ado的上述效应即被阻断。(3)先给予KATP通道阻断剂格列苯脲(10μmol/L)亦可取消腔苷对窦神经传入放电的影响。结果表明,在体隔离灌流大鼠颈动脉窦区条件下,Ado对颈动脉窦压力感受器活动有易化作用,此作用似与腺苷A1受体介导的KATP通道开放有关。  相似文献   

3.
腺苷对颈动脉窦压力感受器反射的易化作用   总被引:10,自引:3,他引:7  
Chen S  Fan ZZ  He RR 《生理学报》1998,50(3):296-302
在27只隔离灌流颈动脉窦区的麻醉大鼠,观察了腺苷(adenosine,Ado)对颈动脉窦压力感受器反射的影响。所得结果如下:(1)以 Ado(125μmol/L)隔离灌流大鼠左侧颈动脉窦区时,压力感受器机能曲线向左下方移位,曲线最大斜率(PS)由0.37±0.02增至0 55±0.02kPa/KPa(P<0.001),反射性血压下降幅度(RD)由5.53±0.12增至7.76±0.36KPa;阈压(TP)、平衡压(EP)和饱和压(SP)则分别从8.60±0.27,12.53±0.30和23.69±0.15下降至5.63± 0.11kPa,10.89±0.29KPa和20.18±0.55KPa(P<0.01-0.001 )。其中RD,PS和TP的变化呈明显的剂量依赖性。(2)用腺苷选择性 A1受体拮抗剂(8-cyclopentyl-l,3-dipropylianthene,0.134mmol/L)预处理后,Ado的上述反射效应即被阻断。(3)先给予KATP通道阻断剂格列苯脲(glibenclamide.10μmol/L)亦可取消腺苷对压力感受器反射的影响。以上结果表明, Ado对大鼠颈动脉窦压力感受器活动有易化作用,这一作用似与腺苷A1受体介导的KATP通道开放有关。  相似文献   

4.
The mechanism of extracellular ATP-triggered vagal depressor reflex was further studied in a closed-chest canine model. Adenosine and ATP were administered individually in equimolar doses (0.01-1.0 mumol/kg) into the right coronary artery (RCA) and left circumflex coronary artery (LCA). When administered into the RCA, adenosine and ATP exerted an identical and relatively small negative chronotropic effect on sinus node automaticity; the time to peak negative chronotropic effect was >/=7 s. When administered into the LCA, adenosine had no effect on sinus node automaticity, whereas ATP markedly suppressed sinus node automaticity. This effect of ATP 1) reached its peak in <2 s after its administration, 2) was short lasting, and 3) was completely abolished by either intravenous administration of the muscarinic cholinergic blocker atropine (0.2 mg/kg) or intra-LCA administration of 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP), a potent P2X(2/3) purinergic receptor (P2X(2/3)R) antagonist, but not by diinosine pentaphosphate (Ip(5)I), a potent inhibitor of P2X(1)R and P2X(3)R. Repetitive administrations of ATP were not associated with reduced effects, indicative of receptor desensitization, thereby excluding the involvement of the rapidly desensitized P2X(1)R in the action of ATP. It was concluded that ATP triggers a cardio-cardiac vagal depressor reflex by activating P2X(2/3)R located on vagal sensory nerve terminals localized in the left ventricle. Because these terminals mediate vasovagal syncope, these data could suggest a mechanistic role of extracellular ATP in this syndrome and, in addition, give further support to the hypothesis that endogenous ATP released from ischemic myocytes is a mediator of atropine-sensitive bradyarrhythmias associated with left ventricular myocardial infarction.  相似文献   

