首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Barták  M.  Hájek  J.  Gloser  J. 《Photosynthetica》2000,38(4):531-537
Spatial heterogeneity of chlorophyll (Chl) fluorescence over thalli of three foliose lichen species was studied using Chl fluorescence imaging (CFI) and slow Chl fluorescence kinetics supplemented with quenching analysis. CFI values indicated species-specific differences in location of the most physiologically active zones within fully hydrated thalli: marginal thallus parts (Hypogymnia physodes), central part and close-to-umbilicus spots (Lasallia pustulata), and irregulary-distributed zones within thallus (Umbilicaria hirsuta). During gradual desiccation of lichen thalli, decrease in Chl fluorescence parameters (FO - minimum Chl fluorescence at point O, FP - maximum Chl fluorescence at P point, 2 - effective quantum yield of photochemical energy conversion in photosystem 2) was observed. Under severe desiccation (>85 % of water saturation deficit), substantial thalli parts lost their apparent physiological activity and the resting parts exhibited only a small Chl fluorescence. Distribution of these active patches was identical with the most active areas found under full hydration. Thus spatial heterogeneity of Chl fluorescence in foliose lichens may reflect location of growth zones (pseudomeristems) within thalli and adjacent newly produced biomass. When exposed to high irradiance, fully-hydrated thalli of L. pustulata and U. hirsuta showed either an increase or no change in FO, and a decrease in FP. Distribution of Chl fluorescence after the high irradiance treatment, however, remained the same as before the treatment. After 60 min of recovery in the dark, FO and FP did not recover to initial values, which may indicate that the lichen used underwent a photoinhibition. The CFI method is an effective tool in assessing spatial heterogeneity of physiological activity over lichen thalli exposed to a variety of environmental factors. It may be also used to select a representative area at a lichen thallus before application of single-spot fluorometric techniques in lichens.  相似文献   

2.
The antimicrobial properties of acetone, methanol, and aqueous extracts of the lichens Lasallia pustulata, Parmelia sulcata, Umbilicaria crustulosa, and Umbilicaria cylindrica were studied comparatively in vitro. Antimicrobial activities of the extracts of different lichens were estimated by the disk diffusion test for Gram-positive bacteria, Gram-negative bacteria, and fungal organisms, as well as by determining the MIC (minimal inhibitory concentration). The obtained results showed that the acetone and methanol extracts of Lasallia pustulata, Parmelia sulcata, and Umbilicaria crustulosa manifest antibacterial activity against the majority of species of bacteria tested, in addition to selective antifungal activity. The MIC of lichen extracts was lowest (0.78 mg/ml) for the acetone extract of Lasallia pustulata against Bacillus mycoides. Aqueous extracts of all of the tested lichens were inactive. Extracts of the lichen Umbilicaria cylindrica manifested the weakest activity, inhibiting only three of the tested organisms.  相似文献   

