首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterotrimeric G-protein signaling systems are activated via cell surface receptors possessing the seven-membrane span motif. Several observations suggest the existence of other modes of stimulus input to heterotrimeric G-proteins. As part of an overall effort to identify such proteins we developed a functional screen based upon the pheromone response pathway in Saccharomyces cerevisiae. We identified two mammalian proteins, AGS2 and AGS3 (activators of G-protein signaling), that activated the pheromone response pathway at the level of heterotrimeric G-proteins in the absence of a typical receptor. beta-galactosidase reporter assays in yeast strains expressing different Galpha subunits (Gpa1, G(s)alpha, G(i)alpha(2(Gpa1(1-41))), G(i)alpha(3(Gpa1(1-41))), Galpha(16(Gpa1(1-41)))) indicated that AGS proteins selectively activated G-protein heterotrimers. AGS3 was only active in the G(i)alpha(2) and G(i)alpha(3) genetic backgrounds, whereas AGS2 was active in each of the genetic backgrounds except Gpa1. In protein interaction studies, AGS2 selectively associated with Gbetagamma, whereas AGS3 bound Galpha and exhibited a preference for GalphaGDP versus GalphaGTPgammaS. Subsequent studies indicated that the mechanisms of G-protein activation by AGS2 and AGS3 were distinct from that of a typical G-protein-coupled receptor. AGS proteins provide unexpected mechanisms for input to heterotrimeric G-protein signaling pathways. AGS2 and AGS3 may also serve as novel binding partners for Galpha and Gbetagamma that allow the subunits to subserve functions that do not require initial heterotrimer formation.  相似文献   

2.
AGS3 (activator of G-protein signaling 3) was isolated in a yeast-based functional screen for receptor-independent activators of heterotrimeric G-proteins. As an initial approach to define the role of AGS3 in mammalian signal processing, we defined the AGS3 subdomains involved in G-protein interaction, its selectivity for G-proteins, and its influence on the activation state of G-protein. Immunoblot analysis with AGS3 antisera indicated expression in rat brain, the neuronal-like cell lines PC12 and NG108-15, as well as the smooth muscle cell line DDT(1)-MF2. Immunofluorescence studies and confocal imaging indicated that AGS3 was predominantly cytoplasmic and enriched in microdomains of the cell. AGS3 coimmunoprecipitated with Galpha(i3) from cell and tissue lysates, indicating that a subpopulation of AGS3 and Galpha(i) exist as a complex in the cell. The coimmunoprecipitation of AGS3 and Galpha(i) was dependent upon the conformation of Galpha(i3) (GDP GTPgammaS (guanosine 5'-3-O-(thio)triphosphate)). The regions of AGS3 that bound Galpha(i) were localized to four amino acid repeats (G-protein regulatory motif (GPR)) in the carboxyl terminus (Pro(463)-Ser(650)), each of which were capable of binding Galpha(i). AGS3-GPR domains selectively interacted with Galpha(i) in tissue and cell lysates and with purified Galpha(i)/Galpha(t). Subsequent experiments with purified Galpha(i2) and Galpha(i3) indicated that the carboxyl-terminal region containing the four GPR motifs actually bound more than one Galpha(i) subunit at the same time. The AGS3-GPR domains effectively competed with Gbetagamma for binding to Galpha(t(GDP)) and blocked GTPgammaS binding to Galpha(i1). AGS3 and related proteins provide unexpected mechanisms for coordination of G-protein signaling pathways.  相似文献   

3.
We describe genetic screens in Saccharomyces cerevisiae designed to identify mammalian nonreceptor modulators of G-protein signaling pathways. Strains lacking a pheromone-responsive G-protein coupled receptor and expressing a mammalian-yeast Galpha hybrid protein were made conditional for growth upon either pheromone pathway activation (activator screen) or pheromone pathway inactivation (inhibitor screen). Mammalian cDNAs that conferred plasmid-dependent growth under restrictive conditions were identified. One of the cDNAs identified from the activator screen, a human Ras-related G protein that we term AGS1 (for activator of G-protein signaling), appears to function by facilitating guanosine triphosphate (GTP) exchange on the heterotrimeric Galpha. A cDNA product identified from the inhibitor screen encodes a previously identified regulator of G-protein signaling, human RGS5.  相似文献   

