首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Anaerobic transformation of 2,4,6-trinitrotoluene (TNT)   总被引:12,自引:0,他引:12  
A sulfate-reducing bacterium using trinitrotoluene (TNT) as the sole nitrogen source was isolated with pyruvate and sulfate as the energy sources. The organism was able to reduce TNT to triaminotoluene (TAT) in growing cultures and cell suspensions and to further transform TAT to still unknown products. Pyruvate, H2, or carbon monoxide served as the electron donors for the reduction of TNT. The limiting step in TNT conversion to TAT was the reduction of 2,4-diamino-6-nitrotoluene (2,4-DANT) to triaminotoluene. The reduction proceeded via 2,4-diamino-6-hydroxylaminotoluene (DAHAT) as an intermediate. The intermediary formation of DAHAT was only observed in the presence of carbon monoxide or hydroxylamine, respectively. The reduction of DAHAT to triaminotoluene was inhibited by both CO and NH2OH. The inhibitors as well as DANT and DAHAT significantly inhibited sulfide formation from sulfite. The data were taken as evidence for the involvement of dissimilatory sulfite reductase in the reduction of DANT and/or DAHAT to triaminotoluene. Hydrogenase purified from Clostridium pasteurianum and carbon monoxide dehydrogenase partially purified from Clostridium thermoaceticum also catalyzed the reduction of DANT in the presence of methyl viologen or ferredoxin, however, as the main reduction product DAHAT rather than triaminotoluene was formed. The findings could explain the function of CO as an electron donor for the DANT reduction (to DAHAT) and the concomitant inhibitory effect of CO on triaminotoluene formation (from DAHAT) by the inhibition of sulfite reductase. Triaminotoluene is further anaerobically converted to unknown products by the isolate under sulfate-reducing and by a Pseudomonas strain under denitrifying conditions. Triaminotoluene conversion was also catalyzed in the absence of cells under aerobic conditions by trace elements, especially by Mn2+, accompanied by the elimination of ammonia in a stoichiometry of 1 NH3 released per TAT transformed. The results might be of interest for the bioremediation of wastewater polluted with nitroaromatic compounds.Abbreviations TNT = 2,4,6-Trinitrotoluene DANT - 2,4-DANT = 2,4-Diamino-6-nitrotoluene - 2,6-DANT = 2,6-Diamino-4-nitrotoluene - ADNT = aminodinitrotoluene - 2-ADNT and 4-ADNT amino substituent at positions 2 or 4 - TAT = 2,4,6-Triaminotoluene - DAHAT = 2,4-Diamino-6-hydroxylaminotoluene - MV = Methyl viologen - Fd = Ferredoxin - H2ase = Hydrogenase - CODH = Carbon monoxide dehydrogenase - Pyr: Fd OR = Pyruvate: ferredoxin oxidoreductase - U = Units = mol of substrate converted per min  相似文献   

2.
Successful microbial-mediated remediation requires transformationpathways that maximize metabolism and minimize the accumulation of toxic products. Pseudomonas aeruginosa strain MX, isolated from munitions-contaminated soil, degraded 100 mg TNT L-1 in culture medium within 10 h under aerobic conditions. The major TNT products were 2-amino-4,6-dinitrotoluene (2ADNT, primarily in the supernatant) and 2,2'-azoxytoluene (2,2'AZT, primarily in the cell fraction), which accumulated as major products via the intermediate2-hydroxylamino-4,6-dinitrotoluene (2HADNT). The 2HADNT and2,2'AZT were relatively less toxic to the strain than TNT and 2ADNT. Aminodinitrotoluene (ADNT) production increased when yeast extract was added to the medium. While TNT transformation rate was not affected by pH, more HADNTs accumulated at pH 5.0 than at pH 8.0 and AZTs did not accumulate at the lower pH. The appearance of 2,6-diamino-4-nitrotoluene (2,6DANT) and 2,4-diamino-6-nitrotoluene (2,4DANT); dinitrotoluene (DNT) and nitrotoluene (NT); and 3,5-dinitroaniline (3,5DNA) indicated various routes of TNT metabolism and detoxification by P. aeruginosa strain MX.  相似文献   

