首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beta-oxidation of long-chain fatty acids and branched-chain fatty acids is carried out in mammalian peroxisomes by a multifunctional enzyme (MFE) or D-bifunctional protein, with separate domains for hydroxyacyl coenzyme A (CoA) dehydrogenase, enoyl-CoA hydratase, and steroid carrier protein SCP2. We have found that Dictyostelium has a gene, mfeA, encoding MFE1 with homology to the hydroxyacyl-CoA dehydrogenase and SCP2 domains. A separate gene, mfeB, encodes MFE2 with homology to the enoyl-CoA hydratase domain. When grown on a diet of bacteria, Dictyostelium cells in which mfeA is disrupted accumulate excess cyclopropane fatty acids and are unable to develop beyond early aggregation. Axenically grown mutant cells, however, developed into normal fruiting bodies composed of spores and stalk cells. Comparative analysis of whole-cell lipid compositions revealed that bacterially grown mutant cells accumulated cyclopropane fatty acids that remained throughout the developmental stages. Such a persistent accumulation was not detected in wild-type cells or axenically grown mutant cells. Bacterial phosphatidylethanolamine that contains abundant cyclopropane fatty acids inhibited the development of even axenically grown mutant cells, while dipalmitoyl phosphatidylethanolamine did not. These results suggest that MFE1 protects the cells from the increase of the harmful xenobiotic fatty acids incorporated from their diets and optimizes cellular lipid composition for proper development. Hence, we propose that this enzyme plays an irreplaceable role in the survival strategy of Dictyostelium cells to form spores for their efficient dispersal in nature.  相似文献   

2.
Enteric bacteria having a high content of cyclopropane fatty acids steeply increase their synthesis when grown on insufficiently propitious culture media (meat-peptone agar or modified Drobot'ko synthetic medium) as compared with bacteria grown under more favourable conditions (meat-peptone broth). Simultaneously, a decrease in monounsaturated fatty acids and increase in palmitic acid are observed. One of the main factors underlying the change in the proportion of fatty acids in bacteria grown on synthetic medium is an increase in medium pH in the process of their growth. Enteric bacteria containing minute amounts/or not containing cyclopropane fatty acids at all (under the experimental conditions used) change their fatty-acid profile little if the culture medium is changed. When grown under insufficiently favourable conditions, these bacteria mainly display an enhanced content of palmitic acid and a lowered content of octadacenoic acid as compared with bacteria grown under more favourable conditions. Of the culture media used, meat-peptone broth, which affords the most favourable conditions for eneteric bacteria growth, is the most suitable medium for obtaining data of taxonomic value.  相似文献   

3.
Concentrated cultures of Lactobacillus bulgaricus were prepared by resuspending cells grown in semisynthetic media in sterile 10% non-fat milk solids. The concentrated cultures were frozen in liquid nitrogen for 24 h. The cell suspensions exhibited decreased viability after storage, and the amount of death varied among the different strains tested. Storage stability of all strains examined was improved by supplementing the growth medium with sodium oleate. Radioisotopes were used to study the fate of sodium oleate with L. bulgaricus NCS1. [1-(14)C]sodium oleate was incorporated solely into the lipid portion of the cells, including both neutral and polar lipids. The fatty acid composition of L. bulgaricus NCS1, NCS2, NCS3, and NCS4 grown with and without sodium oleate was studied. The major fatty acids of strains NCS1, NCS2, and NCS3 grown without sodium oleate were dodecanoic, tetradecanoic, hexadecanoic, hexadecenoic, and octadecenoic acids. In addition to these, strain NCS4 contained C(19) cyclopropane fatty acid. The major fatty acids of all strains grown with sodium oleate were tetradecanoic, hexadecanoic, hexadecenoic, octadecenoic, and C(19) cyclopropane fatty acids. All strains grown in broth containing sodium oleate contained larger amounts of octadecenoic and C(19) cyclopropane fatty acid, and less saturated fatty acids than when grown without sodium oleate. Statistical analyses indicated that C(19) cyclopropane fatty acid was most closely related to stability of the lactobacilli in liquid nitrogen. A negative regression line that was significant at P < 0.001 was obtained when the cellular content of this fatty acid was plotted against death.  相似文献   

