首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We report here the first quantitative study of the branched-chain amino acid biosynthetic pathway in Salmonella typhimurium LT2. The intracellular levels of the enzymes of the pathway and of the 2-keto acid intermediates were determined under various physiological conditions and used for estimation of several of the fluxes in the cells. The results led to a revision of previous ideas concerning the way in which multiple acetohydroxy acid synthase (AHAS) isozymes contribute to the fitness of enterobacteria. In wild-type LT2, AHAS isozyme I provides most of the flux to valine, leucine, and pantothenate, while isozyme II provides most of the flux to isoleucine. With acetate as a carbon source, a strain expressing AHAS II only is limited in growth because of the low enzyme activity in the presence of elevated levels of the inhibitor glyoxylate. A strain with AHAS I only is limited during growth on glucose by the low tendency of this enzyme to utilize 2-ketobutyrate as a substrate; isoleucine limitation then leads to elevated threonine deaminase activity and an increased 2-ketobutyrate/2-ketoisovalerate ratio, which in turn interferes with the synthesis of coenzyme A and methionine. The regulation of threonine deaminase is also crucial in this regard. It is conceivable that, because of fundamental limitations on the specificity of enzymes, no single AHAS could possibly be adequate for the varied conditions that enterobacteria successfully encounter.  相似文献   

2.
Structural genes have been identified for all of the enzymes involved in the biosynthesis of pantothenic acid in Salmonella typhimurium and Escherichia coli K-12, with the exception of ketopantoic acid reductase, which catalyzes the conversion of α-ketopantoate to pantoate. The acetohydroxy acid isomeroreductase from S. typhimurium efficiently bound α-ketopantoate (Km = 0.25 mM) and catalyzed its reduction at 1/20 the rate at which α-acetolactate was reduced. Since two enzymes could apparently participate in the synthesis of pantoate, a S. typhimurium ilvC8 strain was mutagenized to derive strains completely blocked in the conversion of α-ketopantoate to pantoate. Several isolates were obtained that grew in isoleucine-valine medium supplemented with either pantoate or pantothenate, but not in the same medium supplemented with α-ketopantoate or β-alanine. The mutations that conferred pantoate auxotrophy (designated panE) to these isolates appeared to be clustered, but were not linked to panB or panC. All panE strains tested had greatly reduced levels of ketopantoic acid reductase (3 to 12% of the activity present in DU201). The capacity of the isomeroreductase to synthesize pantoate in vivo was assessed by determining the growth requirements of ilvC+ derivatives of panE ilvC8 strains. These strains required either α-ketopantoate, pantoate, or pantothenate when the isomeroreductase was present at low levels; when the synthesis of isomeroreductase was induced, panE ilvC+ strains grew in unsupplemented medium. These phenotypes indicate that a high level of isomeroreductase is sufficient for the synthesis of pantoate. panE ilvC+ strains also grew in medium supplemented with lysine and methionine. This phenotype resembles that of some S. typhimurium ilvG mutants (e.g., DU501) which are partially blocked in the biosynthesis of coenzyme A and are limited for succinyl coenzyme A. panE ilvC+ strains which lack the acetohydroxy acid synthases required only methionine for growth (in the presence of leucine, isoleucine, and valine). This and other evidence suggested that the synthesis of pantoic acid by isomeroreductase was blocked by the α-acetohydroxy acids and that pantoic acid synthesis was enhanced in the absence of these intermediates, even when the isomeroreductase was at low levels. panE ilvC+ strains reverted to pantothenate independence. Several of these revertants were shown to have elevated isomeroreductase levels under noninduced and induced conditions; the suppressing mutation in each revertant was shown to be closely linked to ilvC by P22 transduction. This procedure presents a means for obtaining mutants with altered regulation of isomeroreductase.  相似文献   