3.
Seedlings of spring barley, meadow fescue, and winter rape were fumigated with 180 μg kg−1 of ozone for 12 d, and effect of O3 on photosynthesis and cell membrane permeability of fumigated plants was determined. Electrolyte leakage and chlorophyll fluorescence were measured after 6, 9, and 12 d of fumigation, while net photosynthetic rate (P N) and stomatal conductance (g s) were measured 9 d after the start of ozone exposure. O3 treatment did not change membrane permeability in fescue and barley leaves, while in rape a significant decrease in ion leakage was noted within the whole experiment. O3 did not change the photochemical efficiency of photosystem 2 (PS2), i.e., Fv/Fm, and the initial fluorescence (F0). The values of half-rise time (t1/2) from F0 to maximal fluorescence (Fm) decreased in fescue and barley after 6 and 9 d of fumigation. P N decreased significantly in ozonated plants, in the three species. The greatest decrease in P N was observed in ozonated barley plants (17 % of the control). The ozone-induced decrease in P N was due to the closure of stomata. Rape was more resistant to ozone than fescue or barley. Apparently, the rape plants show a large adaptation to ozone and prevent loss of membrane integrity leading to ion leakage. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The photosynthetic properties of a range of lichens (eight species) containing green algal primary photobionts of either the genus Coccomyxa, Dictyochloropsis or Trebouxia were examined with the aim of obtaining a better understanding for the different CO2 acquisition strategies of lichenized green algae. Fast transients of light/dark-dependent CO2 uptake and release were measured in order to screen for the presence or absence of a photosynthetic CO2-concentrating mechanism (CCM) within the photobiont. It was found that lichens with Trebouxia photobionts (four species) were able to accumulate a small pool of inorganic carbon (DIC; 70–140 nmol per mg chlorophyll (Chl)), in the light, which theoretically may result in, at least, a two to threefold increase in the stromal CO2 concentration, as compared to that in equilibrium with ambient air. The other lichens (four species), which were tripartite associations between a fungus, a cyanobacterium (Nostoc) and a green alga (Coccomyxa or Dictyochloropsis) accumulated a much smaller pool of DIC (10–30 nmol·(mg Chl)–1). This pool is most probably associated with the previously documented CCM of Nostoc, inferred from the finding that free-living cells of Coccomyxa did not show any signs of DIC accumulation. In addition, the kinetics of fast CO2 exchange for free-living Nostoc were similar to those of intact tripartite lichens, especially in their responses to the CCM and the carbonic anhydrase (CA) inhibitor ethoxyzolamide. Trebouxia lichens had a higher photosynthetic capacity at low and limiting external CO2 concentrations, with an initial slope of the CO2-response curve of 2.6–3.9 mol·(mg Chl)–1·h–1·Pa–1, compared to the tripartite lichens which had an initial slope of 0.5–1.1 mol-(mg Chl)–1·h–1·-Pa–1, suggesting that the presence of a CCM in the photobiont affects the photosynthetic performance of the whole lichen. Regardless of these indications for the presence or absence of a CCM, ethoxyzolamide inhibited the steady-state rate of photosynthesis at low CO2 in all lichens, indicating a role of CA in the photosynthetic process within all of the photobionts. Measurements of CA activity in photobiont-enriched homogenates of the lichens showed that Coccomyxa had by far the highest activity, while the other photobionts displayed only traces or no activity at all. As the CCM is apparently absent in Coccomyxa, it is speculated that this alga compensates for this absence with high internal CA activity, which may function to reduce the CO2-diffusion resistance through the cell.Abbreviations CA carbonic anhydrase (EC 4.2.1.1) - CCM CO2-concentrating mechanism - Chl chlorophyll - DIC dissolved inorganic carbon - EZ ethoxyzolamide or 6-ethoxy-2-benzo-thiazole-2-sulfonamide - GA glycolaldehyde - Hepps 4-(2-hydroxyethyl)-l-piperazinepropanesulfonic acid - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39) This research was supported by a grant from the Swedish Natural Sciences Resource Council to K.P.  相似文献   

5.
Changes in various components of photosynthetic apparatus during the 4 d dark incubation at 25°C of detached control and ultraviolet-B (UV-B) treatedVigna unguiculata L. leaves were examined. The photosynthetic apparatus was more degraded in younger control seedlings and for a longer time UV-B treated seedlings than in the older or for a shorter time UV-B treated seedlings. This was shown by determining the losses in chlorophyll (Chl) and protein contents, variable fluorescence yield, photosystem (PS) 2, PS1 and ribulose-1,5-bisphosphate carboxylase (RuBPC) activities, and photosynthetic14CO2 fixation. In contrast, the Car/Chl ratio increased during the dark incubation due to less expressed degradation of Car.  相似文献   