4.
The fluorescent pseudomonads are classified as a group, one characteristic of which is that they do not accumulate poly-3-hydroxybutyrate (PHB) during nutrient starvation in the presence of excess carbon source. In this paper we show that prototype strains from this subclass, such as Pseudomonas aeruginosa, Pseudomonas putida, and Pseudomonas fluorescens, do accumulate poly-3-hydroxyalkanoates (PHA) when grown on fatty acids. These PHAs are composed of medium-chain-length (C6 to C12) 3-hydroxy fatty acids. The ability to form these polyesters does not depend on the presence of plasmids. A specificity profile of the enzymes involved in the biosynthesis of PHA was determined by growing Pseudomonas oleovorans on fatty acids ranging from C4 to C18. In all cases, PHAs were formed which contained C6 to C12 3-hydroxy fatty acids, with a strong preference for 3-hydroxyoctanoate when Ceven fatty acids were supplied and 3-hydroxynonanoate when Codd fatty acids were the substrate. These results indicate that the formation of PHAs depends on a specific enzyme system which is distinct from that responsible for the synthesis of PHB. While the fluorescent pseudomonads are characterized by their inability to make PHB, they appear to share the capacity to produce PHAs. This characteristic may be helpful in classifying pseudomonads. It may also be useful in the optimization of PHA production for biopolymer applications.  相似文献   

5.
The viability of Streptococcus lactis and Lactobacillus sp. A-12 after freezing at -17°C for 48 h was better preserved when the cells were grown in medium supplemented with oleic acid or Tween 80 (polyoxyethylene sorbitan monooleate). A pronounced change in the cellular fatty acid composition was noted when the bacteria were grown in the presence of Tween 80. In S. lactis the ratio of unsaturated to saturated fatty acids increased from 1.18 to 2.55 and in Lactobacillus sp. A-12 it increased from 0.85 to 1.67 when Tween 80 was added to the growth medium. The antibiotic cerulenin markedly inhibited the growth of lactic acid bacteria in tomato juice (TJ) medium but had almost no effect on the growth of the bacteria in TJ medium containing Tween 80 (or oleic acid). The antibiotic inhibited markedly the incorporation of [1-14C]acetate but had no inhibitory effect on the incorporation of exogenous [1-14C]oleate (or [1-14C]palmitate) into the lipid fractions of lactic acid bacteria. Thus, the fatty acid composition of lactic acid bacteria, inhibited by the antibiotic cerulenin, can be modulated by exogenously added oleic acid (or Tween 80) without the concurrent endogenous fatty acid synthesis from acetate. The data obtained suggest that cerulenin inhibits neither cyclopropane fatty acid synthesis nor elongation of fatty acid acyl intermediates. The radioactivity of cells grown in the presence of [1-14C]oleate and cerulenin was associated mainly with cyclopropane Δ19:0, 20:0 + 20:1, and 21:0 acids. As a consequence, cerulenin caused a decrease in the ratio of unsaturated to saturated fatty acids in lactic acid bacteria as compared with cells grown in TJ medium plus Tween 80 but without cerulenin. Cerulenin caused a decrease in the viability of S. lactis and Lactobacillus sp. A-12 after freezing at -17°C for 48 h only when Tween 80 was present in the growth medium. We conclude that the sensitivity of lactic acid bacteria to damage from freezing can be correlated with specific alterations in the cellular fatty acids.  相似文献   

6.
The changes in the cellular fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols in the presence of phenol as well as its adaptive mechanisms to these compounds were studied. It was found that bacteria were capable of degrading 4-chlorophenol (4-CP) completely in the presence of phenol, while 2-chlorophenol (2-CP) and 3-chlorophenol (3-CP) they degraded partially. The analysis of the fatty acid profiles indicated that adaptive mechanisms of bacteria depended on earlier exposure to phenol, which isomer they degraded, and on incubation time. In bacteria unexposed to phenol the permeability and structure of their membranes could be modified through the increase of hydroxylated and cyclopropane fatty acids, and straight-chain and hydroxylated fatty acids under 2-CP, 3-CP and 4-CP exposure, respectively. In the exposed cells, regardless of the isomer they degraded, the most important changes were connected with the increase of the contribution of branched fatty acid on day 4 and the content of hydroxylated fatty acids on day 7. The changes, particularly in the proportion of branched fatty acids, could be a good indicator for assessing the progress of the degradation of monochlorophenols by S. maltophilia KB2. In comparison, in phenol-degrading cells the increase of cyclopropane and straight-chain fatty acid content was established. These findings indicated the degradative potential of the tested strain towards the co-metabolic degradation of persistent chlorophenols, and extended the current knowledge about the adaptive mechanisms of these bacteria to such chemicals.  相似文献   