3.
A threonine deaminase susceptible to inhibition by isoleucine was purified over 3,000-fold from extracts of Pseudomonas multivorans, a bacterium able to use threonine or α-ketobutyrate as sole source of carbon and energy. The enzyme was characterized with respect to molecular weight, dissociation to subunits, and apparent affinities for threonine, isoleucine, and several other ligands. Certain features of the enzyme including its reversible dissociation to subunits, its high constitutive activity, its marked stability, and high apparent orders of binding for threonine and isoleucine were unusual compared to those of isoleucine-inhibitable enzymes from other bacteria. These findings suggested some relationship between properties of the enzyme and the ability of P. multivorans to use threonine as sole carbon source. However, mutant studies ruled out a direct role of the enzyme in threonine catabolism and indicated that another enzyme, threonine dehydrogenase, is essential for growth on threonine.  相似文献   

4.
The catabolic or biodegradative threonine dehydratase (E.C. 4.2.1.16) of Escherichia coli is an isoleucine feedback-resistant enzyme that catalyzes the degradation of threonine to α-ketobutyrate, the first reaction of the isoleucine pathway. We cloned and expressed this enzyme in Corynebacterium glutamicum. We found that while the native threonine dehydratase of C. glutamicum was totally inhibited by 15 mM isoleucine, the heterologous catabolic threonine dehydratase expressed in the same strain was much less sensitive to isoleucine; i.e., it retained 60% of its original activity even in the presence of 200 mM isoleucine. To determine whether expressing the catabolic threonine dehydratase (encoded by the tdcB gene) provided any benefit for isoleucine production compared to the native enzyme (encoded by the ilvA gene), fermentations were performed with the wild-type strain, an ilvA-overexpressing strain, and a tdcB-expressing strain. By expressing the heterologous catabolic threonine dehydratase in C. glutamicum, we were able to increase the production of isoleucine 50-fold, whereas overexpression of the native threonine dehydratase resulted in only a fourfold increase in isoleucine production. Carbon balance data showed that when just one enzyme, the catabolic threonine dehydratase, was overexpressed, 70% of the carbon available for the lysine pathway was redirected into the isoleucine pathway.  相似文献   

5.
Incubation of embryoless barley (Hordeum vulgare) half-seeds for 24 hours with 0.1 m glutamate or aspartate resulted in the release of 17 to 48% as much α-amylase as did incubation with 260 mμm gibberellin. With incubation periods of 48 to 51 hours these amino acids were on the average about half as active as response-saturating concentrations of gibberellin, and in some experiments they were essentially as active. Citric acid cycle intermediates, glycolytic pathway intermediates, and cofactors of these pathways failed to induce α-amylase synthesis, while the following compounds were active: asparagine, homoserine, diaminopimelate, isoleucine, methionine, glutamine, ornithine, citrulline, argininosuccinate, and δ-aminolevulinate. However, threonine, lysine, β-alanine, alanine, γ-aminobutyrate, α-ketobutyrate, proline, arginine, glycine, leucine, and putrescine were inactive. Two patterns were noted in the list of active and inactive compounds: (a) all of the active compounds contain an amino group and are biosynthetically derived from citric acid cycle intermediates; and (b) biosynthetic precursors of the amino acids arginine, proline, threonine, and lysine were active whereas these amino acids were not.  相似文献   

6.
7.
Inhibition of ethylene production by rhizobitoxine   总被引:18,自引:13,他引:5       下载免费PDF全文
Rhizobitoxine, an inhibitor of methionine biosynthesis in Salmonella typhimurium, inhibited ethylene production about 75% in light-grown sorghum seedlings and in senescent apple tissue. Ethylene production stimulated by indoleacetic acid and kinetin in sorghum was similarly inhibited. With both apple and sorghum, the inhibition could only be partially relieved by additions of methionine. A methionine analogue, α-keto-γ-methylthiobutyric acid, which has been suggested as an intermediate between methionine and ethylene, had no effect on the inhibition.  相似文献   