5.
Cerebral vasodilation in hypoxia may involve endothelium-derived relaxing factor-nitric oxide (NO). An inhibitor of NO formation, N omega-nitro-L-arginine (LNA, 100 micrograms/kg i.v.), was given to conscious sheep (n = 6) during normoxia and again in hypocapnic hypoxia (arterial PO2 approximately 38 Torr). Blood samples were obtained from the aorta and sagittal sinus, and cerebral blood flow (CBF) was measured with 15-microns radiolabeled microspheres. During normoxia, LNA elevated (P < 0.05) mean arterial pressure from 82 +/- 3 to 88 +/- 2 (SE) mmHg and cerebral perfusion pressure (CPP) from 72 +/- 3 to 79 +/- 3 mmHg, CBF was unchanged, and cerebral lactate release (CLR) rose temporarily from 0.0 +/- 1.9 to 13.3 +/- 8.7 mumol.min-1 x 100 g-1 (P < 0.05). The glucose-O2 index declined (P < 0.05) from 1.67 +/- 0.16 to 1.03 +/- 0.4 mumol.min-1 x 100 g-1. Hypoxia increased CBF from 59.9 +/- 5.4 to 122.5 +/- 17.5 ml.min-1 x 100 g-1 and the glucose-O2 index from 1.75 +/- 0.43 to 2.49 +/- 0.52 mumol.min-1 x 100 g-1 and decreased brain CO2 output, brain respiratory quotient, and CPP (all P < 0.05), while cerebral O2 uptake, CLR, and CPP were unchanged. LNA given during hypoxia decreased CBF to 77.7 +/- 11.8 ml.min-1 x 100 g-1 and cerebral O2 uptake from 154 +/- 22 to 105.2 +/- 12.4 mumol.min-1 x 100 g-1 and further elevated mean arterial pressure to 98 +/- 2 mmHg (all P < 0.05), CLR was unchanged, and, surprisingly, brain CO2 output and respiratory quotient were reduced dramatically to negative values (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The chronotropic responses to angiotensins I and II (5 micrograms in 1 mL Tyrode's solution) injected into the sinus node artery were assessed before and after the intravenous administration of captopril (2 mg/kg) and saralasin (20 micrograms/kg) in anaesthetized dogs. The effects of angiotensin II given intravenously were also observed. The animals (n = 8) were vagotomized and pretreated with propranolol (1 mg/kg, i.v.) to prevent baroreceptor-mediated responses to increases in blood pressure. Injection of angiotensin I into the sinus node artery induced significant increases in heart rate (114 +/- 6 vs. 133 +/- 6 beats/min) and in systemic systolic (134 +/- 13 vs. 157 +/- 14 mmHg; 1 mmHg = 133.3 Pa) and diastolic (95 +/- 10 vs. 126 +/- 13 mmHg) blood pressures. Similar results were obtained when angiotensin II was injected into the sinus node artery, but intravenous injection induced changes in systolic (138 +/- 8 vs. 180 +/- 25 mmHg) and diastolic (103 +/- 8 vs. 145 +/- 20 mmHg) blood pressures only. Captopril induced a significant decrease in systolic (118 +/- 11 vs. 88 +/- 12 mmHg) and diastolic (84 +/- 9 vs. 59 +/- 9 mmHg) blood pressures without affecting the heart rate (109 +/- 6 vs. 106 +/- 6 beats/min). Saralasin produced a significant increase in systolic (109 +/- 7 vs. 126 +/- 12 mmHg) blood pressure only. Increments in heart rate and systolic and diastolic blood pressures in response to angiotensins I and II were, respectively, abolished by captopril and saralasin. It was concluded that angiotensin II has, in vivo, a direct positive chronotropic effect that can be blocked by saralasin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Adenosine exerts a spectrum of energy-preserving actions on the heart negative chronotropic effects. The pathways leading to adenosine formation have remained controversial. In particular, although cytosolic 5'-nucleotidases can catalyze adenosine formation in cardiomyocytes, their contribution to the actions of adenosine has not been documented previously. We recently cloned two closely related AMP-preferring cytosolic 5'-nucleotidases (cN-IA and -IB); the A form predominates in the heart. In this study, we overexpressed pigeon cN-IA in neonatal rat cardiomyocytes using an adenovirus. cN-IA overexpression increased adenosine formation and release into the medium caused by simulated hypoxia and by isoproterenol in the absence and presence of inhibitors of adenosine metabolism. Adenosine release was not affected by an ecto-5'-nucleotidase inhibitor, alpha,beta-methylene-ADP, but was affected by a nucleoside transporter, dipyridamole. The positive chronotropic effect of isoproterenol (130 +/-3 vs. 100 +/-4 beats/min) was inhibited (107 +/-3 vs. 94 +/-3 beats/min) in cells overexpressing cN-IA, and this was reversed by the addition of the adenosine receptor antagonist 8-(p-sulfophenyl)theophilline (120 +/- 3 vs. 90 +/- 4 beats/min). Our results demonstrate that overexpressed cN-IA can be sufficiently active in cardiomyocytes to generate physiologically effective concentrations of adenosine at its receptors.  相似文献   