4.
Heterotrimeric G-protein signalling systems are primarily activated via cell surface receptors possessing the seven membrane span motif. Several observations suggest the existence of other modes of input to such signalling systems either downstream of effectors or at the level of G-proteins themselves. Using a functional screen based upon the pheromone response pathway in Saccharomyces cerevisiae, we identified three proteins, AGS1-3 (for Activators of G-protein Signalling), that activated heterotrimeric G-protein signalling pathways in the absence of a typical receptor. AGS1 defines a distinct member of the super family of ras related proteins. AGS2 is identical to mouse Tctex1, a protein that exists as a light chain component of the cytoplasmic motor protein dynein and subserves as yet undefined functions in cell signalling pathways. AGS3 possesses a series of tetratrico repeat motifs and a series of four amino acid repeats termed G-protein regulatory motifs. The GPR motifs are found in a number of proteins that interact with and regulate Galpha. Although each AGS protein activates G-protein signaling, they do so by different mechanisms within the context of the G-protein activation/deactivation cycle. AGS proteins provide unexpected mechanisms for input to heterotrimeric G-protein signalling pathways.  相似文献   

5.
Activator of G-protein signaling 3 (AGS3) is one of nine mammalian proteins containing one or more G-protein regulatory (GPR) motifs that stabilize the GDP-bound conformation of Galpha(i). Such proteins have revealed unexpected functional diversity for the "G-switch" in the control of events within the cell independent of the role of heterotrimeric G-proteins as transducers for G-protein-coupled receptors at the cell surface. A key question regarding this class of proteins is what controls their subcellular positioning and interaction with G-proteins. We conducted a series of yeast two-hybrid screens to identify proteins interacting with the tetratricopeptide repeat (TPR) of AGS3, which plays an important role in subcellular positioning of the protein. We report the identification of Frmpd1 (FERM and PDZ domain containing 1) as a regulatory binding partner of AGS3. Frmpd1 binds to the TPR domain of AGS3 and coimmunoprecipitates with AGS3 from cell lysates. Cell fractionation indicated that Frmpd1 stabilizes AGS3 in a membrane fraction. Upon cotransfection of COS7 cells with Frmpd1-GFP and AGS3-mRFP, AGS3-mRFP is observed in regions of the cell cortex and also in membrane extensions or processes where it appears to be colocalized with Frmpd1-GFP based upon the merged fluorescent signals. Frmpd1 knockdown (siRNA) in Cath.a-differentiated neuronal cells decreased the level of endogenous AGS3 in membrane fractions by approximately 50% and enhanced the alpha(2)-adrenergic receptor-mediated inhibition of forskolin-induced increases in cAMP. The coimmunoprecipitation of Frmpd1 with AGS3 is lost as the amount of Galpha(i3) in the cell is increased and AGS3 apparently switches its binding partner from Frmpd1 to Galpha(i3) indicating that the interaction of AGS3 with Frmpd1 and Galpha(i3) is mutually exclusive. Mechanistically, Frmpd1 may position AGS3 in a membrane environment where it then interacts with Galpha(i) in a regulated manner.  相似文献   

6.
A ligand-independent activator of heterotrimeric brain G-protein was partially purified from detergent-solubilized extracts of the neuroblastoma-glioma cell hybrid NG108-15. The G-protein activator (NG108-15 G-protein activator (NG-GPA)) increased [(35)S]guanosine 5'-O-(thiotriphosphate) ([(35)S]GTPgammaS) to purified brain G-protein in a magnesium-dependent manner and promoted GDP dissociation from Galpha(o). The NG-GPA also increased GTPgammaS binding to purified, recombinant Galpha(i2), Galpha(i3), and Galpha(o), but minimally altered nucleotide binding to purified transducin. The NG-GPA increased GTPgammaS binding to membrane-bound G-proteins and inhibited basal, forskolin- and hormone-stimulated adenylyl cyclase activity in DDT(1)-MF-2 cell membranes. In contrast to G-protein coupled receptor-mediated activation of heterotrimeric G-proteins in DDT(1)-MF-2 cell membrane preparations, the action of the NG-GPA was not altered by treatment of the cells with pertussis toxin. ADP-ribosylation of purified brain G-protein also failed to alter the increase in GTPgammaS binding elicited by the NG-GPA. Thus, the NG-GPA acts in a manner distinct from that of a G-protein coupled receptor and other recently described receptor-independent activators of G-protein signaling. These data indicate the presence of unexpected regulatory domains on G(i)/G(o) proteins and suggest the existence of pertussis toxin-insensitive modes of signal input to G(i)/G(o) signaling systems.  相似文献   

