首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expansion of woody vegetation into areas that were historically grass-dominated is a significant contemporary threat to grasslands, including native tallgrass prairie ecosystems of the Midwestern United States. In tallgrass prairie, much of this woody expansion is concentrated in riparian zones with potential impacts on biogeochemical processes there. Although the effects of woody riparian vegetation on denitrification in both riparian soils and streams have been well studied in naturally wooded ecosystems, less is known about the impacts of woody vegetation encroachment in ecosystems that were historically dominated by herbaceous vegetation. Here, we analyze the effect of afforestation and subsequent woody plant removal on riparian and benthic denitrification. Denitrification rates in riparian soil and selected benthic compartments were measured seasonally in naturally grass-dominated riparian zones, woody encroached riparian zones, and riparian zones with woody vegetation removed in two separate watersheds. Riparian soil denitrification was highly seasonal, with the greatest rates in early spring. Benthic denitrification also exhibited high temporal variability, but no seasonality. Soil denitrification rates were greatest in riparian zones where woody vegetation was removed. Additionally, concentrations of nitrate, carbon, and soil moisture (indicative of potential anoxia) were greatest in wood removal soils. Differences in the presence and abundance of benthic compartments reflected riparian vegetation, and may have indirectly affected denitrification in streams. Riparian soil denitrification increased with soil water content and NO3 ?. Management of tallgrass prairies that includes removal of woody vegetation encroaching on riparian areas may alter biogeochemical cycling by increasing nitrogen removed via denitrification while the restored riparian zones return to a natural grass-dominated state.  相似文献   

2.
Forested headwater streams play an important role in watershed nutrient dynamics, and wood is thought to be a key factor influencing habitat structure and nitrate-nitrogen dynamics in many forested streams. Because wood in streams can promote nitrogen uptake through denitrification, we hypothesized that nitrate uptake velocities would decrease following wood removal. We measured stream characteristics and nitrate uptake velocities before and after wood manipulation experiments conducted at Hubbard Brook Experimental Forest, NH, and the Sleepers River watershed, VT. The mean size of stream substrates and the amount of riffle habitat increased following wood removal. In contrast to our expectations, summer nitrate uptake velocities increased in the wood removal treatments relative to the reference treatments, possibly because wood removal increased the availability of stable substrates for periphyton growth, therefore increasing nitrate demand in these streams. Our results highlight that effects of wood on stream ecosystems occur through multiple pathways and suggest that the relative importance of these pathways may vary seasonally.  相似文献   

3.
A series of eight watersheds on the Pacific coast of Panama where conversion of mature lowland wet forest to pastures by artisanal burning provided watershed-scale experimental units with a wide range of forest cover (23, 29, 47, 56, 66, 73, 73, 91, and 92 %). We used these watersheds as a landscape-scale experiment to assess effects of degree of deforestation on within-watershed retention and hydrological export of atmospheric inputs of nutrients. Retention was estimated by comparing rainfall nutrient concentrations (volume-weighted to allow for evapotranspiration) to concentrations in freshwater reaches of receiving streams. Retention of rain-derived nutrients in these Panama watersheds averaged 77, 85, 80, and 62 % for nitrate, ammonium, dissolved organic N, and phosphate, respectively. Retention of rain-derived inorganic nitrogen, however, depended on watershed cover: retention of nitrate and ammonium in pasture-dominated watersheds was 95 and 98 %, while fully forested watersheds retained 65 and 80 % of atmospheric nitrate and ammonium inputs. Watershed forest cover did not affect retention of dissolved organic nitrogen and phosphate. Exports from more forested watersheds yielded DIN/P near 16, while pasture-dominated watersheds exported N/P near 2. The differences in magnitude of exports and ratios suggest that deforestation in these Panamanian forests results in exports that affect growth of plants and algae in the receiving stream and estuarine ecosystems. Watershed retention of dissolved inorganic nitrogen calculated from wet plus dry atmospheric deposition varied from 90 % in pasture- to 65 % in forest-dominated watersheds, respectively. Discharges of DIN to receiving waters from the watersheds therefore rose from 10 % of atmospheric inputs for pasture-dominated watersheds, to about 35 % of atmospheric inputs for fully forested watersheds. These results from watersheds with no agriculture or urbanization, but different conversion of forest to pasture by burning, show significant, deforestation-dependent retention within tropical watersheds, but also ecologically significant, and deforestation-dependent, exports that are biologically significant because of the paucity of nutrients in receiving tropical stream and coastal waters.  相似文献   