8.
9.
A mutant of Salmonella typhimurium was selected for its spontaneous resistance to the lysine analog, thialysine (S-2-aminoethyl cysteine). This strain, JB585, exhibits a number of pleiotropic properties including a partial growth requirement for threonine, resistance to thiaisoleucine and azaleucine, excretion of lysine and valine, and inhibition of growth by methionine. Genetic studies show that these properties are caused by a single mutation in the thrA gene which encodes the threonine-controlled aspartokinase-homoserine dehydrogenase activities. Enzyme assays demonstrated that the aspartokinase activity is unstable and the threonine-controlled homoserine dehydrogenase activity absent in extracts prepared from the mutant. These results explain the growth inhibition by methionine because the remaining homoserine dehydrogenase isoenzyme would be repressed by methionine, causing a limitation for threonine. The partial growth requirement for threonine during growth in glucose minimal medium may also, by producing an isoleucine limitation, cause derepression of the isoleucine-valine enzymes and provide an explanation for both the valine excretion, and azaleucine and thiaisoleucine resistance. The overproduction of lysine may confer the thialysine resistance.  相似文献   

10.
The control of isoleucine and valine biosynthesis was examined in a hisU mutant of Salmonella typhimurium. It was found that the levels of expression of the ilvEDA operon and the ilvC gene were significantly reduced relative to an isogenic normal strain when grown in unsupplemented medium. In contrast, this hisU mutant exhibited only a slight reduction in total acetohydroxy acid synthase activity relative to that of the wild type. The hisU and hisU+ strains were examined to determine their derepressibility upon either leucine, valine or isoleucine limitation. Only during leucine limitation did the hisU strain exhibit impaired derepressibility relative to the hisU+ strain. In addition, repression control of threonine deaminase (the ilvA product of the ilvEDA operon) in this hisU mutant was refractory to exogenous supplementation with either leucine or valine. This response is in distinct contrast to that of the normal strain, in which the single addition of leucine or valine results in a significant reduction in the level of threonine deaminase.  相似文献   

11.
The intracellular localization of several aspartate pathway enzymes has been studied in pea (Pisum sativum cv Feltham First) and barley (Hordeum vulgare cv Julia) leaves. Protoplast lysates were fractionated by differential or sucrose density gradient centrifugation, in media optimized for each enzyme. The results show that aspartate kinase, homoserine kinase, threonine synthase, and cystathionine γ-synthase are confined to the chloroplast. Cystathionine β-lyase appears to be present in several fractions, though more than 50% of the total activity is associated with the chloroplasts. In contrast, neither methionine synthase nor methionine adenosyl-transferase were significantly associated with chloroplasts, and only a small proportion of the methionine synthase was associated with the mitochondrial fraction. Methionine adenosyltransferase, and hence S-adenosylmethionine synthesis, is not found in any organelle fraction. The conclusion is that whereas threonine, like lysine, is synthesized only in the chloroplast, the last step in methionine biosynthesis occurs largely in the cytoplasm.  相似文献   

12.
Inhibition of Threonine Dehydratase Is Herbicidal   总被引:2,自引:0,他引:2       下载免费PDF全文
Threonine dehydratase, the first enzyme in isoleucine biosynthesis, catalyzes deamination and dehydration of threonine to produce 2-ketobutyrate and ammonia. An antimetabolite, 2-(1-cyclohexen-3(R)-yl)-S-glycine (CHG), inhibits the plant enzyme. CHG inhibits the growth of Black Mexican Sweet corn (Zea mays) cells and of Arabidopsis thaliana plants. The herbicidal effects of CHG can be reversed by 2-ketobutyrate, other intermediates of isoleucine biosynthesis, and by isoleucine itself. These results suggest that the herbicidal effects observed with CHG are a consequence of inhibition of threonine dehydratase. The enzyme could be a potential target site for an herbicide screening program.  相似文献   