7.
Activator of G-protein signaling 3 (AGS3) has a modular domain structure consisting of seven tetratricopeptide repeats (TPRs) and four G-protein regulatory (GPR) motifs. Each GPR motif binds to the alpha subunit of Gi/Go (Gialpha > Goalpha) stabilizing the GDP-bound conformation of Galpha and apparently competing with Gbetagamma for GalphaGDP binding. As an initial approach to identify regulatory mechanisms for AGS3-G-protein interactions, a yeast two-hybrid screen was initiated using the TPR and linker region of AGS3 as bait. This screen identified the serine/threonine kinase LKB1, which is involved in the regulation of cell cycle progression and polarity. Protein interaction assays in mammalian systems using transfected cells or brain lysate indicated the regulated formation of a protein complex consisting of LKB1, AGS3, and G-proteins. The interaction between AGS3 and LKB1 was also observed with orthologous proteins in Drosophila where both proteins are involved in cell polarity. LKB1 immunoprecipitates from COS7 cells transfected with LKB1 phosphorylated the GPR domains of AGS3 and the related protein LGN but not the AGS3-TPR domain. GPR domain phosphorylation was completely blocked by a consensus GPR motif peptide, and placement of a phosphate moiety within a consensus GPR motif reduced the ability of the peptide to interact with G-proteins. These data suggest that phosphorylation of GPR domains may be a general mechanism regulating the interaction of GPR-containing proteins with G-proteins. Such a mechanism may be of particular note in regard to localized signal processing in the plasma membrane involving G-protein subunits and/or intracellular functions regulated by heterotrimeric G-proteins that occur independently of a typical G-protein-coupled receptor.  相似文献   

8.
To identify novel regulators of Galpha(o), the most abundant G-protein in brain, we used yeast two-hybrid screening with constitutively active Galpha(o) as bait and identified a new regulator of G-protein signaling (RGS) protein, RGS17 (RGSZ2), as a novel human member of the RZ (or A) subfamily of RGS proteins. RGS17 contains an amino-terminal cysteine-rich motif and a carboxyl-terminal RGS domain with highest homology to hRGSZ1- and hRGS-Galpha-interacting protein. RGS17 RNA was strongly expressed as multiple species in cerebellum and other brain regions. The interactions between hRGS17 and active forms of Galpha(i1-3), Galpha(o), Galpha(z), or Galpha(q) but not Galpha(s) were detected by yeast two-hybrid assay, in vitro pull-down assay, and co-immunoprecipitation studies. Recombinant RGS17 acted as a GTPase-activating protein (GAP) on free Galpha(i2) and Galpha(o) under pre-steady-state conditions, and on M2-muscarinic receptor-activated Galpha(i1), Galpha(i2), Galpha(i3), Galpha(z), and Galpha(o) in steady-state GTPase assays in vitro. Unlike RGSZ1, which is highly selective for G(z), RGS17 exhibited limited selectivity for G(o) among G(i)/G(o) proteins. All RZ family members reduced dopamine-D2/Galpha(i)-mediated inhibition of cAMP formation and abolished thyrotropin-releasing hormone receptor/Galpha(q)-mediated calcium mobilization. RGS17 is a new RZ member that preferentially inhibits receptor signaling via G(i/o), G(z), and G(q) over G(s) to enhance cAMP-dependent signaling and inhibit calcium signaling. Differences observed between in vitro GAP assays and whole-cell signaling suggest additional determinants of the G-protein specificity of RGS GAP effects that could include receptors and effectors.  相似文献   