4.
SUMMARY.
  • 1 Leaf decomposition was compared in two streams at the Coweeta Hydrologic Laboratory, North Carolina. U.S.A. One stream drains an undisturbed hardwood watershed, while the other drains a successional watershed subject to an insect outbreak. The successional watershed has elevated nitrate concentrations in the streamwater.
  • 2 Both black locust (Robinia pseudo-acacia) and sweet birch (Betula lenta) leaf litter decomposed 2.8 times more rapidly in the stream with high nitrate concentrations.
  • 3 The more rapid decay rates appeared to be partly due to accelerated microbial processing in response to nitrate enrichment, because microbial biomass (as ATP) was higher in the nitrate-enriched stream.
  • 4 At each point in time, nitrogen and phosphorus content of the litter was lower in the high nitrate stream; however, there was no significant difference in nitrogen or phosphorus content at the same state of leaf decay in the two streams.
  相似文献   

5.
River systems are important regulators of anthropogenic nitrogen flux between land and ocean. Nitrogen dynamics in small headwater streams have been extensively measured, whereas less is known about contributions of other components of stream networks to nitrogen removal, including larger streams or fluvial wetlands. Here, we quantified nitrate reaction rates in higher-order stream channels and in surface transient storage (STS) zones (sub-systems with greater water residence time than the main channel) of the Ipswich River watershed, a temperate basin characterized by suburban development. We characterized uptake in STS both within higher-order stream channels and in fluvial wetlands that remain connected to advective fluxes but not constrained within channels. We compare reaction rates in these systems to those previously measured in headwater streams in the same basin. We found that (1) nitrate reaction rates (as uptake velocity, υf) in higher-order streams (n = 2) differed from each other but were consistent with previous estimates from headwater streams, (2) nitrate reaction rates in STS zones within higher-order stream channels (n = 2) were higher than rates estimated at the whole-stream scale, (3) ambient nitrate reaction rates in fluvial wetland STS (n = 7) were high but comparable to headwater streams with low nitrate concentration, (4) nitrate reaction rates were higher in fluvial wetland STS compared to headwater stream channels at elevated nitrate concentration, and (5) efficiency loss (EL) similar to that found in headwater streams was also apparent in fluvial wetlands. These results indicate that STS are potential hotspots of biogeochemical activity and should be explicitly integrated into network scale biogeochemical models. Further, experimental evidence of EL in fluvial wetlands suggests that the effectiveness of STS to retain N may decline if N loading increases.  相似文献   

6.
Nitrogen transformations in a small mountain stream   总被引:5,自引:2,他引:3  
Ammonium, urea, and nitrate were added to Bear Brook, a second and third order stream in the Hubbard Brook Experimental Forest, New Hampshire. Removal of ammonium and urea during downstream transport coincided with the release of nitrate. Nitrate removal did not occur when it was added alone or with dissolved organic carbon. Laboratory experiments showed that coarse particulate organic material (detritus) and bryophytes taken from the streambed were active in the removal of ammonium from enriched stream water, and in the release of nitrate upon the addition of ammonium.The patterns of removal and release observed in these experiments suggest a biologically mediated, oxidation process. Budgetary calculations show that the in-stream transformation of nitrogen inputs during summer and autumn could represent 12 to 25 percent of the nitrogen exported as nitrate during winter and spring from heterotrophic streams like Bear Brook. This type of internal cycling affects the timing and form of nitrogen export from small streams draining forested watersheds in the northeastern United States.  相似文献   

7.
Nitrogen inputs into stream and river ecosystems, and the factors influencing those inputs, are important for various ecological and environmental concerns. Reliable information on where and how nitrogen compounds flow into aquatic ecosystems is indispensable to understanding the nutrient status of these ecosystems. Such information should include the biogeochemical mechanisms and hydrological controls of nutrient leaching into rivers from terrestrial systems such as forests, agricultural fields, and urbanized areas. Advancements in stable isotopomer measurements over the past two decades have expanded the variety of target substances and the precision with which they can be investigated. The high-throughput microbial denitrifier method allows for simultaneous measurement of nitrogen and oxygen isotope ratios and can provide high-resolution spatiotemporal information on both nitrate sources and biogeochemical processes. Although advanced techniques of stable isotope analysis have been used extensively to detect sources and estimate the relative contributions of multi-source systems in various rivers, there are still new horizons in investigating nitrogen transformations. For example, stable isotopes of oxygen (18O and 17O) occurring in nitrate due to atmospheric deposition can be used as natural tracers for evaluating internal nitrogen cycling; these isotopes are distinct from the oxygen within microbially generated nitrate in soils and water bodies. Another future challenge is improved use of nitrous oxide isotopomers in evaluating the relative contributions of nitrification and denitrification. Such analysis could provide insight into the nitrogen transformation that occurs under redox conditions at the boundary between terrestrial and aquatic systems, where nitrification and denitrification often occur simultaneously in soil and aquatic environments.  相似文献   