6.
D. S. Coxson 《Oecologia》1987,73(3):447-453
Summary The response of net photosynthesis (NP) and dark respiration to periods of high insolation exposure was examined in the tropical basidiomycete lichen Cora pavonia. Photoinhibition of NP proved quite dependant on temperature. Rates of light saturated NP were severely impaired immediately after pretreatment high light exposure at temperatures of 10, 20 and 40°C, while similar exposure at 30°C resulted in only minimal photoinhibition. Apparent quantum yield proved an even more sensitive indicator of photoinhibition, reduced in all temperature treatments, although inhibition was again greatest at low and high temperatures. Concurrent exposure to reduced O2 tensions during high light exposure mitigated some of the deleterious effects of high light exposure at 10 and 20°C, suggesting an interaction of O2 with the inactivation of photosynthetic function. This represents the first reported instance of light dependant chilling stress in lichens, and may be an important limitation on the distribution of this and other tropical lichen species. This narrow range of temperatures within which thalli of C. pavonia can withstand periods of high insolation exposure coincides with that faced by hydrated thalli during rare periods of high insolation exposure within the cloud/shroud zone on La Soufrière, and points to the necessity of considering periods of atypical or unusual climatic events when interpreting patterns of net photosynthetic response, both in tropical and in north temperate lichen species.  相似文献   

7.
Kalapos  T.  Mázsa  K. 《Photosynthetica》2001,39(2):263-268
On a semiarid sand grassland (Festucetum vaginatae) colonised by juniper (Juniperus communis L.) shrubs terricolous lichens and mosses segregate strongly between microhabitats: certain species grow in the open grassland, others almost exclusively in the shade of junipers. The contrasting irradiances of these microhabitats influence much the metabolism of these organisms, and thus affect their small-scale distribution. This was confirmed by determining the efficiency of photochemical energy conversion by measuring chlorophyll a fluorescence parameters. In the open grassland maximum photochemical efficiency of photosystem 2 (PS2, Fv/Fm) declined from the humid spring to the hot and dry summer in all species, and this was caused by an increase in base fluorescence (F0), but not by the decrease in fluorescence maximum (Fm). In summer, mosses and lichens growing in the open grassland generally possessed lower Fv/Fm than cryptogams growing in the shade cast by juniper shrubs. Thus mosses and lichens in the open grassland suffer lasting reduction in photochemical efficiency in summer, which is avoided in the shade of junipers. Juniper shrubs indeed influence the composition and small-scale spatial pattern of sympatric terricolous lichen and moss communities by—among others—providing a shelter against high light in summer.  相似文献   

8.
Kalina  J.  Čajánek  M.  Kurasová  I.  Špunda  V.  Vrána  J.  Marek  M.V. 《Photosynthetica》2000,38(4):621-627
Since July 28th, 1997 the two experimental mini-stands of young Norway spruce [Picea abies (L.) Karst.] have been grown in lamellar domes at ambient (AC) and elevated concentrations of CO2 [EC, i.e., ambient + 350 µmol(CO2) mol–1]. Before the start of exposure to EC (June 1997) the dependencies of photosystem 2 (PS2) quantum yield (Y) on irradiance, estimating the efficiency of PPFD utilisation in PS2 photochemistry, were the same for AC and EC shoots. After one month of EC simulation (August 1997), Y values were higher for EC needles as compared with the AC ones (by 1–42 %), whereas two months later (October 1997) an opposite effect was observed (decrease of Y by from 1 to 33 %). By chlorophyll a (Chl a) fluorescence induction the effects of EC on PS2 function were further characterised. During the first month a moderate improvement of PS2 function was estimated for EC needles from slightly higher potential yield of PS2 photochemistry (FV/FM, by 1 %) and reduced amount of inactive PS2 reaction centres (relative Fp1 level, by 15 %). However, the prolonged exposure to EC led firstly to a slight but significant decrease of FV/FM (by 3 %), secondly to a reduction of half time of fluorescence rise (t1/2, by 14 %), and finally to pronounced accumulation of inactive PS2 reaction centres (by 41 %). From the gradual response of individual Chl a fluorescence parameters we suggest a probable sequence of events determining the stimulation and subsequent depression of PS2 function for Norway spruce during the first season under EC.  相似文献   