7.
EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI.   总被引:60,自引:21,他引:39  
Marr, Allen G. (University of California, Davis) and John L. Ingraham. Effect of temperature on composition of fatty acids in Escherichia coli. J. Bacteriol. 84:1260-1267. 1962.-Variations in the temperature of growth and in the composition of the medium alter the proportions of individual fatty acids in the lipids of Escherichia coli. As the temperature of growth is lowered, the proportion of unsaturated fatty acids (hexadecenoic and octadecenoic acids) increases. The increase in content of unsaturated acids with a decrease in temperature of growth occurs in both minimal and complex media. Cells harvested in the stationary phase contained large amounts of cyclopropane fatty acids (methylenehexadecanoic and methylene octadecanoic acids) in comparison with cells harvested during exponential growth. Cells grown in a chemostat, limited by the concentration of ammonium salts, show a much higher content of saturated fatty acids (principally palmitic acid) than do cells harvested from an exponentially-growing batch culture in the same medium. Cells grown in a chemostat, limited by the concentration of glucose, show a slightly higher content of unsaturated fatty acids than cells from the corresponding batch culture. The results do not indicate a direct relation between fatty acid composition and minimal growth temperature.  相似文献   

8.
Fatty acid composition inPseudomonas sp. CF600 during degradation of catechol and phenol individually and their mixture was investigated. Moreover, the influence of glucose as an additional, easily degradable carbon source on fatty acid profiling in bacteria grown on these aromatic substrates was studied. Both catechol and phenol treatments caused in bacterial cells crucial changes in the distribution of tested groups of fatty acids. The major changes included the increase of fatty acid saturation, decrease in the percentage of cyclopropane fatty acid 17:0cy and the appearance of branched and hydroxy fatty acids. Under catechol, phenol and their mixture exposure saturated/unsaturated ratio showed the value 6.5, 5.68 and 6.38 whereas in control cells this ratio reached the value 3.05. As a response to aromatic compounds bacteria formed fatty acids that were not detected in control cells growing on glucose. It has been demonstrated that the supplementation of cultured media containing single aromatic substrates or/and their mixture with glucose resulted in changes in degradation rates of catechol and phenol. It seemed that glucose influenced some metabolic pathways responsible for the assimilation of aromatic compounds. The incubation of cells in the presence of aromatic compounds and glucose rapidly led to alterations of whole-cell derived fatty acid composition. The most important changes were associated with saturation level of fatty acids and cyclopropane fatty acid contents.  相似文献   

9.
The establishment of the intestinal microflora, and probiotic bacteria, may control the inflammatory conditions in the gut. As polyunsaturated fatty acids (PUFA) possess antimicrobial activities, they may deter the action of probiotics. We assessed whether free linoleic, gamma-linolenic, arachidonic, alpha-linolenic and docosahexaenoic acids at physiological concentrations in the growth media would influence the growth and adhesion of Lactobacillus GG (probiotic), Lactobacillus casei Shirota (probiotic) and Lactobacillus bulgaricus (dairy strain). Higher concentrations of PUFA (10-40 microg PUFA ml(-1)) inhibited growth and mucus adhesion of all tested bacterial strains, whilst growth and mucus adhesion of L. casei Shirota was promoted by low concentrations of gamma-linolenic acid and arachidonic acid (at 5 microg ml(-1)), respectively. PUFA also altered bacterial adhesion sites on Caco-2 cells. Caco-2 cells grown in the presence of arachidonic acid were less adhered to by all three bacterial strains. Yet, L. casei Shirota adhered better on Caco-2 cells grown in the presence of alpha-linolenic acid. As the adhesion to mucosal surfaces is pivotal in health promoting effects by probiotics, our results indicate that the action of probiotics in the gut may be modulated by dietary PUFA.  相似文献   