8.
Human myocardial beta-adrenergic receptors were directly identified and characterized using the high affinity antagonist radioligand [125I]iodocyanopindolol. Beta 1 and beta 2 adrenergic receptors were found to coexist in both the left ventricle and right atrium. The relative proportions of the two receptor subtypes were determined by the use of competition radioligand binding and computer modelling techniques employing the subtype selective agents atenolol (beta 1 selective) and zinterol (beta 2 selective). The left ventricle contains 86 +/- 1% beta 1 and 14 +/- 1% beta 2 adrenergic receptors while the right atrium contains 74 +/- 6% beta 1 and 26 +/- 6% beta 2 adrenergic receptors. The direct demonstration of beta 2 adrenergic receptors in the human heart, with a higher proportion in the right atrium agrees with pharmacologic data and supports the notion that chronotropic effects of adrenergic agonists in man may be mediated by both beta 1 and beta 2 adrenergic receptors.  相似文献   

9.
Extracellular adenosine is transported into chromaffin cells by a high-affinity transport system. The action of adenosine receptor ligands was studied in this cellular model. 5'-(N-Ethylcarboxamido)adenosine (NECA), an agonist of A2 receptors, activated adenosine transport. Km values for adenosine were 4.6 +/- 1.0 (n = 5) and 10.2 +/- 3.0 microM (n = 5) for controls and 100 nM NECA, respectively. The Vmax values were 66.7 +/- 23.5 and 170.2 +/- 30 pmol/10(6) cells/min for controls and 100 nM NECA, respectively. The A1 agonist N6-cyclohexyladenosine, the A1 antagonist 8-cyclopentyl-1, 3-dipropylxanthine, and the A1-A2 antagonist 1,3-dipropyl-8-(4-[(2-aminoethyl)amino]-carbonylmethyloxyphenyl)- xanthine did not significantly modify the adenosine transport in this system. Binding studies done with [3H]dipyridamole, a nucleoside transporter ligand, did not show changes in either the number or affinity of transporter sites after NECA treatment. This ligand can enter cells and quantifies the total number of transporters. The binding studies with [3H]-nitrobenzylthioinosine, which quantifies the plasma membrane transporters, showed a Bmax of 19,200 +/- 800 and 23,200 +/- 700 transporters/cell for controls and 100 nM NECA, respectively. No changes in the KD were obtained. The effects of NECA were not mediated through adenylate cyclase activation, because its action was not imitated by forskolin.  相似文献   

10.
Although adenosine exerts cardio-and vasculoprotective effects, the roles and signaling mechanisms of different adenosine receptors in mediating skeletal muscle protection are not well understood. We used a mouse hindlimb ischemia-reperfusion model to delineate the function of three adenosine receptor subtypes. Adenosine A(3) receptor-selective agonist 2-chloro-N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (Cl-IBMECA; 0.07 mg/kg ip) reduced skeletal muscle injury with a significant decrease in both Evans blue dye staining (5.4 +/- 2.6%, n = 8 mice vs. vehicle-treated 28 +/- 6%, n = 7 mice, P < 0.05) and serum creatine kinase level (1,840 +/- 910 U/l, n = 13 vs. vehicle-treated 12,600 +/- 3,300 U/l, n = 14, P < 0.05), an effect that was selectively blocked by an A(3) receptor antagonist 3-ethyl-5-benzyl-2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS-1191; 0.05 mg/kg). The adenosine A(1) receptor agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA; 0.05 mg/kg) also exerted a cytoprotective effect, which was selectively blocked by the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.2 mg/kg). The adenosine A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680; 0.07 mg/kg)-induced decrease in skeletal muscle injury was selectively blocked by the A(2A) antagonist 2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e] [1,2,4]triazolo[1,5-C]pyrimidin-5-amine (SCH-442416; 0.017 mg/kg). The protection induced by the A(3) receptor was abrogated in phospholipase C-beta2/beta3 null mice, but the protection mediated by the A(1) or A(2A) receptor remained unaffected in these animals. The adenosine A(3) receptor is a novel cytoprotective receptor that signals selectively via phospholipase C-beta and represents a new target for ameliorating skeletal muscle injury.  相似文献   