3.
Three NAD(P)H-dependent nitroreductases that can transform 2,4,6-trinitrotoluene (TNT) by two reduction pathways were detected in Klebsiella sp. C1. Among these enzymes, the protein with the highest reduction activity of TNT (nitroreductase I) was purified to homogeneity using ion-exchange, hydrophobic interaction, and size exclusion chromatographies. Nitroreductase I has a molecular mass of 27 kDa as determined by SDS-PAGE, and exhibits a broad pH optimum between 5.5 and 6.5, with a temperature optimum of 30–40°C. Flavin mononucleotide is most likely the natural flavin cofactor of this enzyme. The N-terminal amino acid sequence of this enzyme does not show a high degree of sequence similarity with nitroreductases from other enteric bacteria. This enzyme catalyzed the two-electron reduction of several nitroaromatic compounds with very high specific activities of NADPH oxidation. In the enzymatic transformation of TNT, 2-amino-4,6-dinitrotoluene and 2,2′,6,6′-tetranitro-4,4′-azoxytoluene were detected as transformation products. Although this bacterium utilizes the direct ring reduction and subsequent denitration pathway together with a nitro group reduction pathway, metabolites in direct ring reduction of TNT could not easily be detected. Unlike other nitroreductases, nitroreductase I was able to transform hydroxylaminodinitrotoluenes (HADNT) into aminodinitrotoluenes (ADNT), and could reduce ortho isomers (2-HADNT and 2-ADNT) more easily than their para isomers (4-HADNT and 4-ADNT). Only the nitro group in the ortho position of 2,4-DNT was reduced to produce 2-hydroxylamino-4-nitrotoluene by nitroreductase I; the nitro group in the para position was not reduced.  相似文献   

4.
Toxigenic strains of Clostridium difficile were co-cultured with different strains of bifidobacteria and lactobacilli. Spent culture supernatants were tested for biological activity on cultured Vero cells. Co-culture of C. difficile with some potentially probiotic strains lead to a reduction of the biological activity of spent culture supernatants. The observed effects cannot be ascribed either to secreted factors from the probiotic strains or to toxin adsorption by bacterial cells. Immunological assays showed that there was significant diminution of both clostridial toxins (TcdA and TcdB) in spent culture supernatants of co-cultures as compared with pure clostridial cultures. Even though co-cultured clostridial cells showed a slight increase of intracellular toxins, this increase did not completely explains the reduction of toxin concentration in culture supernatants. The evidence suggests that the antagonism could be due to the diminution of the synthesis and/or secretion of both clostridial toxins. Our findings provide new insights into the possible mechanisms involved in the protective effect of probiotics in the context of C. difficile infection.  相似文献   

5.
The degradation of 2,4,6-trinitrotoluene (TNT) by seven strains of white rot fungi was examined in two different media containing 50 mg L−1 of TNT. When TNT was added into a nutrient-rich YMG medium at the beginning of the incubation, four of the fungal strains completely removed TNT during several days of incubation and showed higher removal rates than those of Phanerochaete chrysosporium. TNT added into YMG medium after a 5-day preincubation period completely disappeared within 12 hours, and the removal rates were higher than those in N-limited minimal medium. Isomers of hydroxylamino-dinitrotoluene were identified as the first detectable metabolites of TNT. These were transformed to amino-dinitrotoluenes, which also disappeared during further incubation from cultures of Irpex lacteus. During the initial phase of TNT degradation by I. lacteus, dinitrotoluenes were also detected after the transient formation of a hydride-Meisenheimer complex, indicating that I. lacteus used two different pathways of TNT degradation simultaneously. Received: 29 March 2000 / Accepted: 23 May 2000  相似文献   