10.
1. Pseudomonas fluorescens was grown at various temperatures between 5 degrees C and 33 degrees C. The extractable lipids from organisms at various stages of growth and grown at different temperatures were examined. 2. The extractable lipids contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and an ornithine-containing lipid. The relative amounts of these lipids did not vary significantly during growth or with the changes in growth temperature. 3. The major fatty acids were hexadecanoic, hexadecenoic and octadecenoic acids and the cyclopropane acids methylene-hexadecanoic and methylene-octadecanoic acids. The relative amount of unsaturated acids (including cyclopropane acids) did not change significantly during growth, but increased with decreasing temperature. 4. Phosphatidylethanolamines with different degrees of unsaturation and containing different amounts of cyclopropane acids were isolated from organisms grown at 5 degrees C and 22 degrees C and their surface and phase behaviour in water was investigated. Thermodynamic parameters for fusion and monolayer results for cyclopropane and other fatty acids were examined. 5. The surface pressure-area isotherms of phosphatidylethanolamines containing different amounts of unsaturated fatty acids show small differences but the individual isotherms remain essentially unchanged over the temperature range 5-22 degrees C. X-ray-diffraction methods show that the structures (lamellar+hexagonal) formed in water by phosphatidylethanolamine, isolated from organisms grown at 5 degrees C and 22 degrees C, are identical when compared at the respective growth temperatures. This points to a control mechanism of the physical state of the lipids that is sensitive to the operating temperature of the organism. 6. The molecular packing of cyclopropane acids is intermediate between that of the corresponding cis- and trans-monoenoic acids. However, substitution of a cyclopropane acid for a cis-unsaturated acid has insignificant effects on the molecular packing of phospholipids containing these acids.  相似文献   

11.
Comparison of Rapid Methods for Analysis of Bacterial Fatty Acids   总被引:20,自引:4,他引:16       下载免费PDF全文
When rapid gas-liquid chromatography methods for determination of bacterial fatty acids were compared, results showed that saponification was required for total fatty acid analysis. Transesterification with boron-trihalide reagents (BF(3)-CH(3)OH, BCl(3)-CH(3)OH) caused extensive degradation of cyclopropane acids and was less effective than saponification in releasing cellular hydroxy fatty acids. Digestion of cells with tetramethylammonium hydroxide was unsatisfactory because of extraneous gas-liquid chromatography peaks and because of lower recovery of branched-chain and hydroxy fatty acids. A simple, rapid saponification procedure which can be used for total cellular fatty acid analysis of freshly grown cells is described.  相似文献   

12.
The composition of the fatty acid profiles of Cl. perfringens type A, grown on media with initial pH values from 5.5 to 9.0, was determined by the method of gas-liquid chromatography. The fatty acid profiles are stabilized in 18- to 24-h cultures. Hydrogen ions stimulate the synthesis of cyclopropane carboxylic fatty acids and "desaturase" activity; hydroxyl ions inhibit these processes. The content of saturated fatty acids in the bacteria is regulated by the initial acid-alkaline conditions of the medium. An increase in biomass accumulation under the influence of hydroxyl ions is coupled with a decrease in the energy supply of the bacteria. Possible mechanisms of the development of resistance to hydrogen and hydroxyl ions during the cultivation of Clostridia on a period growth medium are discussed.  相似文献   

