首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
In unsprayed apple trees in eastern Oregon, Galendromus flumenis (Chant), Galendromus occidentalis (Nesbitt), Typhlodromus caudiglans Schuster and Metaseiulus citri (Garman and McGregor) were common phytoseiid mites; common plant-feeding mites were the eriophyid, Aculus schlechtendali Nalepa, the brown mite, Bryobia rubrioculus (Scheuten) and Eotetranychus spp.; apple rust mites seemed to be the primary prey for phytoseiids; the spider mites, Tetranychus urticae Koch and Panonychus ulmi (Koch) were scarce except for a few local outbreaks; the stigmaeid Zetzellia mali (Ewing) was at 10% of sites and its densities were inversely related to phytoseiid densities; phytoseiids were absent at some sites, particularly at high elevations where winters are severe. In seven Oregon ecoregions, G. flumenis was often at lower elevations in valleys with moderate winters; T. caudiglans was often at higher elevations; G. occidentalis was often at intermediate elevations, in young trees, and near where pesticides were used; it dominated in unsprayed trees only in almost treeless, sage-covered areas; M. citri was usually in older apple trees near agriculture. In mixed phytoseiid populations, M. citri, a generalist, and G. occidentalis, a specialist, occurred more often than expected; G. occidentalis was mostly found with T. caudiglans, a generalist; G. flumenis, a generalist, occurred less with others, possibly because it competes with both specialists and generalists. Analyses of species' distributions with multiple regression and genetic models gave explanatory r2s of 0.019-0.318. Of 29 variables, altitude of site, intensity of agricultural management, tree age, plant types, and Z. mali levels helped explain phytoseiid species presence. In the western USA, G. flumenis dominated in middle-southern latitudes; T. caudiglans dominated in the north near the Canadian border; G. occidentalis dominated in middle latitudes in parts of Washington, Idaho, Montana, and Wyoming; M. citri was at a few sites in these four states. Distributional and independent variable data were used to predict species presence at sites in Oregon with a 70% success rate. We discuss phytoseiid life-style types, community dynamics, presence in organic/conventional orchards, and trends as more selective IPM methods are used in apple orchards.  相似文献   

2.
Discriminant analysis (DA) models were developed and applied to examine the use of prey-stage preference (Tetranychus urticae Koch egg versus larval prey) in the classification of phytoseiid mites into life-style types. Prey-stage preferences and developmental times when preying on T. urticae, and relative ovipositional rates on six food categories were determined for four phytoseiid species occurring on apple in central and eastern Oregon, USA: Galendromus flumenis (Chant), Galendromus occidentalis (Nesbitt), Metaseiulus citri (Garman and McGregor) and Typhlodromus caudiglans Schuster. In terms of all three aspects studied, the phytoseiid species showed a consistent polarization of G. occidentalis < or = G. flumenis < or = T. caudiglans < M. citri. Specifically, G. occidentalis ('The Dalles' strain) had a significant preference for eggs, G. flumenis had no preference, and T. caudiglans and M. citri had significant preferences for larvae; G. occidentalis had the shortest developmental time, followed by G. flumenis and T. caudiglans, while M. citri had the longest developmental time; and diet breadth was most narrow for G. occidentalis and progressively broader from G. flumenis, T. caudiglans through M. citri, which was able to sustain oviposition on the broadest range of prey and pollens. Species were classified somewhat differently depending on which traits were considered in a given DA. Prey-stage preference was not included as an indicator in the parsimonious DA model when all species and all traits were considered, but in general this trait performed well as an indicator alone (single-trait DA) and somewhat improved the classifications of multitrait discriminant analyses.  相似文献   