6.
The transformation of TNT and related aminated nitrotoluenes by Clostridium acetobutylicum was investigated. 2,4,6-trinitrotoluene (TNT) was rapidly reduced (537 nM min−1 mg protein−1) to undetermined end products via monohydroxylamino derivatives. TNT reduction was more rapid than that of 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene and 2,4-diamino-6-nitrotoluene. The metabolic phase of clostridial cultures affected rates and extents of transformation of TNT and its intermediates. Acidogenic cultures showed rapid transformation rates and the ability to transform TNT and its primary reduction products to below detection limits; solventogenic cultures did not transform TNT completely, and showed accumulation of its hydroxylamino derivatives. Carbon monoxide-induced solventogenesis was capable of slowing the transformation of TNT and intermediates. Studies employing [ring-U-14C]-TNT demonstrated that no significant mineralization occurred and that products of transformation were water-soluble. Received 06 November 1995/ Accepted in revised form 15 August 1996  相似文献   

7.
Kröger M  Fels G 《Biodegradation》2007,18(4):413-425
Contamination of ground and surface water with 2,4,6-trinitrotoluene (TNT) and its biological and chemical transformation products are a persisting problem at former TNT production sites. We have investigated the photochemical degradation of TNT and its aminodinitro-(ADNT) and diaminonitrotoluene (DANT) metabolites using OH-radical generating systems like Fenton and hydrogen peroxide irradiated with UV, in order to compare the degradation and mineralization rate of ADNT- and DANT-isomers with TNT itself. As a result, we find that the aminoderivatives were mineralized much faster than TNT. Consequently, as ADNTs and DANTs are the known dead-end products of biological TNT degradations, we have combined our photochemical procedure with a preceding biological treatment of TNT by a mixed culture from sludge of a sewage plant. This consecutive degradation procedure, however, shows a reduced mineralization rate of the ADNTa and DANTs in the biologically derived supernatant as compared to the pure substances, suggesting that during the biological TNT treatment by sludge competing substrates are released into the solution, and that a more defined biological procedure would be necessary in order to achieve an effective, ecologically and economically acceptable mineralization of TNT from aqueous systems.  相似文献   

8.
Zaripov  S. A.  Naumov  A. V.  Nikitina  E. V.  Naumova  R. P. 《Microbiology》2002,71(5):558-562
A new model for the initial transformation of 2,4,6-trinitrotoluene (TNT) by facultatively anaerobic and aerobic yeasts is presented. The model is based on the data that Saccharomyces sp. ZS-A1 was able to reduce the nitrogroups of TNT with the formation of 2- and 4-hydroxyaminodinitrotoluenes (2-HADNT and 4-HADNT) as the major early TNT metabolites (the molar HADNT/TNT ratio reached 0.81), whereas aminodinitrotoluenes (ADNTs) and the hydride-Meisenheimer complex of TNT (H-TNT) were the minor products. Candidasp. AN-L13 almost completely transformed TNT into H-TNT through the reduction of the aromatic ring. Candida sp. AN-L14 transformed TNT through a combination of the two mechanisms described. Aeration stimulated the production of HADNT from TNT, whereas yeast incubation under stationary conditions promoted the formation of HADNT. The transformation of TNT into HADNT led to a tenfold increase in the acute toxicity of the TNT preparation with respect to Paramecium caudatum, whereas the increase in the toxicity was about twofold in the case of the alternative attack at the aromatic ring.  相似文献   