9.
The effects of different spectral region of excitation and detection of chlorophyll (Chl) a fluorescence at room temperature on the estimation of excitation energy utilization within photosystem (PS) 2 were studied in wild-type barley (Hordeum vulgare L. cv. Bonus) and its Chl b-less mutant chlorina f2 grown under low and high irradiances [100 and 1 000 μmol(photon) m−2 s−1]. Three measuring spectral regimes were applied using a PAM 101 fluorometer: (1) excitation in the red region (maximum at the wavelength of 649 nm) and detection in the far-red region beyond 710 nm, (2) excitation in the blue region (maximum at the wavelength of 461 nm) and detection beyond 710 nm, and (3) excitation in the blue region and detection in the red region (660– 710 nm). Non-photochemical quenching of maximal (NPQ) and minimal fluorescence (SV0), determined by detecting Chl a fluorescence beyond 710 nm, were significantly higher for blue excitation as compared to red excitation. We suggest that this results from higher non-radiative dissipation of absorbed excitation energy within light-harvesting complexes of PS2 (LHC2) due to preferential excitation of LHC2 by blue radiation and from the lower contribution of PS1 emission to the detected fluorescence in the case of blue excitation. Detection of Chl a fluorescence originating preferentially from PS2 (i.e. in the range of 660–710 nm) led to pronounced increase of NPQ, SV0, and the PS2 photochemical efficiencies (FV/FM and FV′/FM′), indicating considerable underestimation of these parameters using the standard set-up of PAM 101. Hence PS1 contribution to the minimal fluorescence level in the irradiance-adapted state may reach up to about 80 %.  相似文献   

10.
The effect of ethylenediurea (EDU) was tested using the chlorophyll (Chl) a fluorescence transient analysis, performed with JIP-test, to assess ambient ozone (O3) effects on photosynthesis of adult trees under natural conditions. Twelve adult European ash (Fraxinus excelsior L.) trees, known to be sensitive or tolerant to O3, determined by presence symptomatic (S) or absence asymptomatic (AS) trees of foliar symptoms in previous years, were treated either with distilled water containing 450 g m−3 EDU or with distilled water. Once a month across the growing season [the accumulated exposure over a threshold of 40 nmol(O3) mol−1 was 32.49 μmol mol−1 h−1], Chl a fluorescence transients were measured in vivo on dark-adapted leaves of 1-year-old labeled shoots, from the lower crown part. Twenty-five parameters were calculated. The maximum quantum yield of primary photochemistry (ϕPo or Fv/Fm) did not differentiate between S-and AS-trees, while increased Chl content and de-excitation rates suggested compensation of O3 injury in S-trees. Seasonal reductions in absorbing fluxes and increase in heat and fluorescence dissipation processes was due to leaf ageing and drought, the latter suggesting water deficit influenced Chl a fluorescence stronger than ambient O3 exposure. AS-trees showed elevated probability of connectivity among photosystem 2 units, a mechanism to stimulate energy dissipation and reduce photo-oxidative injury. EDU prevented the inactivation of reaction centers. This slight effect does not warrant EDU as a tool to assess O3 effects on photosynthesis, while the JIP-test is suggested for a quantitative assessment in adult trees.  相似文献   