8.
Restoring urban infrastructure and managing the nitrogen cycle represent emerging challenges for urban water quality. We investigated whether stormwater control measures (SCMs), a form of green infrastructure, integrated into restored and degraded urban stream networks can influence watershed nitrogen loads. We hypothesized that hydrologically connected floodplains and SCMs are “hot spots” for nitrogen removal through denitrification because they have ample organic carbon, low dissolved oxygen levels, and extended hydrologic residence times. We tested this hypothesis by comparing nitrogen retention metrics in two urban stream networks (one restored and one urban degraded) that each contain SCMs, and a forested reference watershed at the Baltimore Long-Term Ecological Research site. We used an urban watershed continuum approach which included sampling over both space and time with a combination of: (1) longitudinal reach-scale mass balances of nitrogen and carbon conducted over 2 years during baseflow and storms (n = 24 sampling dates × 15 stream reaches = 360) and (2) 15N push–pull tracer experiments to measure in situ denitrification in SCMs and floodplain features (n = 72). The SCMs consisted of inline wetlands installed below a storm drain outfall at one urban site (restored Spring Branch) and a wetland/wet pond configured in an oxbow design to receive water during high flow events at another highly urbanized site (Gwynns Run). The SCMs significantly decreased total dissolved nitrogen (TDN) concentrations at both sites and significantly increased dissolved organic carbon concentrations at one site. At Spring Branch, TDN retention estimated by mass balance (g/day) was ~150 times higher within the stream network than the SCMs. There were no significant differences between mean in situ denitrification rates between SCMs and hydrologically connected floodplains. Longitudinal N budgets along the stream network showed that hydrologically connected floodplains were important sites for watershed nitrogen retention due to groundwater–surface water interactions. Overall, our results indicate that hydrologic variability can influence nitrogen source/sink dynamics along engineered stream networks. Our analysis also suggests that some major predictors for watershed N retention were: (1) streamwater and groundwater flux through stream restoration or stormwater management controls, (2) hydrologic residence times, and (3) surface area of hydrologically connected features.  相似文献   

9.
Denitrification in riparian wetlands plays a major role in eliminating nitrate coming from agricultural watershed uplands before they reach river water. A new approach was developed for representing this process in the biogeochemical Riverstrahler model, using a single adjustable parameter representing the potential denitrification rate of wetland soils. Applied to the case of three watersheds with contrasting size, land-use and hydro-climatic regime, namely the Seine and the Loir rivers (France) and the Red River (Vietnam), this new model is able to capture the general level of nitrate concentrations as well as their seasonal variations everywhere over the drainage network. The nitrogen budgets calculated from the results show that riparian denitrification eliminates between 10 and 50% of the diffuse sources of nitrogen into the hydrosystem coming from soil nitrate leaching.  相似文献   

10.
An urban watershed continuum framework hypothesizes that there are coupled changes in (1) carbon and nitrogen cycling, (2) groundwater-surface water interactions, and (3) ecosystem metabolism along broader hydrologic flowpaths. It expands our understanding of urban streams beyond a reach scale. We evaluated this framework by analyzing longitudinal patterns in: C and N concentrations and mass balances, groundwater-surface interactions, and stream metabolism and carbon quality from headwaters to larger order streams. 52 monitoring sites were sampled seasonally and monthly along the Gwynns Falls watershed, which drains 170 km2 of the Baltimore Long-Term Ecological Research site. Regarding our first hypothesis of coupled C and N cycles, there were significant inverse linear relationships between nitrate and dissolved organic carbon (DOC) and nitrogen longitudinally (P < 0.05). Regarding our second hypothesis of coupled groundwater-surface water interactions, groundwater seepage and leaky piped infrastructure contributed significant inputs of water and N to stream reaches based on mass balance and chloride/fluoride tracer data. Regarding our third hypothesis of coupled ecosystem metabolism and carbon quality, stream metabolism increased downstream and showed potential to enhance DOC lability (e.g., ~4 times higher mean monthly primary production in urban streams than forest streams). DOC lability also increased with distance downstream and watershed urbanization based on protein and humic-like fractions, with major implications for ecosystem metabolism, biological oxygen demand, and CO2 production and alkalinity. Overall, our results showed significant in-stream retention and release (0–100 %) of watershed C and N loads over the scale of kilometers, seldom considered when evaluating monitoring, management, and restoration effectiveness. Given dynamic transport and retention across evolving spatial scales, there is a strong need to longitudinally and synoptically expand studies of hydrologic and biogeochemical processes beyond a stream reach scale along the urban watershed continuum.  相似文献   