13.
The aim of this study was to investigate the influence of supplementing growth medium with unsaturated fatty acids on the technical properties of the probiotic strain Lactobacillus johnsonii NCC 533, such as heat and acid tolerance, and inhibition of Salmonella enterica serovar Typhimurium infection. Our results showed that the membrane composition and morphology of L. johnsonii NCC 533 were significantly changed by supplementing a minimal Lactobacillus medium with oleic, linoleic, and linolenic acids. The ratio of saturated to unsaturated plus cyclic fatty acids in the bacterial membrane decreased by almost 2-fold when minimal medium was supplemented with unsaturated fatty acids (10 μg/ml). The subsequent acid and heat tolerance of L. johnsonii decreased by 6- and 20-fold when the strain was grown in the presence of linoleic and linolenic acids, respectively, compared with growth in oleic acid (all at 10 μg/ml). Following acid exposure, significantly higher (P < 0.05) oleic acid content was detected in the membrane when growth medium was supplemented with linoleic or linolenic acid, indicating that saturation of the membrane fatty acids occurred during acid stress. Cell integrity was determined in real time during stressed conditions using a fluorescent viability kit in combination with flow cytometric analysis. Following heat shock (at 62.5°C for 5 min), L. johnsonii was unable to form colonies; however, 60% of the bacteria showed no cell integrity loss, which could indicate that the elevated heat inactivated vital processes within the cell, rendering it incapable of replication. Furthermore, L. johnsonii grown in fatty acid-enriched minimal medium had different adhesion properties and caused a 2-fold decrease in S. enterica serovar Typhimurium UK1-lux invasion of HT-29 epithelial cells compared with bacteria grown in minimal medium alone. This could be related to changes in the hydrophobicity and fluidity of the membrane. Our study shows that technical properties underlying probiotic survivability can be affected by nutrient composition of the growth medium.  相似文献   

14.
Feast and famine cycles are common in activated sludge wastewater treatment systems, and they select for bacteria that accumulate storage compounds, such as poly-beta-hydroxybutyrate (PHB). Previous studies have shown that variations in influent substrate concentrations force bacteria to accumulate high levels of rRNA compared to the levels in bacteria grown in chemostats. Therefore, it can be hypothesized that bacteria accumulate more rRNA when they are subjected to feast and famine cycles. However, PHB-accumulating bacteria can form biomass (grow) throughout a feast and famine cycle and thus have a lower peak biomass formation rate during the cycle. Consequently, PHB-accumulating bacteria may accumulate less rRNA when they are subjected to feast and famine cycles than bacteria that are not capable of PHB accumulation. These hypotheses were tested with Wautersia eutropha H16 (wild type) and W. eutropha PHB-4 (a mutant not capable of accumulating PHB) grown in chemostat and semibatch reactors. For both strains, the cellular RNA level was higher when the organism was grown in semibatch reactors than when it was grown in chemostats, and the specific biomass formation rates during the feast phase were linearly related to the cellular RNA levels for cultures. Although the two strains exhibited maximum uptake rates when they were grown in semibatch reactors, the wild-type strain responded much more rapidly to the addition of fresh medium than the mutant responded. Furthermore, the chemostat-grown mutant culture was unable to exhibit maximum substrate uptake rates when it was subjected to pulse-wise addition of fresh medium. These data show that the ability to accumulate PHB does not prevent bacteria from accumulating high levels of rRNA when they are subjected to feast and famine cycles. Our results also demonstrate that the ability to accumulate PHB makes the bacteria more responsive to sudden increases in substrate concentrations, which explains their ecological advantage.  相似文献   

15.
The antimicrobial activity of C2-C18 fatty acids was determined in vitro in cultures of two strains of Escherichia coli grown on glucose. Antimicrobial activity was expressed as IC50 (a concentration at which only 50% of the initial glucose in the cultures was utilized). Utilization of glucose was inhibited by caprylic acid (IC50 0.30-0.85 g/L) and capric acid (IC50 1.25-2.03 g/L). Neither short-chain fatty acids (C2-C6) nor fatty acids with longer chain (C12-C18) influenced substrate utilization. Caproic acid, however, decreased cell yield in cultures of E. coli in a dose-dependent manner. No inhibition of glucose utilization was produced with unsaturated fatty acids, oleic and linoleic. Calcium ions added in excess reversed the antimicrobial effect of capric acid, but not that of caprylic acid. Antimicrobial activity of caprylic and capric acid decreased when the bacteria were grown in the presence of straw particles, or repeatedly subcultured in a medium containing these compounds at low concentrations. Counts of viable bacteria determined by plating decreased after incubation with caprylic and capric acid (30 min; 1 g/L) at pH 5.2 from > 10(9) to approximately 10(2)/mL. A reduction of a mere 0.94-1.96 log10 CFU was observed at pH 6.5-6.6. It can be concluded that caprylic acid, and to a lesser extent also capric acid, has a significant antimicrobial activity toward E. coli. Effects of other fatty acids were not significant or absent.  相似文献   