11.
Compelling clinical evidence implicates the potential role of adenosine in development of airway hyperresponsiveness and suggests involvement of pulmonary sensory receptors. This study was carried out to determine the effect of a low dose of adenosine infusion on sensitivity of pulmonary C-fiber afferents in anesthetized open-chest rats. Infusion of adenosine (40 microg x kg-1x min-1 i.v. for 90 s) mildly elevated baseline activity of pulmonary C fibers. However, during adenosine infusion, pulmonary C-fiber responses to chemical stimulants and lung inflation (30 cmH2O tracheal pressure) were markedly potentiated; e.g., the response to right atrial injection of capsaicin (0.25 or 0.5 microg/kg) was increased by more than fivefold (change in fiber activity = 2.64 +/- 0.67 and 16.27 +/- 3.11 impulses/s at control and during adenosine infusion, n = 13, P < 0.05), and this enhanced response returned to control in approximately 10 min. The potentiating effect of adenosine infusion was completely blocked by pretreatment with 8-cyclopentyl-1,3-dipropylxanthine (100 microg/kg), a selective antagonist of the adenosine A1 receptor, but was not affected by 3,7-dimethyl-1-propargylxanthine (1 mg/kg), an A2-receptor antagonist, or 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (2 mg/kg), an A3-receptor antagonist. This potentiating effect was also mimicked by N6-cyclopentyladenosine (0.25 microg x kg-1 x min-1 for 90 s), a selective agonist of the adenosine A1 receptor. In conclusion, our results showed that infusion of adenosine significantly elevated the sensitivity of pulmonary C-fiber afferents in rat lungs and that this potentiating effect is likely mediated through activation of the adenosine A1 receptor.  相似文献   

12.
To investigate whether altered function of adenosine receptors could contribute to sinus node or atrioventricular (AV) nodal dysfunction in conscious mammals, we studied transgenic (TG) mice with cardiac-specific overexpression of the A1 adenosine receptor (A1AR). A Holter ECG was recorded in seven freely moving littermate pairs of mice during normal activity, exercise (5 min of swimming), and 1 h after exercise. TG mice had lower maximal heart rates (HR) than wild-type (WT) mice (normal activity: 437 +/- 18 vs. 522 +/- 24 beats/min, P < 0.05; exercise: 650 +/- 13 vs. 765 +/- 28 beats/min, P < 0.05; 1 h after exercise: 588 +/- 18 vs. 720 +/- 12 beats/min, P < 0.05; all values are means +/- SE). Mean HR was lower during exercise (589 +/- 16 vs. 698 +/- 34 beats/min, P < 0.05) and after exercise (495 +/- 16 vs. 592 +/- 27 beats/min, P < 0.05). Minimal HR was not different between genotypes. HR variability (SD of RR intervals) was reduced by 30% (P < 0.05) in TG compared with WT mice. Pertussis toxin (n = 4 pairs, 150 microg/kg ip) reversed bradycardia after 48 h. TG mice showed first-degree AV nodal block (PQ interval: 42 +/- 2 vs. 37 +/- 2 ms, P < 0.05), which was diminished but not abolished by pertussis toxin. Isolated Langendorff-perfused TG hearts developed spontaneous atrial arrhythmias (3 of 6 TG mice vs. 0 of 9 WT mice, P < 0.05). In conclusion, A1AR regulate sinus nodal and AV nodal function in the mammalian heart in vivo. Enhanced expression of A1AR causes sinus nodal and AV nodal dysfunction and supraventricular arrhythmias.  相似文献   