11.
Freshwater streams are critical resources that provide multiple benefits to humans and aquatic biota alike. As climate changes, it is projected that changes to the hydrological cycle and water temperatures will affect individual biota and aquatic ecosystems as a whole. The goal of this study was to determine the extent of climate change impacts on stream ecosystems as represented by four commonly used stream health indicators (Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT), Family Index of Biotic Integrity (FIBI), Hilsenhoff Biotic Index (HBI), and fish Index of Biotic Integrity (IBI)). Seven watersheds in Michigan were selected based on stream thermal regimes. The Soil and Water Assessment Tool was used to simulate streamflow and pollutant loads. Important variables for each thermal class were selected using a Bayesian variable selection method and used as inputs to adaptive neuro-fuzzy inference systems models of EPT, FIBI, HBI, and IBI. Finally, an ensemble of climate models from the Coupled Model Intercomparison Project Phase 5 were used to determine the impacts of climate on the stream health in 2020–2040 compared to 1980–2000. The risk of declining stream health was determined using cumulative distribution functions. A stream temperature regression model was also developed to assess potential changes in stream thermal regimes, which could cause shifts in composition of aquatic communities. Several flow regime variables, including those related to flow variability, duration of extreme events, and timing were mainly affected by changing climate. At the watershed scale, most indicators were relatively insensitive to changing climate and the magnitude of stream health decline was low. However, at the reach scale, there are many instances of high risk and large magnitude of declines in the stream health indicators. At the same time, several streams experienced changes in thermal class, mostly transitioning from cold-transitional and cool streams to warm streams. This research demonstrated the applicability of the stream health modeling process in performing a climate change impacts assessment.  相似文献   

12.
1. Anthropogenic activities have increased reactive nitrogen availability, and now many streams carry large nitrate loads to coastal ecosystems. Denitrification is potentially an important nitrogen sink, but few studies have investigated the influence of benthic organic carbon on denitrification in nitrate‐rich streams. 2. Using the acetylene‐block assay, we measured denitrification rates associated with benthic substrata having different proportions of organic matter in agricultural streams in two states in the mid‐west of the U.S.A., Illinois and Michigan. 3. In Illinois, benthic organic matter varied little between seasons (5.9–7.0% of stream sediment), but nitrate concentrations were high in summer (>10 mg N L−1) and low (<0.5 mg N L−1) in autumn. Across all seasons and streams, the rate of denitrification ranged from 0.01 to 4.77 μg N g−1 DM h−1 and was positively related to stream‐water nitrate concentration. Within each stream, denitrification was positively related to benthic organic matter only when nitrate concentration exceeded published half‐saturation constants. 4. In Michigan, streams had high nitrate concentrations and diverse benthic substrata which varied from 0.7 to 72.7% organic matter. Denitrification rate ranged from 0.12 to 11.06 μg N g−1 DM h−1 and was positively related to the proportion of organic matter in each substratum. 5. Taken together, these results indicate that benthic organic carbon may play an important role in stream nitrogen cycling by stimulating denitrification when nitrate concentrations are high.  相似文献   