11.
We examined photosynthetic activities and thermostability of photosystem 2 (PS2) in leaves of elm (Ulmus pumila) seedlings from initiation to full expansion. During leaf development, net photosynthetic rate (P N) increased gradually and reached the maximum when leaves were fully developed. In parallel with the increase of P N, chlorophyll (Chl) content was significantly elevated. Chl a fluorescence measurements showed that the maximum quantum yield of PS2 (ϕPS2), the efficiency a trapped exciton, moved an electron into the electron transport chain further than QA o), and the quantum yield of electron transport beyond QAEo) increased gradually. These results were independently confirmed by our low irradiance experiments. When subjected to progressive heat stress, the young leaves exhibited considerably lower ϕPS2 and higher minimal fluorescence (F0) than the mature leaves, revealing the highly sensitive nature of PS2 under heat in the newly initiating leaves. Further analysis showed that PS2 structure in the newly initiating leaves was strongly altered under heat, as evidenced by the increased fluorescence signals at the position of the K step. We therefore demonstrated an inhibition in the oxygen-evolving complex (OEC) in the young leaves. This resulted in decrease in amount of the functional PS2 reaction centres and relative increase in the PS2 reaction centres with inhibited electron transport at the acceptor side under heat. We suggest that the enhanced thermostability of PS2 during leaf development is associated with improved OEC stability.  相似文献   

12.
Dilnawaz  F.  Mohapatra  P.  Misra  M.  Ramaswamy  N.K.  Misra  A.N. 《Photosynthetica》2001,39(4):557-563
Wheat (Triticum aestivum L. cv. Sonalika) seedlings were grown in Hoagland solution. Primary leaves were harvested at 8, 12, and 15 d and cut into five equal segments. Contents of photosynthetic pigments and proteins, and photosystem 2 (PS2) activity increased from base to apex of these leaves. Chlorophyll (Chl) content was maximum at 12 d in all the leaf segments, but PS2 activity showed a gradual decline from 8 to 15 d in all leaf segments. In sharp contrast, the CO2 fixation ability of chloroplasts increased from 8 to 15 d. CO2 fixation ability of chloroplasts started to decline from base to apex of 15-d-old seedlings, where the content of ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RuBPCO-LSU) increased acropetally. RuBPCO-LSU content was maximum in all the leaf segments in 12-d-old seedlings. This shows a distinctive pattern of PS2, Chl, CO2 fixation ability of chloroplasts, and RuBPCO-LSU content along the axis of leaf lamina during development and senescence. RuBPCO-LSU (54 kDa) degraded to fragments of 45, 42, 37, 19, and 16 kDa products which accumulated along the leaf axis during ageing of chloroplasts. Thus the CO2 fixation ability of chloroplasts declines earlier than PS2 activity and photosynthetic pigment contents along the leaf lamina.  相似文献   

13.
Two rice chlorophyll (Chl) b-less mutants (VG28-1, VG30-5) and the respective wild type (WT) plant (cv. Zhonghua No. 11) were analyzed for the changes in Chl fluorescence parameters, xanthophyll cycle pool, and its de-epoxidation state under exposure to strong irradiance, SI (1 700 μmol m−2 s−1). We also examined alterations in the chloroplast ultrastructure of the mutants induced by methyl viologen (MV) photooxidation. During HI (0–3.5 h), the photoinactivation of photosystem 2 (PS2) appeared earlier and more severely in Chl b-less mutants than in the WT. The decreases in maximal photochemical efficiency of PS2 in the dark (Fv/Fm), quantum efficiency of PS2 electron transport (ΦPS2), photochemical quenching (qP), as well as rate of photochemistry (Prate), and the increases in de-epoxidation state (DES) and rate of thermal dissipation of excitation energy (Drate) were significantly greater in Chl b-mutants compared with the WT plant. A relatively larger xanthophyll pool and 78–83 % conversion of violaxanthin into antheraxanthin and zeaxanthin in the mutants after 3.5 h of HI was accompanied with a high ratio of inactive/total PS2 (0.55–0.73) and high 1–qP (0.57–0.68) which showed that the activities of the xanthophyll cycle were probably insufficient to protect the photosynthetic apparatus against photoinhibition. No apparent difference of chloroplast ultrastructure was found between Chl b-less mutants and WT plants grown under low, LI (180 μmol m−2 s−1) and high, HI (700 μmol m−2 s−1) irradiance. However, swollen chloroplasts and slight dilation of thylakoids occurred in both mutants and the WT grown under LI followed by MV treatment. These typical symptoms of photooxidative damage were aggravated as plants were exposed to HI. Distorted and loose scattered thylakoids were observed in particular in the Chl b-less mutants. A greater extent of photoinhibition and photooxidation in these mutants indicated that the susceptibility to HI and oxidative stresses was enhanced in the photosynthetic apparatus without Chl b most likely as a consequence of a smaller antenna size.  相似文献   