3.
The objective of this study was to evaluate the oviposition rate and the survivorship of some of the most common predators on plants of the natural vegetation of southeastern Brazil, when confined with different food sources. Forty-four laboratory tests were carried out, each corresponding to a different combination of predator species and food source. The predators tested were: Phytoseiidae—Amblyseius acalyphus, Euseius citrifolius, Iphiseiodes zuluagai, Metaseiulus (Metaseiulus) camelliae, Typhlodromips cananeiensis; Stigmaeidae—Agistemus floridanus, Zetzellia malvinae; Tydeidae—Pronematus sp. For most predators, the highest oviposition rate and survivorship were obtained when the prey was one of the tenuipalpid mites, Brevipalpus phoenicis or Tenuipalpus heveae. With the exception of A. floridanus, the predators had low oviposition rate and survivorship on Calacarus heveae relative to their respective rate on other food sources. Predators had also generally low oviposition rate and survivorship when feeding on Tetranychus urticae, Oligonychus gossypii or Frankliniella sp.  相似文献   

4.
During this study the frequency of occurrence and dominance of phytophagous and predatory mites harboring seven vegetable crops in Egypt, namely common bean, cowpea, eggplant, okra, squash, sweet pepper and sweet potato during 2017–2018 were investigated to identify predatory mites that might be useful for the biological control of the phytophagous mites. Three phytophagous and nine predatory mite species were surveyed. The two spotted spider mite Tetranychus urticae Koch of the family Tetranychidae was the dominant pest on these vegetables, while phytoseiids Phytoseiulus persimilis (Athias- Henriot), Typhlodromips swirskii (Athias- Henriot) and Euseius scutalis Chant were the dominant predators. The population of the native or indigenous phytoseiid mite fauna in Egypt such as Phytoseiulus persimilis could be considered as a good biocontrol agent and a part of the Integrated Pest Management (IPM) program in the future. Mite fauna of Egypt especially local populations of Phytoseiulus persimilis can be considered for implementation in future Integrated Pest Management (IPM).  相似文献   

5.
Soil-dwelling predatory mites are natural enemies of various soil pest insects and mites. Both Gaeolaelaps aculeifer (Canestrini) and Stratiolaelaps scimitus (Womersley) are commercialized natural enemies of thrips, but there is little information on the predation rate of these predatory mites on different thrips species. We compared their predation capacities on three thrips species, Frankliniella occidentalis, F. intonsa, and Thrips palmi, which are major pests of various horticultural plants. The predatory rate of G. aculeifer was higher than that of S. scimitus. Both predator species fed on more T. palmi thrips than F. occidentalis or F. intonsa thrips, which may be attributable to the smaller body size of T. palmi than the other thrips. Predation rates of female adults were 2.6–2.8 times higher than those of deutonymphs in both species. Predation rates were not separated according to the various developmental stages (i.e., second instar larva, pupa, or adult) of thrips; however, deutonymphs fed on fewer adults than larvae or pupae of F. occidentalis. Our results suggest that both G. aculeifer and S. scimitus are active predators that can prey during any of their developmental stages and on any species of thrips tested.  相似文献   

6.
Integrated pest management (IPM) programs emphasize the combination of tactics, such as chemical and biological control, to maintain pest populations below economic thresholds. Although combining tactics may provide better long-term sustainable pest suppression than one tactic alone, in many cases, insecticides and natural enemies are incompatible. Insecticides can disrupt natural enemies through lethal and sub-lethal means causing pest resurgence or secondary pest outbreaks. Legislative actions such as the Food Quality Protection Act (US) and the Directive on Sustainable Use of Pesticides (EU) have placed greater restrictions on insecticides used in agriculture, potentially enhancing biological control. Here we focus on the effects of insecticides on biological control, and potential mitigation measures that can operate at different scales. At the farm scale, natural enemies can be conserved through the use of selective insecticides, low doses, special formulations, creation of refugia, special application methods, and targeted applications (temporal or spatial). At the landscape scale, habitat quality and composition affect the magnitude of biological control services, and the degree of mitigation against the effects of pesticides on natural enemies. Current research is teasing apart the relative importance of local and landscape effects of pesticides on natural enemies and the ecosystem services they provide, and the further development of this area will ultimately inform the decisions of policy makers and land managers in terms of how to mitigate pesticide effects through habitat manipulation.  相似文献   