13.
Biogeochemical processes in the groundwater discharge zone of urban streams   总被引:1,自引:0,他引:1  
The influence of biogeochemical processes on nitrogen and organic matter transformation and transport was investigated for two urban streams receiving groundwater discharge during the dry summer baseflow period. A multiple lines of evidence approach involving catchment-, and stream reach-scale investigations were undertaken to describe the factors that influence pore water biogeochemical processes. At the catchment-scale gaining stream reaches were identified from water table mapping and groundwater discharge estimated to be between 0.1 and 0.8 m3 m?2 d?1 from baseflow analysis. Sediment temperature profiles also suggested that the high groundwater discharge limited stream water infiltration into the sediments. At the stream reach-scale, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations were higher in stream water than in groundwater. However, DOC and DON concentrations were greatest in sediment pore water. This suggests that biodegradation of sediment organic matter contributes dissolved organic matter (DOM) to the streams along with that delivered with groundwater flow. Pore water ammonium (NH4 +) was closely associated with areas of high pore water DOM concentrations and evidence of sulfate (SO4 2?) reduction (low concentration and SO4:Cl ratio). This indicates that anoxic DOM mineralization was occurring associated with SO4 2? reduction. However the distribution of anoxic mineralization was limited to the center of the streambed, and was not constrained by the distribution of sediment organic matter which was higher along the banks. Lower sediment temperatures measured along the banks compared to the center suggests, at least qualitatively, that groundwater discharge is higher along the banks. Based on this evidence anoxic mineralization is influenced by groundwater residence time, and is only measurable along the center of the stream where groundwater flux rates are lower. This study therefore shows that the distribution of biogeochemical processes in stream sediments, such as anoxic mineralization, is strongly influenced by both the biogeochemical conditions and pore water residence time.  相似文献   

14.
Retention of nitrogen in small streams artificially polluted with nitrate   总被引:3,自引:0,他引:3  
A simple method was developed to test hypotheses on nitrogen retention in first-order streams in an agricultural region near Oslo, SE Norway. A gravity-operated system added a nitrate solution to the streams continuously at a constant rate. Water samples were collected at fixed intervals downstream to follow the rate of decline in streamwater nitrate. Repeated sampling allowed calculation of regression lines from experiments with different levels of additions of nitrate.The experiments showed that removal of nitrate generally increased with higher initial nitrate concentration, regardless of temperature (range 8–16 °C). Higher nitrate removal rates were found in a stream polluted by easily degradable organic matter than in a similar stream fed by groundwater.Experiments conducted in indoor channels lined with a layer of stream sediment gave reproducible, exponential rates of nitrate decrease in the recirculated water.The results are discussed in the framework of first-order streams as protective ecotones between agricultural areas and higher-order parts of the watersheds.  相似文献   

15.
16.
A regression model (RivR-N) was developed that predicts the proportion of N removed from streams and reservoirs as an inverse function of the water displacement time of the water body (ratio of water body depth to water time of travel). When appliedto 16 drainage networks in the eastern U.S.,the RivR-N model predicted that 37% to 76%of N input to these rivers is removed duringtransport through the river networks.Approximately half of that is removed in1st through 4th order streams whichaccount for 90% of the total stream length. The other half is removed in 5th orderand higher rivers which account for only about10% of the total stream length. Most Nremoved in these higher orders is predicted tooriginate from watershed loading to small andintermediate sized streams. The proportion ofN removed from all streams in the watersheds(37–76%) is considerably higher than theproportion of N input to an individual reachthat is removed in that reach (generally<20%) because of the cumulative effect ofcontinued nitrogen removal along the entireflow path in downstream reaches. Thisgenerally has not been recognized in previousstudies, but is critical to an evaluation ofthe total amount of N removed within a rivernetwork. At the river network scale,reservoirs were predicted to have a minimaleffect on N removal. A fairly modest decrease(<10 percentage points) in the N removed atthe river network scale was predicted when athird of the direct watershed loading was tothe two highest orders compared to a uniformloading.  相似文献   

17.
Acid mine drainage (AMD) contaminates thousands of kilometers of stream in the western United States. At the same time, nitrogen loading to many mountain watersheds is increasing because of atmospheric deposition of nitrate and increased human use. Relatively little is known about nitrogen cycling in acidic, heavy-metal-laden streams; however, it has been reported that one key process, denitrification, is inhibited under low pH conditions. The objective of this research was to investigate the capacity for denitrification in acidified streams. Denitrification potential was assessed in sediments from several Colorado AMD-impacted streams, ranging from pH 2.60 to 4.54, using microcosm incubations with fresh sediment. Added nitrate was immediately reduced to nitrogen gas without a lag period, indicating that denitrification enzymes were expressed and functional in these systems. First-order denitrification potential rate constants varied from 0.046 to 2.964 day−1. The pH of the microcosm water increased between 0.23 and 1.49 pH units during denitrification. Additional microcosm studies were conducted to examine the effects of initial pH, various electron donors, and iron (added as ferrous and ferric iron). Decreasing initial pH decreased denitrification; however, increasing pH had little effect on denitrification rates. The addition of ferric and ferrous iron decreased observed denitrification potential rate constants. The addition of glucose and natural organic matter stimulated denitrification potential. The addition of hydrogen had little effect, however, and denitrification activity in the microcosms decreased after acetate addition. These results suggest that denitrification can occur in AMD streams, and if stimulated within the environment, denitrification might reduce acidity.  相似文献   