14.
Photosystem II (PS II) chlorophyll (Chl) a fluorescence lifetimes were measured in thylakoids and leaves of barley wild-type and chlorina f104 and f2 mutants to determine the effects of the PS II Chl a+b antenna size on the deexcitation of absorbed light energy. These barley chlorina mutants have drastically reduced levels of PS II light-harvesting Chls and pigment-proteins when compared to wild-type plants. However, the mutant and wild-type PS II Chl a fluorescence lifetimes and intensity parameters were remarkably similar and thus independent of the PS II light-harvesting antenna size for both maximal (at minimum Chl fluorescence level, Fo) and minimal rates of PS II photochemistry (at maximum Chl fluorescence level, Fm). Further, the fluorescence lifetimes and intensity parameters, as affected by the trans-thylakoid membrane pH gradient (pH) and the carotenoid pigments of the xanthophyll cycle, were also similar and independent of the antenna size differences. In the presence of a pH, the xanthophyll cycle-dependent processes increased the fractional intensity of a Chl a fluorescence lifetime distribution centered around 0.4–0.5 ns, at the expense of a 1.6 ns lifetime distribution (see Gilmore et al. (1995) Proc Natl Acad Sci USA 92: 2273–2277). When the zeaxanthin and antheraxanthin concentrations were measured relative to the number of PS II reaction center units, the ratios of fluorescence quenching to [xanthophyll] were similar between the wild-type and chlorina f104. However, the chlorina f104, compared to the wild-type, required around 2.5 times higher concentrations of these xanthophylls relative to Chl a+b to obtain the same levels of xanthophyll cycle-dependent fluorescence quenching. We thus suggest that, at a constant pH, the fraction of the short lifetime distribution is determined by the concentration and thus binding frequency of the xanthophylls in the PS II inner antenna. The pH also affected both the widths and centers of the lifetime distributions independent of the xanthophyll cycle. We suggest that the combined effects of the xanthophyll cycle and pH cause major conformational changes in the pigment-protein complexes of the PS II inner or core antennae that switch a normal PS II unit to an increased rate constant of heat dissipation. We discuss a model of the PS II photochemical apparatus where PS II photochemistry and xanthophyll cycle-dependent energy dissipation are independent of the Peripheral antenna size.Abbreviations Ax antheraxanthin - BSA bovine serum albumin - cx lifetime center of fluorescence decay component x - CP chlorophyll binding protein of PS II inner antenna - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DTT dithiothreitol - fx fractional intensity of fluorescence lifetime component x - Fm, Fm maximal PS II Chl a fluorescence intensity with all QA reduced in the absence, presence of thylakoid membrane energization - Fo minimal PS II Chl a fluorescence intensity with all QA oxidized - Fv=Fm–Fo variable level of PS II Chl a fluorescence - HPLC high performance liquid chromatography - kA rate constant of all combined energy dissipation pathways in PS II except photochemistry and fluorescence - kF rate constant of PS II Chl a fluorescence - LHCIIb main light harvesting pigment-protein complex (of PS II) - Npig mols Chl a+b per PS II - NPQ=(Fm/Fm–1) nonphotochemical quenching of PS II Chl a fluorescence - PAM pulse-amplitude modulation fluorometer - PFD photon-flux density, mols photons m–2 s–1 - PS II Photosystem II - P680 special-pair Chls of PS II reaction center - QA primary quinone electron acceptor of PS II - Vx violaxanthin - wx width at half maximum of Lorentzian fluorescence lifetime distribution x - Zx zeaxanthin - pH trans-thylakoid proton gradient - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad2gaaeqaaaaa!4989!\[< \tau > _{Fm}\],% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad+gaaeqaaOGaeyypa0Zaaabqaeaaca% WGMbWaaSbaaSqaaiaadIhaaeqaaOGaam4yamaaBaaaleaacaWG4baa% beaaaeqabeqdcqGHris5aaaa!50D3!\[< \tau > _{Fo} = \sum {f_x c_x }\] average lifetime of Chl a fluorescence calculated from a multi-exponential model under Fm, Fo conditions  相似文献   