9.
The Ras-related protein, activator of G-protein signaling 1 (AGS1) or Dexras1, interacts with G(i)/G(o)alpha and activates heterotrimeric G-protein signaling systems independent of a G-protein-coupled receptor (GPCR). As an initial approach to further define the cellular role of AGS1 in GPCR signaling, we determined the influence of AGS1 on the regulation of G(betagamma)-regulated inwardly rectifying K(+) channel (GIRK) current (I(ACh)) by M(2)-muscarinic receptor (M(2)-MR) in Xenopus oocytes. AGS1 expression inhibited receptor-mediated current activation by >80%. Mutation of a key residue (G31V) within the G(1) domain involved in nucleotide binding for Ras-related proteins eliminated the action of AGS1. The inhibition of I(ACh) was not overcome by increasing concentrations of the muscarinic agonist acetylcholine but was progressively lost upon injection of increasing amounts of M(2)-MR cRNA. These data suggest that AGS1 may antagonize GPCR signaling by altering the pool of heterotrimeric G-proteins available for receptor coupling and/or disruption of a preformed signaling complex. Such regulation would be of particular importance for those receptors that exist precoupled to heterotrimeric G-protein and for receptors operating within signaling complexes.  相似文献   

10.
Regulator of G-protein signaling (RGS) proteins are GTPase activating proteins (GAPs) of heterotrimeric G-proteins that alter the amplitude and kinetics of receptor-promoted signaling. In this study we defined the G-protein alpha-subunit selectivity of purified Sf9 cell-derived R7 proteins, a subfamily of RGS proteins (RGS6, -7, -9, and -11) containing a Ggamma-like (GGL) domain that mediates dimeric interaction with Gbeta(5). Gbeta(5)/R7 dimers stimulated steady state GTPase activity of Galpha-subunits of the G(i) family, but not of Galpha(q) or Galpha(11), when added to proteoliposomes containing M2 or M1 muscarinic receptor-coupled G-protein heterotrimers. Concentration effect curves of the Gbeta(5)/R7 proteins revealed differences in potencies and efficacies toward Galpha-subunits of the G(i) family. Although all four Gbeta(5)/R7 proteins exhibited similar potencies toward Galpha(o), Gbeta(5)/RGS9 and Gbeta(5)/RGS11 were more potent GAPs of Galpha(i1), Galpha(i2), and Galpha(i3) than were Gbeta(5)/RGS6 and Gbeta(5)/RGS7. The maximal GAP activity exhibited by Gbeta(5)/RGS11 was 2- to 4-fold higher than that of Gbeta(5)/RGS7 and Gbeta(5)/RGS9, with Gbeta(5)/RGS6 exhibiting an intermediate maximal GAP activity. Moreover, the less efficacious Gbeta(5)/RGS7 and Gbeta(5)/RGS9 inhibited Gbeta(5)/RGS11-stimulated GTPase activity of Galpha(o). Therefore, R7 family RGS proteins are G(i) family-selective GAPs with potentially important differences in activities.  相似文献   

11.
AGS3-LONG and AGS3-SHORT contain G-protein regulatory motifs that interact with and stabilize the GDP-bound conformation of Galpha(i) > Galpha(o). AGS3 and related proteins may influence signal strength or duration as well as the adaptation of the signaling system associated with sustained stimulation. To address these issues, we determined the effect of AGS3 on the integration of stimulatory (Galpha(s)-mediated vasoactive intestinal peptide receptor) and inhibitory (Galpha(i)-mediated alpha(2)-adrenergic receptor (alpha(2)-AR)) signals to adenylyl cyclase in Chinese hamster ovary cells. AGS3-SHORT and AGS3-LONG did not alter the VIP-induced increase in cAMP or the inhibitory effect of alpha(2)-AR activation. System adaptation was addressed by determining the influence of AGS3 on the sensitization of adenylyl cyclase that occurs following prolonged activation of a Galpha(i)-coupled receptor. Incubation of cells with the alpha(2)-AR agonist UK14304 (1 microm) for 18 h resulted in a approximately 1.8-fold increase in the vasoactive intestinal peptide-induced activation of adenylyl cyclase, and this was associated with a decrease in membrane-associated Galpha(i3). Both effects were blocked by AGS3-SHORT. AGS3-SHORT also decreased the rate of Galpha(i3) decay. A mutant AGS3-SHORT incapable of binding G-protein was inactive. These data suggest that AGS3 and perhaps other G-protein regulatory motif-containing proteins increase the stability of Galpha(i) in the membrane, which influences the adaptation of the cell to prolonged activation of Galpha(i)-coupled receptors.  相似文献   