13.
Shin HK  Park SN  Hong KW 《Life sciences》2000,67(12):1435-1445
This study aimed to evaluate the role for adenosine A2A receptors in the autoregulatory vasodilation to hypotension in relation with cerebral blood flow (CBF) autoregulation in rat pial arteries. Changes in pial artery diameters were observed directly through a closed cranial window. Vasodilation induced by adenosine was markedly suppressed by ZM 241385 (1 micromol/l, A2A antagonist) and alloxazine (1 micromol/l, A2B antagonist), but not by 8-cyclopentyltheophylline (CPT, 1 micromol/l, A1 antagonist). CGS-21680-induced vasodilation was more strongly inhibited by ZM 241385 (25.3-fold; P<0.05) than by alloxazine. In contrast, 5'-N-ethylcarboxamido-adenosine (NECA)-induced vasodilation was more prominently suppressed by alloxazine (12.0-fold; P<0.001) than by ZM 241385. The autoregulatory vasodilation in response to acute hypotension of the pial arteries was significantly suppressed by ZM 241385, but not by CPT and alloxazine. Consistent with this finding, the lower limit of CBF autoregulation significantly shifted to a higher blood pressure by 1 micromol/l of ZM 241385 (53.0+/-3.9 mm Hg to 69.2+/-2.9 mm Hg, P<0.01) and 10 micromol/l of glibenclamide (54.7+/-6.5 mm Hg to 77.9+/-4.2 mm Hg, P<0.001), but not by CPT and alloxazine. Thus, it is suggested that adenosine-induced vasodilation of the rat pial artery is mediated via activation of adenosine A2A and A2B receptors, but not by A1 subtype, and activation of adenosine A2A receptor preferentially contributes to the autoregulatory vasodilation via activation of ATP-sensitive K+ channels in response to hypotension and maintenance of CBF autoregulation.  相似文献   

14.
Stimulation of nucleus of the solitary tract (NTS) A(2a)-adenosine receptors elicits cardiovascular responses quite similar to those observed with rapid, severe hemorrhage, including bradycardia, hypotension, and inhibition of renal but activation of preganglionic adrenal sympathetic nerve activity (RSNA and pre-ASNA, respectively). Because adenosine levels in the central nervous system increase during severe hemorrhage, we investigated to what extent these responses to hemorrhage may be due to activation of NTS adenosine receptors. In urethane- and alpha-chloralose-anesthetized male Sprague-Dawley rats, rapid hemorrhage was performed before and after bilateral nonselective or selective blockade of NTS adenosine-receptor subtypes [A(1)- and A(2a)-adenosine-receptor antagonist 8-(p-sulfophenyl)theophylline (1 nmol/100 nl) and A(2a)-receptor antagonist ZM-241385 (40 pmol/100 nl)]. The nonselective blockade reversed the response in RSNA (-21.0 +/- 9.6 Delta% vs. +7.3 +/- 5.7 Delta%) (where Delta% is averaged percent change from baseline) and attenuated the average heart rate response (change of -14.8 +/- 4.8 vs. -4.4 +/- 3.4 beats/min). The selective blockade attenuated the RSNA response (-30.4 +/- 5.2 Delta% vs. -11.1 +/- 7.7 Delta%) and tended to attenuate heart rate response (change of -27.5 +/- 5.3 vs. -15.8 +/- 8.2 beats/min). Microinjection of vehicle (100 nl) had no significant effect on the responses. The hemorrhage-induced increases in pre-ASNA remained unchanged with either adenosine-receptor antagonist. We conclude that adenosine operating in the NTS via A(2a) and possibly A(1) receptors may contribute to posthemorrhagic sympathoinhibition of RSNA but not to the sympathoactivation of pre-ASNA. The differential effects of NTS adenosine receptors on RSNA vs. pre-ASNA responses to hemorrhage supports the hypothesis that these receptors are differentially located/expressed on NTS neurons/synaptic terminals controlling different sympathetic outputs.  相似文献   