18.
Contamination of surface- and groundwaters as a result of anthropogenic nitrate loading is of concern in regions subjected to intense agricultural activities. The capacity of watersheds to absorb, process or release nitrate to outflow drainage waters, however, is poorly constrained.An investigation of in-stream denitrification was conducted in a small stream draining a heavily fertilized agricultural watershed by analyzing natural isotopic abundances of nitrate-nitrogen. Using 15N isotopic signatures, we show that denitrification plays a large role in reducing nitrate levels during stream transport over a relatively short distance. We found in-situ nitrate losses of up to 50% and a corresponding shift in NO3--15N values of 10 over a 600 m distance downstream consistent with denitrification. Our results suggest that in-stream nitrate losses must be considered when examining nitrate cycling and contamination in watersheds. Not only should attempts to identify nitrate contamination sources using NO3--15N signatures be carried out with caution (as nitrate-N isotopic values can be altered during stream transport such that they no longer reflect the original nitrate source), but in-stream measures of nitrate concentrations aimed at monitoring contamination levels may underestimate nitrate inputs to surface waters due to denitrification during transport.  相似文献   

19.
We analyzed long-term organic and inorganic nitrogen inputs and outputs in precipitation and streamwater in six watersheds at the H.J. Andrews Experimental Forest in the central Cascade Mountains of Oregon. Total bulk N deposition, averaging 1.6 to 2.0 kg N ha–1 yr–1, is low compared to other sites in the United States and little influenced by anthropogenic N sources. Streamwater N export is also low, averaging <1 kg ha–1 yr–1. DON is the predominant form of N exported from all watersheds, followed by PON, NH4-N, and NO3-N. Total annual stream discharge was a positive predictor of annual DON output in all six watersheds, suggesting that DON export is related to regional precipitation. In contrast, annual discharge was a positive predictor of annual NO3-N output in one watershed, annual NH4-N output in three watersheds, and annual PON output in three watersheds. Of the four forms of N, only DON had consistent seasonal concentration patterns in all watersheds. Peak streamwater DON concentrations occurred in November-December after the onset of fall rains but before the peak in the hydrograph, probably due to flushing of products of decomposition that had built up during the dry summer. Multiple biotic controls on the more labile nitrate and ammonium concentrations in streams may obscure temporal DIN flux patterns from the terrestrial environment. Results from this study underscore the value of using several watersheds from a single climatic zone to make inferences about controls on stream N chemistry; analysis of a single watershed may preclude identification of geographically extensive mechanisms controlling N dynamics.  相似文献   

20.
The flux of nitrogen in large rivers in North America and Europe is well explained as a function of the net anthropogenic inputs of nitrogen to the landscape, with on average 20 to 25% of these inputs exported in rivers and 75 to 80% of the nitrogen retained or denitrified in the landscape. Here, we use data for average riverine nitrogen fluxes and anthropogenic inputs of nitrogen over a 6-year period (1988–1993) for 16 major watersheds in the northeastern United States to examine if there is also a climatic influence on nitrogen fluxes in rivers. Previous studies have shown that for any given river, nitrogen fluxes are greater in years with higher discharge, but this can be interpreted as storage of nitrogen in the landscape during dry years and flushing of this stored nitrogen during wet years. Our analyses demonstrate that there is also a longer-term steady-state influence of climate on riverine nitrogen fluxes. Those watersheds that have higher precipitation and higher discharge export a greater fraction of the net anthropogenic inputs of nitrogen. This fractional export ranges from 10 to 15% of the nitrogen inputs in drier watersheds in the northeastern United States to over 35% in the wetter watersheds. We believe this is driven by lower rates of denitrification in the wetter watersheds, perhaps because shorter water residence times do not allow for as much denitrification in riparian wetlands and low-order streams. Using mean projections for the consequences of future climate change on precipitation and discharge, we estimate that nitrogen fluxes in the Susquehanna River to Chesapeake Bay may increase by 3 to 17% by 2030 and by 16 to 65% by 2095 due to greater fractional delivery of net anthropogenic nitrogen inputs as precipitation and discharge increase. Although these projections are highly uncertain, they suggest a need to better consider the influence of climate on riverine nitrogen fluxes as part of management efforts to control coastal nitrogen pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号