12.
To identify novel components in heterotrimeric G-protein signalling, we performed an extensive screen for proteins interacting with Caenorhabditis elegans Galpha subunits. The genome of C. elegans contains homologues of each of the four mammalian classes of Galpha subunits (Gs, Gi/o, Gq and G12), and 17 other Galpha subunits. We tested 19 of the GGalpha subunits and four constitutively activated Galpha subunits in a largescale yeast two-hybrid experiment. This resulted in the identification of 24 clones, representing 11 different proteins that interact with four different Galpha subunits. This set includes C. elegans orthologues of known interactors of Galpha subunits, such as AGS3 (LGN/PINS), CalNuc and Rap1Gap, but also novel proteins, including two members of the nuclear receptor super family and a homologue of human haspin (germ cell-specific kinase). All interactions were found to be unique for a specific Galpha subunit but variable for the activation status of the Galpha subunit. We used expression pattern and RNA interference analysis of the G-protein interactors in an attempt to substantiate the biological relevance of the observed interactions. Furthermore, by means of a membrane recruitment assay, we found evidence that GPA-7 and the nuclear receptor NHR-22 can interact in the animal.  相似文献   

13.
G-protein coupled receptor (GPCR) signaling represents one of the most conserved and ubiquitous means in mammalian cells for transferring information across the plasma membrane to the intracellular environment. Heterotrimeric G-protein subunits play key roles in transducing these signals, and intracellular regulators influencing the activation state and interaction of these subunits regulate the extent and duration of GPCR signaling. One class of intracellular regulator, the non-receptor activators of G-protein signaling (or AGS proteins), are the major focus of this review. AGS proteins provide a basis for understanding the function of heterotrimeric G-proteins in both GPCR-driven and GPCR independent cellular signaling pathways.  相似文献   

14.
Activator of G protein signaling 3 (AGS3) activates the Gbetagamma mating pathway in yeast in a manner that is independent of heptahelical receptors. It competes with Gbetagamma subunits to bind GDP-bound Gi/o(alpha) subunits via four repeated G protein regulatory (GPR) domains in the carboxyl-terminal half of the molecule. However, little is known about the functional role of AGS3 in cellular signaling. Here the effect of AGS3 on receptor-G protein coupling was examined in an Sf9 cell membrane-based reconstitution system. A GST-AGS3-GPR fusion protein containing the four individual AGS3-GPR domains inhibits receptor coupling to Galpha subunits as effectively as native AGS3 and more effectively than GST fusion proteins containing the individual AGS3-GPR domains. While none of the GPR domains distinguished among the three G(i)alpha subunits, both individual and full-length GPR domains interacted more weakly with G(o)alpha than with G(i)alpha. Cytosolic AGS3, but not membrane-associated AGS3, can interact with G(i)alpha subunits and disrupt their receptor coupling. Immunoblotting studies reveal that cytosolic AGS3 can remove G(i)alpha subunits from the membrane and sequester G(i)alpha subunits in the cytosol. These findings suggest that AGS3 may downregulate heterotrimeric G protein signaling by interfering with receptor coupling.  相似文献   