15.
Jajoo  Anjana  Bharti  Sudhakar 《Photosynthetica》2000,37(4):529-535
Cations such as Mg2+ regulate spillover of absorbed excitation energy mainly in favour of photosystem (PS) 2. Effect of low concentration (<10 mM) of the monovalent cation Na+ on chlorophyll (Chl) a fluorescence was completely overridden by divalent cation Mg2+ (5 mM). Based on Chl a fluorescence yield and 77 K emission measurements, we revealed the role and effectiveness of anions (Cl-, SO4 2-, PO4 3-) in lowering the Mg2+-induced PS2 fluorescence. The higher the valency of the anion, the lesser was the expression of Mg2+ effect. Anions may thus overcome Mg2+ effects up to certain extent in a valency dependent manner, thereby diverting more energy to PS1 even in the presence of MgCl2. They may do so by reversing Mg2+-induced changes.  相似文献   

16.
The differences in pigment levels, photosynthetic activity and the chlorophyll fluorescence decrease ratio R Fd (as indicator of photosynthetic rates) of green sun and shade leaves of three broadleaf trees (Platanus acerifolia Willd., Populus alba L., Tilia cordata Mill.) were compared. Sun leaves were characterized by higher levels of total chlorophylls a + b and total carotenoids x + c as well as higher values for the weight ratio chlorophyll (Chl) a/b (sun leaves 3.23–3.45; shade leaves: 2.74–2.81), and lower values for the ratio chlorophylls to carotenoids (a + b)/(x + c) (with 4.44–4.70 in sun leaves and 5.04–5.72 in shade leaves). Sun leaves exhibited higher photosynthetic rates P N on a leaf area basis (mean of 9.1–10.1 μmol CO2 m−2 s−1) and Chl basis, which correlated well with the higher values of stomatal conductance G s (range 105–180 mmol m−2 s−1), as compared to shade leaves (G s range 25–77 mmol m−2 s−1; P N: 3.2–3.7 μmol CO2 m−2 s−1). The higher photosynthetic rates could also be detected via imaging the Chl fluorescence decrease ratio R Fd, which possessed higher values in sun leaves (2.8–3.0) as compared to shade leaves (1.4–1.8). In addition, via R Fd images it was shown that the photosynthetic activity of the leaves of all trees exhibits a large heterogeneity across the leaf area, and in general to a higher extent in sun leaves than in shade leaves.  相似文献   

17.
Lichtenthaler  H.K.  Babani  F.  Langsdorf  G.  Buschmann  C. 《Photosynthetica》2000,38(4):521-529
With a flash-lamp chlorophyll (Chl) fluorescence imaging system (FL-FIS) the photosynthetic activity of several thousand image points of intact shade and sun leaves of beech were screened in a non-destructive way within a few seconds. The photosynthetic activity was determined via imaging the Chl fluorescence at maximum Fp and steady state fluorescence Fs of the induction kinetics (Kautsky effect) and by a subsequent determination of the images of the fluorescence decrease ratio RFd and the ratio Fp/Fs. Both fluorescence ratios are linearly correlated to the photosynthetic CO2 fixation rates. This imaging method permitted to detect the gradients in photosynthetic capacity and the patchiness of photosynthetic quantum conversion across the leaf. Sun leaves of beech showed a higher photosynthetic capacity and differential pigment ratios (Chl a/b and Chls/carotenoids) than shade leaves. Profile analysis and histogram of the Chl fluorescence yield and the Chl fluorescence ratios allow to quantify the differences in photosynthetic activity between different leaf parts and between sun and shade leaves with a high statistical significance.  相似文献   