16.
The impact of cis, trans and cyclopropane fatty acids on membrane fluidity was investigated using batch‐grown Pseudomonas putida P8 and Comamonas testosteroni ATCC 17454. A major difference observed between the two investigated strains is the absence of the ability to synthesize trans‐unsaturated fatty acids in Comamonas. When grown exponentially at 30 °C, a shift to 35 °C increased the trans/cis ratios of the fatty acids of P. putida P8 from 0 to 0.81 and 0 to 1.07, in lipid extracts and cell hydrolyzates, respectively. After prolonged growth followed by nutrient deprivation for 48 h, both at 30 °C, trans fatty acids were absent, but the cyclo/cis ratios rose from 0.1 to 1.55 in lipid extracts, and from 0.1 to 1.54 in cell hydrolyzates. C. testosteroni ATCC 17454 contained no cyclo fatty acids when harvested in the exponential phase after 6 h, whereas after 72 h cultivation, the cyclo/cis ratios rose to 0.49 and 0.47, in lipid extracts and cell hydrolyzates, respectively. Trans fatty acids were never observed in this strain. Increased cyclo/cis and trans/cis ratios correlated with decreased fluidity measured by the fluorescence anisotropy of 1,6‐diphenyl‐1,3,5‐hexatriene (DPH) intercalated in the bilayers of liposomes and by Fourier Transform Infrared (FTIR) spectroscopy of lipids prepared from the cells. The specific effect of cyclopropane fatty acids on membrane fluidity was much smaller than that of trans fatty acids. FTIR‐measurements of intact cells of P. putida P8 confirmed the high potency of trans fatty acids to decrease the fluidity. In cells with induced cyclopropane fatty acid synthesis, the membranes remained more fluidized, indicating the lower importance of these fatty acids for homeoviscosis.  相似文献   

17.
C. Luo  D. R. Fontana 《Protoplasma》1996,194(3-4):140-150
Summary Cell-cell adhesion and cAMP-stimulated cAMP production (cAMP relay) regulate the aggregation that occurs early in theDictyostelium discoideum developmental cycle. Increasing the concentration of neutral lipids inD. discoideum membranes inhibits both cell-cell adhesion and cAMP relay. Fractionation experiments revealed that it was the free fatty acids, one group of the neutral lipids, that inhibited both cAMP relay and cell-cell adhesion. Work with commercially-available free fatty acids demonstrated that the addition of saturated free fatty acids, palmitic acid and stearic acid, did not alter cell-cell adhesion or cAMP relay. The addition of unsaturated free fatty acids inhibited both cAMP relay and cell-cell adhesion in a dose-dependent, saturable manner. To test the physiological significance of these observations, the concentrations of endogenous unsaturated fatty acids were modified by altering theD. discoideum diet. Decreasing the amount of fatty acids 18 carbons long with 2 double bonds enhanced cAMP relay and cell-cell adhesion. These results suggest that fatty acids may be important regulators of cAMP responsiveness and cell-cell adhesion duringD. discoideum aggregation, and therefore may play important roles in development.  相似文献   

18.
The impact of the availability of glucose in nutrition medium and growth temperature on the composition and thermotropic behavior of lipids from Yersinia pseudotuberculosis (Enterobacteriaceae) was studied. Y. pseudotuberculosis was grown in nutrition broth (NB) with/without glucose at 8 and 37 degrees C, corresponding to the temperatures of saprophytic and parasitic phases of this bacterium life. The decrease of phosphatidylethanolamine, phosphatidylglycerol and unsaturated fatty acids and the parallel increase of lysophosphatidylethanolamine and diphosphatidylglycerol and saturated and cyclopropane acids were the most significant changes with temperature in bacterial phospholipid (PL) classes and fatty acids, respectively. Glucose did not effect the direction of temperature-induced changes in the contents of PLs, fatty acids, however it enhanced (for PLs) or diminished (for fatty acids) intensity of these changes. The thermally induced transitions of lipids were studied by differential scanning calorimetry (DSC). It was revealed that the addition of glucose to NB induced a sharp shift of DSC thermograms to lower temperatures in the "warm" variants of bacteria. The peak maximum temperature (Tmax) of thermal transitions dropped from 50 to 26 degrees C that is the optimal growth temperature of Y. pseudotuberculosis. Tmax of total lipids of the cells grown at 8 degrees C without glucose in NB was equal to growth temperature that corresponded to the classical mechanism of homeoviscous adaptation of bacteria. An addition of glucose to NB at this growth temperature caused the subsequent reduction of Tmax to -8 degrees C, while the temperature ranges of thermograms were not substantially changed. So, not only the temperature growth of bacteria, but also the presence of glucose in NB can modify the physical state of lipids from Y. pseudotuberculosis. In this case, both factors affect additively. It is suggested that glucose influences some membrane-associated proteins and then the fluidity of lipid matrix through temperature-inducible genes.  相似文献   