7.
In response to the need to efficiently control mammal pest populations while avoiding unnecessary suffering, applied and theoretical ecologists have recently focused on virus-vectored immunocontraception (VVIC). So far, modellers have only considered a non-sexual approach (models of sexually reproducing populations without explicitly discerning between the sexes), which appears dubious in view of the sex-specificity of VVIC agents. In this paper, we derive and compare predictions of non-sexual and two-sex models of the spread of a VVIC agent in a host population in order to assess the adequacy of non-sexual models in this context. Our results show that predictions of non-sexual and two-sex models generally diverge and that non-sexual models often fail to predict the control impact of VVIC. We thus recommend using two-sex models, especially if the mating system and life history of the target species are known. Our analysis also shows that female-specific viruses generally give better results than male-specific ones, and suggests that virus choice should focus more on its sterilizing power rather than transmission efficiency.  相似文献   

8.
Selected commercial and technical grade pesticides were tested against the egg, preparasite and adult stages of Agamermis unka , a nematode parasite of the brown planthopper, Nilaparvata lugens . The commercial insecticide, diazinon (LC = 0.37 ppm), was most toxic to the 50 preparasites, followed by phenthoate (LC = 0.43 ppm), BPMC (LC = 0.44 ppm), IBP 50 50 (LC = 0.46 ppm), cartap hydrochloride (LC = 0.82 ppm) and buprofezin + isoprocarb 50 50 (LC = 1.11 ppm). The least toxic commercial pesticide tested was the fungicide, pencycuron 50 (LC = 2.19 ppm). Out of 12 technical grade insecticides tested, phenthoate, monocrotophos, 50 diazinon and carbofuran (LC = 0.37-0.46 ppm) were highly toxic to the preparasites, followed by 50 buprofezin, BPMC and fenitrothion (LC = 0.74-0.86 ppm). Fenthion, etofenprox, chlorpyrifos, 50 imidacloprid and MIPC (LC = 1.11-2.19 ppm) were the technical grade insecticides least toxic 50 to the preparasites. Most preparasites survived for up to 24 h at the low insecticide concentrations (0.63 and 0.31 ppm). Preparasites that were exposed to BPMC for 24 h at concentrations as high as 5.0 ppm and survived the treatments infected brown planthopper nymphs. Four selected insecticides-chlorpyrifos, BPMC, imidacloprid and carbofuran-had significant adverse effects on A. unka egg hatching. Eggs that were in the insecticide solution for 168 h fared poorly with imidacloprid having the best survival ( > 2% of the eggs hatching at 0.04 ppm). No eggs hatched from the other insecticide treatments. Three selected insecticides, BPMC, imidacloprid and chlorpyrifos, tested against adult A. unka showed that most adults survived the exposure to the insecticides between 0.31 and 2.5 ppm. At 5.0 ppm of BPMC or chlorpyrifos none of the adults survived, whereas with imidacloprid 70% of the adults survived. Egg deposition by the surviving adults was greatly reduced in those treated with the insecticides compared with those in the controls. Imidacloprid had some negative impact on the preparasites' ability to infect BPH nymphs, but it had the least detrimental effect of the insecticides tested on preparasite survival and on the eggs and adults of A. unka .  相似文献   

9.
The objective of this work was to study the population dynamics of Brevipalpus phoenicis (Geijskes) and predaceous mites (Phytoseiidae and Stigmaeidae), as well as the interactions among these mite species, in a coffee plantation in the State of São Paulo, Brazil. Tydeids were also evaluated because of the high frequency of these mites on coffee plants. Samples of leaves, branches and fruits were taken fortnightly, from April 2001 to June 2003, from plants randomly chosen in the coffee plantation. B. phoenicis mites were found on leaves in higher number during the drier periods of the year. Among the predaceous mites, Euseius citrifolius Denmark &; Muma and Euseius concordis (Chant) were the most frequent species on the surface of leaves. During the evaluations, 72,534 domatia were cut and opened to remove the mites, from 6,360 leaves examined. Zetzellia malvinae Matioli, Ueckermann &; Oliveira was the most frequent predator species found inside domatia. Significant correlations were observed between population dynamics of, among others, E. concordis and B. phoenicis, Z. malvinae and B. phoenicis, and Z. malvinae and E. concordis. Significant correlations were also verified between the number of domatia and the population densities of B. phoenicis, E. concordis, Lorryia sp. and Z. malvinae. Interactions between predator–prey and predator–predator on coffee plants are discussed. The influence of the meteorological factors temperature and precipitation on the most frequent mite species is also discussed.  相似文献   