15.
MRE 2029-F20 [N-benzo[1,3]dioxol-5-yl-2-[5-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]-acetamide] is a selective antagonist ligand of A2B adenosine receptors. For use as a radioligand, 1,3-diallyl-xanthine, the precursor of [3H]-MRE 2029-F20, was synthesized, and tritiated on the allyl groups. [3H]-MRE 2029-F20 bound to human A2B receptors expressed in CHO cells showed a KD value of 1.65+/-0.10 nM and Bmax value of 36+/-4 fmol/mg protein. [3H]-MRE2029-F20 represents a useful tool for the pharmacological characterization of human A2B adenosine receptor subtype.  相似文献   

16.
We studied the effect of adenosine on Na+/Ca2+ exchange activity in ewe heart ventricular sarcolemmal vesicles. Adenosine was found to stimulate Na+/Ca2+ exchange activity in a dose-dependent manner from 0.1 nM to 10 microM, with maximal stimulation (40%) at 0.1 microM adenosine. The Vmax of Na+/Ca2+ exchange was increased, but the Km for Ca2+ was not altered. The effect of adenosine was specific since 1 microM adenine, inosine, and guanosine led to less than 15% stimulation, and adenosine diphosphate had no effect. Caffeine antagonized the activation of Na+/Ca2+ exchange by adenosine, and the order of potency of adenosine analogs was N6-(L-2-phenylisopropyl)adenosine = N6-cyclohexyladenosine = 5'-(N- ethylcarboxamido)adenosine much greater than N6-(D-2-phenylisopropyl)adenosine, indicating the involvement of A1 subclass receptors. The effect of adenosine was mimicked by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and blocked by pertussis toxin treatment. Taken together, these results suggest that A1 subclass receptors coupled to a pertussis toxin-sensitive G protein mediate the activation of Na+/Ca2+ exchange activity by adenosine. We conclude that the negative inotropic effect of adenosine in ventricular muscle, antagonistic toward cyclic AMP, may involve activation of Na+/Ca2+ exchange.  相似文献   

17.
最后区注射腺苷对大鼠血压,心率和肾交感神经放电影响   总被引:1,自引:0,他引:1  
Chen S  Li DP  He RR 《生理学报》2000,52(4):313-317
The effects of microinjection of adenosine (Ado) into area postrema (AP) on mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were examined in 53 anesthetized Sprague Dawley rats. The results obtained are as follows. (1) Following microinjection of Ado (1 ng/60 nl) into AP, MAP, HR and RSNA were decreased from 13.76+/-0.46 kPa, 356.28+/-4.25 bpm and 100+/-0% to 11.23+/-0.49 kPa (P<0.001), 336.91+/-5.23 bpm (P<0.01) and 70.95+/-5.19% (P<0.001), respectively; (2) 8-phenyltheophylline (150 microgram/kg, 0.2 ml,iv), a nonselective adenosine receptor antagonist, and 8-cyclopentyl-1,3-dipropylxanthine (500 microgram/kg, 0.2 ml, iv), a selective A(1) adenosine receptor antagonist, blocked the inhibitory effect of Ado completely; and (3) glibenclamide (5 mg/kg, 0.2 ml, iv), a blocker of ATP-sensitive potassium channel, also abolished the effect of Ado. The above results indicate that microinjection of Ado into AP induces inhibitory effects on MAP, HR and RSNA, which may be related to activation of ATP-sensitive potassium channels mediated by A(1) receptors.  相似文献   