19.
S-Adenosylmethionine (AdoMet) levels in Lactobacillus plantarum were found to increase concomitantly with the production of membrane cyclopropane fatty acids under normal growth conditions. This increase in AdoMet did not occur when the pH of the culture medium (initially pH 6.5) was not allowed to fall (pH 4 or lower) during growth. When the culture medium was maintained at pH 6.5, cyclopropane fatty acid synthesis also remained low. While the activity of cyclopropane fatty acid synthase is increased as the pH decreases, the activity of AdoMet synthetase is largely unaffected by the variation of pH of the culture medium. The production of cyclopropane fatty acids is also dependent upon continued protein synthesis; in the presence of chloramphenicol cyclopropane fatty acid synthase activity is decreased, resulting in a lowered production of cyclopropane fatty acids. A dramatic increase in AdoMet levels occurs in the presence of chloramphenicol. It is proposed that AdoMet levels, in conjunction with cyclopropane fatty acid synthase activities, regulate cyclopropane fatty acid synthesis in L. plantarum.  相似文献   

20.
Saccharomyces cerevisiae is an ideal model eukaryote for studying fatty-acid transport. Yeast are auxotrophic for unsaturated fatty acids when grown under hypoxic conditions or when the fatty-acid synthase inhibitor cerulenin is included in the growth media. The FAT1 gene encodes a protein, Fat1p, which is required for maximal levels of fatty-acid import and has an acyl CoA synthetase activity specific for very-long-chain fatty acids suggesting this protein plays a pivotal role in fatty-acid trafficking. In the present work, we present evidence that Fat1p and the murine fatty-acid transport protein (FATP) are functional homologues. FAT1 is essential for growth under hypoxic conditions and when cerulenin was included in the culture media in the presence or absence of unsaturated fatty acids. FAT1 disruptants (fat1Delta) fail to accumulate the fluorescent long-chain fatty acid fatty-acid analogue 4, 4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-do decanoic acid (C1-BODIPY-C12), have a greatly diminished capacity to transport exogenous long-chain fatty acids, and have very long-chain acyl CoA synthetase activities that were 40% wild-type. The depression in very long-chain acyl CoA synthetase activities were not apparent in cells grown in the presence of oleate. Additionally, beta-oxidation of exogenous long-chain fatty acids is depressed to 30% wild-type levels. The reduction of beta-oxidation was correlated with a depression of intracellular oleoyl CoA levels in the fat1Delta strain following incubation of the cells with exogenous oleate. Expression of either Fat1p or murine FATP from a plasmid in a fat1Delta strain restored these phenotypic and biochemical deficiencies. Fat1p and FATP restored growth of fat1Delta cells in the presence of cerulenin and under hypoxic conditions. Furthermore, fatty-acid transport was restored and was found to be chain length specific: octanoate, a medium-chain fatty acid was transported in a Fat1p- and FATP-independent manner while the long-chain fatty acids myristate, palmitate, and oleate required either Fat1p or FATP for maximal levels of transport. Lignoceryl CoA synthetase activities were restored to wild-type levels in fat1Delta strains expressing either Fat1p or FATP. Fat1p or FATP also restored wild-type levels of beta-oxidation of exogenous long-chain fatty acids. These data show that Fat1p and FATP are functionally equivalent when expressed in yeast and play a central role in fatty-acid trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号