15.
AGS3, a 650-amino acid protein encoded by an approximately 4-kilobase (kb) mRNA enriched in rat brain, is a Galpha(i)/Galpha(t)-binding protein that competes with Gbetagamma for interaction with Galpha(GDP) and acts as a guanine nucleotide dissociation inhibitor for heterotrimeric G-proteins. An approximately 2-kb AGS3 mRNA (AGS3-SHORT) is enriched in rat and human heart. We characterized the heart-enriched mRNA, identified the encoded protein, and determined its ability to interact with and regulate the guanine nucleotide-binding properties of G-proteins. Screening of a rat heart cDNA library, 5'-rapid amplification of cDNA ends, and RNase protection assays identified two populations of cDNAs (1979 and 2134 nucleotides plus the polyadenylation site) that diverged from the larger 4-kb mRNA (AGS3-LONG) in the middle of the protein coding region. Transfection of COS-7 cells with AGS3-SHORT cDNAs resulted in the expression of a major immunoreactive AGS3 polypeptide (M(r) approximately 23,000) with a translational start site at Met(495) of AGS3-LONG. Immunoblots indicated the expression of the M(r) approximately 23,000 polypeptide in rat heart. Glutathione S-transferase-AGS3-SHORT selectively interacted with the GDP-bound versus guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS)-bound conformation of Galpha(i2) and inhibited GTPgammaS binding to Galpha(i2). Protein interaction assays with glutathione S-transferase-AGS3-SHORT and heart lysates indicated interaction of AGS3-SHORT with Galpha(i1/2) and Galpha(i3), but not Galpha(s) or Galpha(q). Immunofluorescent imaging and subcellular fractionation following transient expression of AGS3-SHORT and AGS3-LONG in COS-7 and Chinese hamster ovary cells indicated distinct subcellular distributions of the two forms of AGS3. Thus, AGS3 exists as a short and long form, both of which apparently stabilize the GDP-bound conformation of Galpha(i), but which differ in their tissue distribution and trafficking within the cell.  相似文献   

16.
Activators of G-protein signaling 1-3 (AGS1-3) were identified in a functional screen of mammalian cDNAs that activated G-protein signaling in the absence of a receptor. We report the isolation and characterization of an additional AGS protein (AGS4) from a human prostate leiomyosarcoma cDNA library. AGS4 is identical to G18.1b, which is encoded by a gene within the major histocompatibility class III region of chromosome 6. The activity of AGS4 in the yeast-based functional screen was selective for G(i2)/G(i3) and independent of guanine-nucleotide exchange by G(i)alpha. RNA blots indicated enrichment of AGS4/G18.1b mRNA in heart, placenta, lung, and liver. Immunocytochemistry with AGS4/G18.1b-specific antisera indicated a predominant nonhomogeneous, extranuclear distribution within the cell following expression in COS7 or Chinese hamster ovary cells. AGS4/G18.1b contains three G-protein regulatory motifs downstream of an amino terminus domain with multiple prolines. Glutathione S-transferase (GST)-AGS4/G18.1b fusion proteins interacted with purified G(i)alpha, and peptides derived from each of the G-protein regulatory motifs inhibited guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding to purified G(i)alpha(1). AGS4/G18.1b was also complexed with G(i)alpha(3) in COS7 cell lysates following cell transfection. However, AGS4/G18.1b did not alter the generation of inositol phosphates in COS7 cells cotransfected with the Gbetagamma-regulated effector phospholipase C-beta2. These data suggest either that an additional signal is required to position AGS4/G18.1b in the proper cellular location where it can access heterotrimer and promote subunit dissociation or that AGS4 serves as an alternative binding partner for G(i)alpha independent of Gbetagamma participating in G-protein signaling events that are independent of classical G-protein-coupled receptors at the cell surface.  相似文献   

17.
The GoLoco motif is a short polypeptide sequence found in G-protein signaling regulators such as regulator of G-protein signaling proteins type 12 and 14 and activator of G-protein signaling protein type 3. A unique property of the GoLoco motifs from these three proteins is their preferential interaction with guanosine diphosphate (GDP)-bound Galpha(i1), Galpha(i3) and, sometimes, Galpha(i2) subunits over Galpha(o) subunits. This interaction prevents both spontaneous guanine nucleotide release and reassociation of Galpha(i)-GDP with Gbetagamma. We utilized this property of the GoLoco motif to examine dopamine (D2 and D3) and somatostatin receptor coupling to G-protein-regulated inwardly rectifying potassium (GIRK) channels in mouse AtT20 cells. GoLoco motif peptides had no effect on either basal channel activity or the initial responses to agonists, suggesting that the GoLoco motif cannot disrupt pre-formed G-protein heterotrimers. GoLoco motif peptides did, however, interfere with human D2((short)) receptor coupling to GIRK channels as demonstrated by the progressively diminished responses after repeated agonist application. This behavior is consistent with some form of compartmentalization of D2 receptors and GIRK channels such that Gbetagamma subunits, freed by local receptor activation and prevented from reforming a heterotrimeric complex, are not functionally constrained within the receptor-channel complex and thus are unable to exert a persistent activating effect. In contrast, GoLoco motif peptides had no effect on either D3 or somatostatin coupling to GIRK channels. Our results suggest that GoLoco motif-based peptides will be useful tools in examining the specificity of G-protein-coupled receptor-effector coupling.  相似文献   