9.
Many enteric bacteria express a type I oxygen-insensitive nitroreductase, which reduces nitro groups on many different nitroaromatic compounds under aerobic conditions. Enzymatic reduction of nitramines was also documented in enteric bacteria under anaerobic conditions. This study indicates that nitramine reduction in enteric bacteria is carried out by the type I, or oxygen-insensitive nitroreductase, rather than a type II enzyme. The enteric bacterium Morganella morganii strain B2 with documented hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) nitroreductase activity, and Enterobacter cloacae strain 96-3 with documented 2,4,6-trinitrotoluene (TNT) nitroreductase activity, were used here to show that the explosives TNT and RDX were both reduced by a type I nitroreductase. Morganella morganii and E. cloacae exhibited RDX and TNT nitroreductase activities in whole cell assays. Type I nitroreductase, purified from E. cloacae, oxidized NADPH with TNT or RDX as substrate. When expression of the E. cloacae type I nitroreductase gene was induced in an Escherichia coli strain carrying a plasmid, a simultaneous increase in TNT and RDX nitroreductase activities was observed. In addition, neither TNT nor RDX nitroreductase activity was detected in nitrofurazone-resistant mutants of M. morganii. We conclude that a type I nitroreductase present in these two enteric bacteria was responsible for the nitroreduction of both types of explosive.  相似文献   

10.
Actinomycete strains isolated from 2,4,6-trinitrotoluene (TNT)-contaminated and uncontaminated environments were compared for TNT tolerance and abilities to transform TNT. Regardless of previous TNT exposure history, no significant differences in TNT tolerance were seen among strains. Selected strains did not significantly mineralize [14C]TNT. The actinomycetes did, however, transform TNT into reduced intermediates. The data indicate that, in actinomycete-rich aerobic environments like composts, actinomycetes will transform TNT into intermediates which are known to form recalcitrant polymers.  相似文献   

11.
Phytoremediation is a viable technique for treating nitroaromatic compounds, particularly munitions. Continuous flow phyto-reactor studies were conducted at the following three influent concentrations of 2,4,6-trinitrotoluene (TNT): 1, 5, and 10?ppm. A control was also prepared with an influent TNT concentration of 5 ppm. Flow rates were systematically reduced to increase hydraulic retention times (HRT) which ranged from 12 to 76 days. Initially, the control reactor removed TNT as efficiently as the plant reactors. With time, however, the efficiency of the control became less than that of the plant reactors, suggesting that adsorption was initially the mechanism for removal. Up to 100% of the TNT was removed. Aminodinitrotoluene (ADNT) effluent concentration was higher for higher TNT influent concentrations. Increasing the retention time reduced ADNT concentration in the effluent. Supplementary batch studies confirmed that ADNT and diaminonitrotoluene (DANT) were phytodegraded. Preliminary batch studies were also conducted on the degradation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine). These batch studies indicated that the degradation of RDX was slower than that for TNT. A study with HMX indicated that the removal rates were reasonable, but required a lag phase.  相似文献   

12.
Summary Cell suspension cultures of Datura innoxia were incubated in the presence of the nitro-substituted explosives 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazine (RDX), and 1,3,5,7-tetranitro-1,3,5,7-tetraazocyclooctane (HMX). Cellular tolerance levels and TNT biotransformation kinetics were examined. Tolerance to TNT varied as cell suspensions aged. Concentrations of RDX or HMX in excess of reported solubility limits produced no observable changes in cell viability. GC/MS analysis of TNT-treated cell media and cell lysates revealed rapid removal of TNT. Within 12 h, less than 1% of the initial TNT remained in the growth medium. Aminodinitrotoluenes (ADNTs), known metabolites of TNT, accumulated transiently in cell lysates, and to a lesser extent in cell media. ADNT concentrations started to decrease after 3 h. After 12 h, less than 5% of the initial TNT could be detected as ADNT. Total ADNTs never exceeded 26% of initial TNT, suggesting that additional biotransformation steps also occurred. No other nitroaromatics were detected. A pseudo-first order rate constant for TNT clearance was calculated, k=0.40 h−1. D. innoxia cell suspension cultures demonstrated virtually complete clearance of TNT and of subsequent ADNT metabolites in less than 12 h. This rapid metabolism of nitroaromatics by the Datura cell suspension system indicates the utility of this system for further molecular and biochemical studies.  相似文献   