10.
The link between environmental temperature, physiological processes and population fluctuations is a significant aspect of insect pest management. Here, we explore how thermal biology affects the population abundance of two globally significant pest fruit fly species, Ceratitis capitata (medfly) and C. rosa (Natal fruit fly), including irradiated individuals and those expressing a temperature sensitive lethal (tsl) mutation that are used in the sterile insect technique. Results show that upper and lower lethal temperatures are seldom encountered at the field sites, while critical minimum temperatures for activity and lower developmental thresholds are crossed more frequently. Estimates of abundance revealed that C. capitata are active year-round, but abundance declines markedly during winter. Temporal autocorrelation of average fortnightly trap captures and of development time, estimated from an integrated model to calculate available degree days, show similar seasonal lags suggesting that population increases in early spring occur after sufficient degree-days have accumulated. By contrast, population collapses coincide tightly with increasing frequency of low temperature events that fall below critical minimum temperatures for activity. Individuals of C. capitata expressing the tsl mutation show greater critical thermal maxima and greater longevity under field conditions than reference individuals. Taken together, this evidence suggests that low temperatures limit populations in the Western Cape, South Africa and likely do so elsewhere. Increasing temperature extremes and warming climates generally may extend the season over which these species are active, and could increase abundance. The sterile insect technique may prove profitable as climates change given that laboratory-reared tsl flies have an advantage under warmer conditions.  相似文献   

11.
Microbial control in Southeast Asia   总被引:1,自引:0,他引:1  
Beginning in the 1980s, concerns about the deleterious effects of synthetic pesticides have driven a significant Southeast Asian research and development effort directed towards alternative pest control strategies, including the use of microbial control agents. Despite this effort, use of microbial control agents has grown slowly in the region. This is the result of an interplay between internal factors such as economics, national research programs, farmer education, manufacturing capabilities and regulatory frameworks, and external factors such as the influence of neighboring countries (particularly China), the availability of competitive pest control products, import regulations on pesticide residues and the activities of donor agencies. The role of these factors in providing both incentives and barriers to the adoption of microbial control are explored, and examples of promising projects are examined as a means of pointing the way forward towards increased progress in the future.  相似文献   

12.
The mite Tetranychus evansi Baker & Pritchard (Tetranychidae) probably originated in South America. Because of its importance as a tomato pest in Africa, an extensive project has been conducted to detect potentially effective natural enemies in South America for the classical biological control of the pest in Africa. A search for the natural enemies of T. evansi was conducted in the Province of Tucumán, northwestern Argentina, in December 2004, and this report describes the results. One hundred predatory mites of the family Phytoseiidae referring to 11 species were collected on 11 examined species of solanaceous plants. The most abundant phytoseiid species collected were Neoseiulus californicus (McGregor) and Euseius concordis (Chant). Adults and immatures of those species, as well as of Neoseiulus idaeus Denmark & Muma, Phytoseiulus fragariae Denmark & Schicha and Proprioseiopsis cannaensis (Muma) were found in association with T. evansi, suggesting that they were developing on the pest. However, because of the possible biological differences between populations of a given species, biological studies evaluating T. evansi as a prey for those predators seem desirable.  相似文献   

13.
14.
《Journal of Asia》2023,26(1):102022
The sweet potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), and the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), are important pests of protected crops grown in warm climates. We compared efficacy of a new strain of the entomopathogenic fungus Beauveria bassiana (ARP14) isolated from Riptortus pedestris (Hemiptera: Alydidae) with a commercial strain (GHA) against different life stages of both B. tabaci and T. vaporariorum. Eggs, nymphs, and adults were exposed to 1 × 108 conidia/mL of each strain using the leaf-dipping method. The mycosis rate of B. tabaci eggs (as a proportion) was relatively low (0.13 for B. bassiana ARP14 and 0.10 for B. bassiana GHA), while, for T. vaporariorum eggs, mycosis rate was 0.44 for B. bassiana GHA and 0.27 for B. bassiana ARP14. However, mycosis rate of 1st instars of both whiteflies was much higher than for eggs, for both strains (ARP14 and GHA). The developmental period of B. tabaci eggs exposed to ARP14 was significantly shorter than for either eggs treated with GHA or the control. For 2nd and 4th instar nymphs and adults of both whiteflies there were no differences in mycosis rates between the two B. bassiana strains. These results suggest that, B. bassiana ARP14 could be commercialized as a native biological control agent for control of B. tabaci and T. vaporariorum.  相似文献   