18.
An asymmetric fourth cell division in the sea urchin embryo results in formation of daughter cells, macromeres and micromeres, with distinct sizes and fates. Several lines of functional evidence presented here, including pharmacological interference and dominant negative protein expression, indicate that heterotrimeric G protein Gi and its interaction partner, activator of G-protein signaling (AGS), are necessary for this asymmetric cell division. Inhibition of Gi signaling by pertussis toxin interferes with micromere formation and leads to defects in embryogenesis. AGS was isolated in a yeast two-hybrid screen with G alpha i as bait and was expressed in embryos localized to the cell cortex at the time of asymmetric divisions. Introduction of exogenous dominant-negative AGS protein, containing only G-protein regulatory (GPR) domains, selectively prevented the asymmetric division in normal micromere formation. These results support the growing evidence that AGS is a universal regulator of asymmetric cell divisions in embryos.  相似文献   

19.
Lysophosphatidic acid is a bioactive phospholipid that is produced by and stimulates ovarian cancer cells, promoting proliferation, migration, invasion, and survival. Effects of LPA are mediated by cell surface G-protein coupled receptors (GPCRs) that activate multiple heterotrimeric G-proteins. G-proteins are deactivated by Regulator of G-protein Signaling (RGS) proteins. This led us to hypothesize that RGS proteins may regulate G-protein signaling pathways initiated by LPA in ovarian cancer cells. To determine the effect of endogenous RGS proteins on LPA signaling in ovarian cancer cells, we compared LPA activity in SKOV-3 ovarian cancer cells expressing G(i) subunit constructs that are either insensitive to RGS protein regulation (RGSi) or their RGS wild-type (RGSwt) counterparts. Both forms of the G-protein contained a point mutation rendering them insensitive to inhibition with pertussis toxin, and cells were treated with pertussis toxin prior to experiments to eliminate endogenous G(i/o) signaling. The potency and efficacy of LPA-mediated inhibition of forskolin-stimulated adenylyl cyclase activity was enhanced in cells expressing RGSi G(i) proteins as compared to RGSwt G(i). We further showed that LPA signaling that is subject to RGS regulation terminates much faster than signaling thru RGS insensitive G-proteins. Finally, LPA-stimulated SKOV-3 cell migration, as measured in a wound-induced migration assay, was enhanced in cells expressing Galpha(i2) RGSi as compared to cells expressing Galpha(i2) RGSwt, suggesting that endogenous RGS proteins in ovarian cancer cells normally attenuate this LPA effect. These data establish RGS proteins as novel regulators of LPA signaling in ovarian cancer cells.  相似文献   

20.
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) act as molecular switches in signaling pathways by coupling the activation of heptahelical receptors at the cell surface to intracellular responses. In the resting state, the G-protein alpha subunit (Galpha) binds GDP and Gbetagamma. Receptors activate G proteins by catalyzing GTP for GDP exchange on Galpha, leading to a structural change in the Galpha(GTP) and Gbetagamma subunits that allows the activation of a variety of downstream effector proteins. The G protein returns to the resting conformation following GTP hydrolysis and subunit re-association. As the G-protein cycle progresses, the Galpha subunit traverses through a series of conformational changes. Crystallographic studies of G proteins in many of these conformations have provided substantial insight into the structures of these proteins, the GTP-induced structural changes in Galpha, how these changes may lead to subunit dissociation and allow Galpha and Gbetagamma to activate effector proteins, as well as the mechanism of GTP hydrolysis. However, relatively little is known about the receptor-G protein complex and how this interaction leads to GDP release from Galpha. This article reviews the structural determinants of the function of heterotrimeric G proteins in mammalian systems at each point in the G-protein cycle with special emphasis on the mechanism of receptor-mediated G-protein activation. The receptor-G protein complex has proven to be a difficult target for crystallography, and several biophysical and computational approaches are discussed that complement the currently available structural information to improve models of this interaction. Additionally, these approaches enable the study of G-protein dynamics in solution, which is becoming an increasingly appreciated component of all aspects of G-protein signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号