13.
The role of hydrogenase on the reduction of 2,4,6-trinitrotoluene (TNT) in Clostridium acetobutylicum was evaluated. An Fe-only hydrogenase was isolated and identified by using TNT reduction activity as the selection basis. The formation of hydroxylamino intermediates by the purified enzyme corresponded to expected products for this reaction, and saturation kinetics were determined with a Km of 152 μM. Comparisons between the wild type and a mutant strain lacking the region encoding an alternative Fe-Ni hydrogenase determined that Fe-Ni hydrogenase activity did not significantly contribute to TNT reduction. Hydrogenase expression levels were altered in various strains, allowing study of the role of the enzyme in TNT reduction rates. The level of hydrogenase activity in a cell system correlated (R2 = 0.89) with the organism's ability to reduce TNT. A strain that overexpressed the hydrogenase activity resulted in maintained TNT reduction during late growth phases, which it is not typically observed in wild type strains. Strains exhibiting underexpression of hydrogenase produced slower TNT rates of reduction correlating with the determined level of expression. The isolated Fe-only hydrogenase is the primary catalyst for reducing TNT nitro substituents to the corresponding hydroxylamines in C. acetobutylicum in whole-cell systems. A mechanism for the reaction is proposed. Due to the prevalence of hydrogenase in soil microbes, this research may enhance the understanding of nitroaromatic compound transformation by common microbial communities.  相似文献   

14.
The role of hydrogenase on the reduction of 2,4,6-trinitrotoluene (TNT) in Clostridium acetobutylicum was evaluated. An Fe-only hydrogenase was isolated and identified by using TNT reduction activity as the selection basis. The formation of hydroxylamino intermediates by the purified enzyme corresponded to expected products for this reaction, and saturation kinetics were determined with a K(m) of 152 micro M. Comparisons between the wild type and a mutant strain lacking the region encoding an alternative Fe-Ni hydrogenase determined that Fe-Ni hydrogenase activity did not significantly contribute to TNT reduction. Hydrogenase expression levels were altered in various strains, allowing study of the role of the enzyme in TNT reduction rates. The level of hydrogenase activity in a cell system correlated (R(2) = 0.89) with the organism's ability to reduce TNT. A strain that overexpressed the hydrogenase activity resulted in maintained TNT reduction during late growth phases, which it is not typically observed in wild type strains. Strains exhibiting underexpression of hydrogenase produced slower TNT rates of reduction correlating with the determined level of expression. The isolated Fe-only hydrogenase is the primary catalyst for reducing TNT nitro substituents to the corresponding hydroxylamines in C. acetobutylicum in whole-cell systems. A mechanism for the reaction is proposed. Due to the prevalence of hydrogenase in soil microbes, this research may enhance the understanding of nitroaromatic compound transformation by common microbial communities.  相似文献   

15.
Initial Stages of 2,4,6-Trinitrotoluene Transformation by Microorganisms   总被引:4,自引:1,他引:3  
Zaripov  S. A.  Naumov  A. V.  Suvorova  E. S.  Garusov  A. V.  Naumova  R. P. 《Microbiology》2004,73(4):398-403
Screening of a wide range of microorganisms (32 strains) isolated from various anthropogenic and natural environments and of a number of collection strains showed that the early stages of 2,4,6-trinitrotoluene (TNT) transformation by the majority of the strains studied resulted in the formation of hydroxylaminodinitrotoluenes (HADNTs). The levels of HADNTs were in a number of cases comparable to the initial TNT level. The alternative reductive attack on TNT through the reduction of the aromatic ring was not characteristic of most of the prokaryotes studied. The susceptibility to the toxic effect of TNT was different for gram-positive and gram-negative bacteria.  相似文献   

16.
Screening of a wide range of microorganisms (32 strains) isolated from various anthropogenic and natural environments and of a number of collection strains showed that the early stages of 2,4,6-trinitrotoluene (TNT) transformation by the majority of the strains studied resulted in the formation of hydroxylaminodinitrotoluenes (HADNTs). The levels of HADNTs were in a number of cases comparable to the initial TNT level. The alternative reductive attack at TNT through the reduction of the aromatic ring was not characteristic of most of the prokaryotes studied. The susceptibility to the toxic effect of TNT was different for gram-positive and gram-negative bacteria.  相似文献   