13.
Aminooxyacetate, a known inhibitor of transaminase reactions and glycine decarboxylase, promotes rapid depletion of the free pools of serine and aspartate in nitrate grown Lemna minor L. This compound markedly inhibits the methionine sulfoximine-induced accumulation of free ammonium ions and greatly restricts the methionine sulfoximine-induced depletion of amino acids such as glutamate, alanine, and asparagine. These results suggest that glutamate, alanine, and asparagine are normally catabolized to ammonia by transaminase-dependent pathways rather than via dehydrogenase or amidohydrolase reactions. Aminooxyacetate does not inhibit the methionine sulfoximine-induced irreversible deactivation of glutamine synthetase in vivo, indicating that these effects cannot be simply ascribed to inhibition of methionine sulfoximine uptake by amino-oxyacetate. This transaminase inhibitor promotes extensive accumulation of several amino acids including valine, leucine, isoleucine, alanine, glycine, threonine, proline, phenylalanine, lysine, and tyrosine. Since the aminooxyacetate induced accumulations of valine, leucine, and isoleucine are not inhibited by the branched-chain amino acid biosynthesis inhibitor, chlorsulfuron, these amino acid accumulations most probably involve protein turnover. Depletions of soluble protein bound amino acids are shown to be approximately stoichiometric with the free amino acid pool accumulations induced by aminooxyacetate. Aminooxyacetate is demonstrated to inhibit the chlorsulfuron-induced accumulation of α-amino-n-butyrate in L. minor, supporting the notion that this amino acid is derived from transamination of 2-oxobutyrate.  相似文献   

14.
15.
β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5′-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4′-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms.  相似文献   

16.
Inorganic phosphate (Pi) inhibits threonine synthase of Lemna, and cystathionine γ-synthase less strongly. AMP is an extremely potent and structurally specific inhibitor of threonine synthase. Each inhibition progressively decreases with increasing concentrations of O-phosphohomoserine (OPH). To study the in vivo effects of these inhibitions, Lemna was grown with a range of Pi concentrations. A 25,000-fold increase in Pi concentration in the culture medium caused an increase of only 6-fold in total phosphorus of the plants. This is explained by the fact that a high affinity Pi uptake system is selectively down-regulated during growth with high concentrations of Pi. Pi and AMP in plants grown with various Pi concentrations were determined, and concentrations estimated for chloroplasts, the organelle containing threonine synthase and cystathionine γ-synthase. Calculations indicated that for growth at standard external Pi (0.4 millimolar) or above, if total OPH were uniformly distributed within the plants, activities of the two enzymes in question would be severely inhibited, and each would fall two orders of magnitude below the amount required to provide threonine (plus isoleucine) or methionine adequate for growth. If OPH were restricted to chloroplasts, these inhibitions would be much less severe, resulting in enzyme activities approaching the required physiological amounts. Evidence is presented that even up to 50 millimolar external Pi, this ion does not limit production of threonine or methionine sufficiently to retard growth, consistent with the postulated localization of OPH within chloroplasts.  相似文献   

17.
Threonine deaminase (l-threonine dehydratase EC 4.2.1.16) has been partially purified from a new extreme thermophilic bacterium, Thermus X-1, which is similar to T. aquaticus YT-1. The threonine deaminase of strain X-1 has a maximal rate of reaction at 85 to 90 C and is more thermostable than the threonine deaminase from mesophilic bacteria. The enzyme has an apparent molecular weight of 100,000 to 115,000, a K(m) for l-threonine of 14 mM, a pH optimum of 8.0, and like other threonine deaminases also catalyzes the deamination of serine. However the Thermus X-1 threonine deaminase does not show a strong feedback inhibition by isoleucine. It is suggested that the regulation of the biosynthesis of isoleucine in this extreme theromophile may resemble that reported in Rodospirillum rubrum.  相似文献   

18.
Biofuels synthesized from renewable resources are of increasing interest because of global energy and environmental problems. We have previously demonstrated production of higher alcohols from Escherichia coli using a 2-keto acid-based pathway. Here, we took advantage of the growth phenotype associated with 2-keto acid deficiency to construct a hyperproducer of 1-propanol and 1-butanol by evolving citramalate synthase (CimA) from Methanococcus jannaschii. This new pathway, which directly converts pyruvate to 2-ketobutyrate, bypasses threonine biosynthesis and represents the shortest keto acid-mediated pathway for producing 1-propanol and 1-butanol from glucose. Directed evolution of CimA enhanced the specific activity over a wide temperature range (30 to 70°C). The best CimA variant was found to be insensitive to feedback inhibition by isoleucine in addition to the improved activity. This CimA variant enabled 9- and 22-fold higher production levels of 1-propanol and 1-butanol, respectively, compared to the strain expressing the wild-type CimA. This work demonstrates (i) the first production of 1-propanol and 1-butanol using the citramalate pathway and (ii) the benefit of the 2-keto acid pathway that enables a growth-based evolutionary strategy to improve the production of non-growth-related products.  相似文献   