15.
China has the highest greenhouse-based production in the world. In 2010, the area of greenhouses devoted to vegetable production was estimated at 4.7 million ha. With the increasing costs of pest control, expanding pesticide resistance and the growing consumer concern regarding pesticide residues in fresh vegetables, a strong demand for applying non-chemical control methods is emerging in China. Biological control in the greenhouse environment is a viable alternative to pesticide use from both environmental and economic perspectives. Although we have only 17 cases of fully documented, successful biological control operations from China, involving 8 crops, 8 pest species and 14 species of natural enemies, the use of the biological control agents is much more widespread. There are 7 commercial companies and facilities producing 21 species of natural enemies, and most of them are available country-wide. Several of these employ a rearing system using artificial diets, and many now move to an integrated production system, including the mass production of the biocontrol agents, quality control, methods of long-distance transportation, release recommendations, and user feedback. While initially these systems relied on introduced natural enemies, they increasingly develop modified systems using native natural enemies. The increasing demand for pesticide-free, high quality vegetable produce year-round and the existing certification schemes make it very likely that the use of biocontrol agents will continue to increase in China.  相似文献   

16.
Neozygites floridana (Weiser & Muma) (Zygomycetes: Entomophthorales) has been reported infecting naturally at least 18 species of tetranychids worldwide. However, the host range of N. floridana is unknown. Epizootics caused by this pathogen to tetranychid populations indicate that N. floridana has the potential to be used as a biological control agent. However, the virulence and specificity of species and strains of Neozygites need to be assessed in the laboratory to reveal its potential as a biological control agent. N. floridana isolates are currently been investigated in Brazil as biological control agents against the tomato red mite, Tetranychus evansi Baker & Pritchard, and the two-spotted spider mite, Tetranychus urticae Koch. The pathogenicity of five strains of N. floridana obtained from T. urticae, T. evansi and T. ludeni Zacher was assessed against populations of Mononychellus tanajoa (Bondar), Schizotetranychus sacharum Flechtmann & Baker, Tetranychus abacae Baker & Pritchard and Tetranychus armipenis Flechtmann & Baker, in addition to the species from which the fungus was obtained. Mummified mites were placed on leaf discs of the host plant of each tetranychid to promote fungal sporulation, and after 24 h the mites were transferred to the leaf discs. Contamination, infection and mummification were evaluated daily for seven days after confinement. Each isolate was pathogenic to three or four out of the six spider mite species tested. However, except for isolate ESALQ1421, all isolates caused higher levels of infection and significant mummification only to the tetranychid species from which they were collected. None of the isolates was pathogenic to S. sacharum and only one isolate infected T. abacae. Alternative hosts may be important for N. floridana survival in tropical regions where resting spores are rarely found.  相似文献   

17.
The granulovirus infecting the potato tuber moth (PoGV) is an important biocontrol agent, especially for managing the pest in rustic potato storerooms. For efficient propagation and use of baculoviruses in pest control strategies, information on the effects of temperature on virus multiplication and activity is crucial. The interaction between PoGV infection and incubation temperature on P. operculella was studied in laboratory bioassays by determining the survival, yield of virus-infected larvae, and the kinetics of virus in vivo increase. Bioassays for LC50 determination by using the egg-dip method were repeated over a period of six years in controlled incubation chambers at six constant temperatures ranging from 16 to 28 °C. Additionally, at temperatures of 17 and 24 °C the kinetics of virus development and increase in larva were assessed in destructive time-series experiments. Three different virus concentrations were used for inoculation. Control mortality was significantly temperature-dependent and was well described by a second-order polynomial function, with lowest mortality at 25 °C (20%) and highest at 16 °C (>60%). LC50 values and slopes of probit-mortality curves were not significantly different between temperatures. Numbers of virus-infected larvae increased exponentially with increasing log-concentration of virus inoculum; an effect of temperature was not evident. Virus granules per larva correlated highly with larval age and larval weight. Multiple regression revealed minor direct effects of temperature on virus numbers; however, with decreasing temperature, larval weight and hence virus numbers increased. As a result, temperature is an important factor to be considered in virus-production facilities. Rearing temperature in virus-production facilities should be maintained at temperatures around 24 °C.  相似文献   