17.
Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia coli expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water.  相似文献   

18.
Lactobacilli are believed to be beneficial for the human hosts and are currently being evaluated as potentially probiotic bacteria. In this study, Lactobacillus strains were isolated from infant faeces and were examined in vitro for potential probiotic properties. Faecal specimens from 63 healthy, full-term infants were collected at 4, 30 and 90 days after delivery. Seventy-four Lactobacillus strains were isolated and one or more different phenotypes from each infant (n = 44) were selected for further testing. The bacterial isolates were identified mainly as L. gasseri, L. crispatus, Lactobacillus paracasei, L. salivarius, L. fermentum after amplification and sequencing of 16s rRNA gene. The strains were examined for acid and bile tolerance, adhesion to Caco-2 cells, antibiotic susceptibility and antimicrobial activity against selected enteric pathogens. The great majority of the isolated lactobacilli were susceptible to ampicillin, amoxicillin/clavulanic acid, tetracycline, erythromycin, cephalothin, chloramphenicol and rifampicin. Resistance to vancomycin or bacitracin was detected to 34% of the strains. Twenty strains out of forty-four exhibited significant tolerance to bile salts. Those strains were subsequently tested for resistance to low pH conditions (pH 2 and 3). Interestingly, 85% (17 strains) of the tested lactobacilli remained unaffected at pH 3 after 3 h of incubation, 6 strains were found resistant at pH 2 after 1.5 h and only 2 strains found resistant after 3 h of incubation. Two of the strains were able to adhere to Caco-2 cells. In conclusion, two isolates fulfilled the in vitro probiotic criteria and are good candidates for further in vivo evaluation.  相似文献   

19.
Microbial strains produce numerous volatile substances in the anaerobic conditions of the human intestines. The availability of CO(2) is known to be a prerequisite for bacterial growth in general. In experiments with anaerobic Lactobacillus brevis and Clostridium butyricum bacteria in the Portable Microbial Enrichment Unit (PMEU) it was shown that these strains interact; this interaction being mediated by CO(2) emission. CO(2) promoted clostridial growth in pure cultures and mixed cultures with lactobacilli. The growth of C. butyricum in pure cultures was much delayed or did not start at all without CO(2) from outside. Conversely, the onset of growth was provoked by a short (15 min) CO(2) burst. In mixed cultures the presence of lactobacilli in equal numbers speeded up the onset of clostridial growth by 10 h. If C. butyricum cultures designated as PMEU 1, 2, and 3 in cultivation syringes were chained by connecting the gas flow thereby allowing the volatiles of the preceding syringe culture to bubble to the next one, the growth started in 20, 10, or 6 h, respectively. This effect of gaseous emissions from other cultures speeding up the bacterial growth initiation was abolished if the gas was passed through sodium hydroxide to remove the CO(2). The positive contribution of lactobacilli to the growth of butyric-acid-producing clostridia documented in this simulation experiment with PMEU has in vivo implications and indicates molecular communication between the species. CO(2) is a necessary signal for the growth of clostridia, and lactobacilli can promote clostridial growth in mixed cultures where both bacteria grow well with mutual benefit.  相似文献   

20.
The sensitivity of Escherichia coli strains K-12 and 055 to 2,4,6-trinitrotoluene (TNT) was found to correlate with the structural and functional properties of the outer lipoprotein membrane. The protective ability of the membrane of strain 055 is much lower than that of K-12. This is the cause of the greater sensitivity of 055 to the toxic action of TNT. High TNT concentrations (100–200 mg/l) suppressed the growth of 055, whereas K-12 grew at all TNT concentrations studied. Both strains adapted to high TNT concentrations by converting it by either nitroreduction or denitritation depending on concentration. The denitritation system of strain 055 started TNT degradation earlier than that of K-12.Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 1, 2005, pp. 53–57.Original Russian Text Copyright © 2005 by Kurinenko, Denivarova, Yakovleva.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号