18.
We compared the sensitivity to cold stress, in terms of photosynthetic capacity and changes in chlorophyll fluorescence of photosystem 2 (PS2), of an evergreen and a deciduous oak species, which co-occur in the southeastern United States. We predicted that the evergreen species, Quercus virginiana, which must endure winter, is likely to have an inherently greater capacity for energy dissipation and to be less susceptible to chilling stress than the deciduous species, Quercus michauxii. Short-term cold stress in both species lead to greater than 50 % reduction in maximum photosynthetic rates, 60-70 % reduction in electron transport, and irreversible quenching of PS2 fluorescence. The kinetics of recovery in the dark after exposure to 1 h high irradiance (1000 μmol m-2 s-1) and chilling (5 °C) showed that the evergreen Q. virginiana exhibited more protective qE and less irreversible quenching (qI) than the deciduous Q. michauxii. The large qE which we observed in Q. virginiana suggests that the capacity for photoprotection at low temperatures is not induced by a long-term acclimation to cold but preexists in evergreen leaves. This capacity may contribute to the ability of this species to maintain leaves during the winter. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Biological soil crusts (BSCs) formed by different combinations of photosynthetic algae, cyanobacteria, lichens and mosses are well-developed in the Gurbantunggut Desert of northwestern China. To investigate the different responses of BSCs to environmental factors, the diurnal variations of chlorophyll fluorescence and CO2 exchange of BSCs in different successional stages were measured following artificial rehydration in the field. Results showed that the maximum potential quantum efficiency of PSII (F v/F m), the actual PSII efficiency (ΦPSII) and the relative rate of electron transport as well as net photosynthesis of the different successional BSCs varied similarly and changed markedly with diurnal fluctuations in light and temperature. Further analyses indicated that CO2 exchange and photosynthetic pigment content of chlorophyll (Chl) a, Chl b and carotenoids increased with the developmental level of BSCs, from cyanobacterial crust to lichen crust to moss crust. The differences in responses of BSCs to environmental factors and photosynthetic pigment content may be partially attributed to differences in species composition and morphological characteristics of the various BSCs. Overall, moss crust is better adapted to a wide range of irradiance and higher temperatures than lichen and cyanobacterial crusts. Therefore, BSCs in a later successional stage are expected to play a more important role in desertification control than those of the earlier stages.  相似文献   

20.
Zhang  Shouren  Gao  Rongfu 《Photosynthetica》2000,37(4):559-571
Diurnal changes in net photosynthetic rate (P N), chlorophyll (Chl) fluorescence, and stomatal aperture of several hybrid poplar clones subjected to midday light stress were measured in July and August of 1996. Midday depression of P N, photosystem 2 (PS2) efficiency, stomatal conductance (g s), and stomatal aperture was observed in all clones, though at differing rates among them. Non-uniform stomatal closure occurred at noon and at other times, requiring a modification of intercellular CO2 concentration (C 1). A linear relationship was found between g s and stomatal aperture. More than half of the photons absorbed by PS2 centre dissipated thermally when subjected to light stress at noon. There was a linear relationship between the rate of PS2 photochemical electron transport (PxPFD) and P N. There was a consensus for two fluorescence indicators (1 – qP/qN and (Fm' – F)/Fm') in assessment of susceptibility of photoinhibition in the clones. According to P N, Chl fluorescence, and stomatal aperture, we conclude that midday depression of photosynthesis can be attributed to both stomatal and non-stomatal limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号