19.
In Escherichia coli the sulfur-containing amino acid homocysteine (Hcy) is the last intermediate on the methionine biosynthetic pathway. Supplementation of a glucose-based minimal medium with Hcy at concentrations greater than 0.2 mM causes the growth of E. coli Frag1 to be inhibited. Supplementation of Hcy-treated cultures with combinations of branched-chain amino acids containing isoleucine or with isoleucine alone reversed the inhibitory effects of Hcy on growth. The last intermediate of the isoleucine biosynthetic pathway, alpha-keto-beta-methylvalerate, could also alleviate the growth inhibition caused by Hcy. Analysis of amino acid pools in Hcy-treated cells revealed that alanine, valine, and glutamate levels are depleted. Isoleucine could reverse the effects of Hcy on the cytoplasmic pools of valine and alanine. Supplementation of the culture medium with alanine gave partial relief from the inhibitory effects of Hcy. Enzyme assays revealed that the first step of the isoleucine biosynthetic pathway, catalyzed by threonine deaminase, was sensitive to inhibition by Hcy. The gene encoding threonine deaminase, ilvA, was found to be transcribed at higher levels in the presence of Hcy. Overexpression of the ilvA gene from a plasmid could overcome Hcy-mediated growth inhibition. Together, these data indicate that in E. coli Hcy toxicity is caused by a perturbation of branched-chain amino acid biosynthesis that is caused, at least in part, by the inhibition of threonine deaminase.  相似文献   

20.
Amino Acid Metabolism of Lemna minor L. : II. Responses to Chlorsulfuron   总被引:7,自引:6,他引:1  
Chlorsulfuron, an inhibitor of acetolactate synthase (EC 4.1.3.18) (TB Ray 1984 Plant Physiol 75: 827-831), markedly inhibited the growth of Lemna minor at concentrations of 10−8 molar and above, but had no inhibitory effects on growth at 10−9 molar. At growth inhibitory concentrations, chlorsulfuron caused a pronounced increase in total free amino acid levels within 24 hours. Valine, leucine, and isoleucine, however, became smaller percentages of the total free amino acid pool as the concentration of chlorsulfuron was increased. At concentrations of chlorsulfuron of 10−8 molar and above, a new amino acid was accumulated in the free pool. This amino acid was identified as α-amino-n-butyrate by chemical ionization and electron impact gas chromatography-mass spectrometry. The amount of α-amino-n-butyrate increased from undetectable levels in untreated plants, to as high as 840 nanomoles per gram fresh weight (2.44% of the total free pool) in plants treated with 10−4 molar chlorsulfuron for 24 hours. The accumulation of this amino acid was completely inhibited by methionine sulfoximine. Chlorsulfuron did not inhibit the methionine sulfoximine induced accumulations of valine, leucine, and isoleucine, supporting the idea that the accumulation of the branched-chain amino acids in methionine sulfoximine treated plants is the result of protein turnover rather than enhanced synthesis. Protein turnover may be primarily responsible for the failure to achieve complete depletion of valine, leucine, and isoleucine even at concentrations of chlorsulfuron some 104 times greater than that required to inhibit growth. Tracer studies with 15N demonstrate that chlorsulfuron inhibits the incorporation of 15N into valine, leucine, and isoleucine. The α-amino-n-butyrate accumulated in the presence of chlorsulfuron and [15N]H4+ was heavily labeled with 15N at early time points and appeared to be derived by transamination from a rapidly labeled amino acid such as glutamate or alanine. We propose that chlorsulfuron inhibition of acetolactate synthase may lead to accumulation of 2-oxobutyrate in the isoleucine branch of the pathway, and transamination of 2-oxobutyrate to α-amino-n-butyrate by a constitutive transaminase utilizing either glutamate or alanine as α-amino-N donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号