18.
Chen S  He RR 《生理学报》1999,51(6):667-674
To observe the effect of intracarotid administration of adenosine on the electrical activity of area postrema (AP) neurons, 76 spontaneous active units were recorded from 45 sino-aortic denervated Sprague-Dawley rats using extracellular recording technique. The results obtained are as follows. (1) Following intracarotid administration of adenosine (Ado, 25 micrograms/kg), the discharge rate of 29 out of 42 units decreased markedly from 6.26 +/- 0.75 to 4.74 +/- 0.76 spikes/s (P < 0.01), whereas that of 6 units increased from 4.13 +/- 0.77 to 4.72 +/- 0.83 spikes/s (P < 0.05), and the other 7 showed no response. Blood pressure (BP) and heart rate (HR) were unaltered throughout the experiment. (2) 8-phenyltheophylline (8-PT, 15 micrograms/kg), a nonselective adenosine receptor antagonist, completely blocked the inhibitory effect of Ado in 10 units. (3) Selective A1 adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 50 micrograms/kg), blocked the effect of Ado in 12 units to a remarkable extent. (4) Glibenclamide (500 micrograms/kg), a blocker of ATP-sensitive potassium channel, abolished the effect of Ado in 12 units. The above results indicate that Ado can inhibit spontaneous electrical activity of AP neurons, which is mediated by adenosine A1-receptor with the involvement of ATP-sensitive potassium channels.  相似文献   

19.
The heart constitutively expresses heme oxygenase (HO)-2, which catabolizes heme-containing proteins to produce biliverdin and carbon monoxide (CO). The heart also contains many possible substrates for HO-2 such as heme groups of myoglobin and cytochrome P-450s, which potentially could be metabolized into CO. As a result of observations that CO activates guanylyl cyclase and induces vascular relaxation and that HO appears to confer protection from ischemic injury, we hypothesized that the HO-CO pathway is involved in ischemic vasodilation in the coronary microcirculation. Responses of epicardial coronary arterioles to ischemia (perfusion pressure approximately 40 mmHg; flow velocity decreased by approximately 50%; dL/dt reduced by approximately 60%) were measured using stroboscopic fluorescence microangiography in 34 open-chest anesthetized dogs. Ischemia caused vasodilation of coronary arterioles by 36 +/- 6%. Administration of N(G)-monomethyl-L-arginine (L-NMMA, 3 micromol.kg(-1).min(-1) intracoronary), indomethacin (10 mg/kg iv), and K(+) (60 mM, epicardial suffusion) to prevent the actions of nitric oxide, prostaglandins, and hyperpolarizing factors, respectively, partially inhibited dilation during ischemia (36 +/- 6 vs. 15 +/- 4%; P < 0.05). The residual vasodilation during ischemia after antagonist administration was inhibited by tin mesoporphyrin IX (SnMP, 10 mg/kg iv), which is an inhibitor of HO (15 +/- 4 vs. 7 +/- 2%; P < 0.05 vs. before SnMP). The guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (10(-5) M, epicardial suffusion) also inhibited vasodilation during ischemia in the presence of L-NMMA with indomethacin and KCl. Moreover, administration of heme-L-arginate, which is a substrate for HO, produced dilation after ischemia but not after control conditions. We conclude that during myocardial ischemia, HO-2 activation can produce cGMP-mediated vasodilation presumably via the production of CO. This vasodilatory pathway appears to play a backup role and is activated only when other mechanisms of vasodilation during ischemia are exhausted.  相似文献   

20.
A number of adenosine analogues substituted in the 2- and N6-positions were synthesized and evaluated for affinity, functional potency and intrinsic activity at the A1 and A2A adenosine receptors (AR). Three classes of N6-substituents were tested; norbornen-2-yl (series 1), norborn-2-yl (series 2) and 5,6-epoxynorborn-2-yl (series 3). The halogens; fluoro, bromo, and iodo were evaluated as C-2 substituents. All compounds showed relatively high affinity (nanomolar) for the A1AR and high potency for inhibiting (-)isoproterenol-stimulated cAMP accumulation in hamster smooth muscle DDT1 MF-2 cells with the 2-fluoro derivatives from each series having the highest affinity. All of the derivatives showed the same intrinsic activity as CPA. At the A2AAR, all of the derivatives showed relatively low affinity and potency (micromolar) for stimulating cAMP accumulation in rat pheochromocytoma PC-12 cells. The intrinsic activity of the derivatives compared to CGS 21680 was dependent upon the halogen substituent in the C-2 position with most showing partial agonist activity. Of particular interest is 2-iodo-N6-(2S-endo-norborn-2-yl)adenosine (5e), which is over 100-fold selective for the A1AR, is a full agonist at this receptor subtype and has no detectable agonist activity at the A2AAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号