18.
The impact of alien species on native organisms is a cause for concern worldwide, with biological invasions commonplace today. Suppression efforts targeting many invasive species have included introductions of biological control agents. The numerous releases of biological control agents in the Hawaiian archipelago have resulted in considerable concern for non-target impacts, due to high levels of non-target parasitism observed to occur in some cases. This study investigated the impact of introduced Hymenoptera parasitoids on a Hawaiian moth. The endemic Hawaiian moth Udea stellata (Butler) has seven alien parasitoids associated with it, two purposely introduced, three adventive, and two of uncertain origin. The objective of this study was to determine the relative contribution of the seven parasitoid species to the population dynamics of U. stellata by constructing partial life tables. Marginal attack rates and associated k-values were calculated to allow comparison of mortality factors between experimental sites. Sentinel larvae were deployed on potted host plants and left in the field for 3-day intervals in open and exclusion treatments. The factors that contributed to total mortality in the open treatment were: disappearance (42.1%), death due to unknown reasons during rearing (16.5%) and parasitism (4.9%). The open treatment incurred significantly higher larval disappearance compared to the exclusion treatment (7.8%), which suggests that in large part disappearance is the result of predation. Adventive parasitoids inflicted greater total larval mortality attributable to parasitism (97.0%) than purposely introduced species (3.0%).  相似文献   

19.
In many European countries agri-environment funding can improve ecosystem services, including the adoption of conservation biocontrol, through the creation of habitats that encourage beneficial arthropods. Predatory beetles are amongst the most numerous and diverse arthropods present in arable fields. The primary ecosystem services provided by predatory beetles are in biological control and food chain maintenance as they are a key resource for many higher organisms. However, to be effective biological control agents, able to respond quickly to wherever a pest infestation occurs, then they must be sufficiently abundant and widely distributed. Conservation biocontrol utilising predatory beetles has focussed on the impact of species that overwinter in adjacent field boundaries, although those overwintering within fields are often more abundant. If the abundance and distribution of predatory beetles is to be maximised then further knowledge of their spatial dynamics is required to ensure habitats are arranged appropriately. The spatio-temporal dynamics of boundary and field overwintering species was measured across 64 ha encompassing six fields and for three consecutive years using a grid of 973 pitfall traps. Boundary species were more numerous in spring (May and June) whereas more field species were captured in July. The species composition was comprised of relatively few taxa. Boundary species occurred in small patches that were distributed across the fields in spring, but were only found close to the margins in July. Patches persisted in some locations over two years. Field species occurred in larger patches, spread across particular fields and these were stable within years and to some extent between years. Game-cover strips were attractive to boundary species in the spring and summer and did not effect predator distribution in the adjacent crop. Handling Editor: Eric Lucas.  相似文献   

20.
Intraguild predation has become a major research topic in biological control. Quantification of multipredator interactions and an understanding of the consequences on target prey populations are needed, which only highlights the importance of population dynamics models in this field. However, intraguild predation models are usually based on Lotka–Volterra equations, which have been shown not to be adequate for modeling population dynamics of aphidophagous insects and their prey. Here we use a simple model developed for simulation of population dynamics of aphidophagous insects, which is based on the type of egg distribution made by predatory females, to estimate the real strength of intraguild predation in the aphidophagous insects. The model consists of two components: random egg distribution among aphid colonies, and between-season population dynamics of the predatory species. The model is used to estimate the proportion of predatory individuals that face a conflict with a heterospecific competitor at least once during their life. Based on this, predictions are made on the population dynamics of both predatory species. The predictions are confronted with our data on intraguild predation in ladybirds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号