首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties.  相似文献   

2.
The green fluorescent protein (GFP) was used as a noninvasive probe to quantify the rheological properties of cell cytoplasm. GFP mutant S65T was purified from recombinant bacteria for solution studies, and expressed in CHO cell cytoplasm. GFP-S65T was brightly fluorescent in solution (lambda ex 492 nm, lambda em 509 nm) with a lifetime of 2.9 ns and a rotational correlation time (tc) of 20 ns. Recovery of GFP fluorescence after photobleaching was complete with a half-time (t1/2) in aqueous saline of 30 +/- 2 ms (5-micron diameter spot), giving a diffusion coefficient of 8.7 x 10(-7) cm2/s. The t1/2 was proportional to solution viscosity and was dependent on spot diameter. In contrast to fluorescein. GFP photobleaching efficiency was not affected by solution O2 content, triplet state quenchers, singlet oxygen scavengers, and general radical quenchers. In solutions of higher viscosity, an additional, rapid GFP recovery process was detected and ascribed to reversible photobleaching. The t1/2 for reversible photobleaching was 1.5-5.5 ms (relative viscosity 5-250), was independent of spot diameter, and was unaffected by O2 or quenchers. In cell cytoplasm, time-resolved microfluorimetry indicated a GFP lifetime of 2.6 ns and a tc of 36 +/- 3 ns, giving a relative viscosity (cytoplasm versus water) of 1.5. Photobleaching recovery of GFP in cytoplasm was 82 +/- 2% complete with a t1/2 of 83 +/- 6 ms, giving a relative viscosity of 3.2. GFP translational diffusion increased 4.7-fold as cells swelled from a relative volume of 0.5 to 2. Taken together with measurements of GFP translation and rotation in aqueous dextran solutions, the data in cytoplasm support the view that the primary barrier to GFP diffusion is collisional interactions between GFP and macromolecular solutes.  相似文献   

3.
The translocation of pleckstrin homology (PH) domain-containing proteins from the cytoplasm to the plasma membrane plays an important role in the chemotaxis mechanism of Dictyostelium cells. The diffusion of three PH domain-green fluorescent protein (GFP) fusions (PH2-GFP, PH10-GFP, and PH-CRAC (cytosolic regulator of adenylyl cyclase)-GFP) in the cytoplasm of vegetative and chemotaxing Dictyostelium cells has been studied using fluorescence correlation spectroscopy to gain a better understanding of the functioning of the domains and to assess the effect of initiation of chemotaxis on these domains in the cell. PH2-GFP was homogeneously distributed in vegetative as well as chemotaxing cells, whereas PH10-GFP and PH-CRAC-GFP showed translocation to the leading edge of the chemotaxing cell. The diffusion characteristics of PH2-GFP and PH-CRAC-GFP were very similar; however, PH10-GFP exhibited slower diffusion. Photon counting histogram statistics show that this slow diffusion was not due to aggregation. Diffusion of the three PH domains was affected to similar extents by intracellular heterogeneities in vegetative as well as chemotaxing cells. From the diffusion of free cytoplasmic GFP, it was calculated that the viscosity in chemotaxing cells was 1.7 times lower than in vegetative cells. In chemotaxing cells, PH2-GFP showed increased mobility, whereas the mobilities of PH10-GFP and PH-CRAC-GFP remained unchanged.  相似文献   

4.
The ability of Dictyostelium cells to divide without myosin II in a cell cycle-coupled manner has opened two questions about the mechanism of cleavage furrow ingression. First, are there other possible functions for myosin II in this process except for generating contraction of the furrow by a sliding filament mechanism? Second, what could be an alternative mechanical basis for the furrowing? Using aberrant changes of the cell shape and anomalous localization of the actin-binding protein cortexillin I during asymmetric cytokinesis in myosin II-deficient cells as clues, it is proposed that myosin II filaments act as a mechanical lens in cytokinesis. The mechanical lens serves to focus the forces that induce the furrowing to the center of the midzone, a cortical region where cortexillins are enriched in dividing cells. Additionally, continual disassembly of a filamentous actin meshwork at the midzone is a prerequisite for normal ingression of the cleavage furrow and a successful cytokinesis. If this process is interrupted, as it occurs in cells that lack cortexillins, an overassembly of filamentous actin at the midzone obstructs the normal cleavage. Disassembly of the crosslinked actin network can generate entropic contractile forces in the cortex, and may be considered as an alternative mechanism for driving ingression of the cleavage furrow. Instead of invoking different types of cytokinesis that operate under attached and unattached conditions in Dictyostelium, it is anticipated that these cells use a universal multifaceted mechanism to divide, which is only moderately sensitive to elimination of its constituent mechanical processes.  相似文献   

5.
Concentrations of concanavalin A that induced patching and capping of cell surface receptors on Dictyostelium discoideum also induce binding of the receptors to the cortical cytoskeleton, which was isolated by density-gradient centrifugation. The receptors were solubilized by deoxycholate, purified by affinity chromatography, and used to determine whether the receptors bound directly to the cytoskeletal protein, actin. As the concentration of actin was increased, many of the receptors became bound to purified filamentous rabbit muscle actin, even in the absence of concanavalin A. As in the ligation-induced binding of receptors to the cortical cytoskeleton in cells, concanavalin A induced much stronger binding of the purified receptors to filamentous actin. The results were consistent with a previously stated hypothesis that induction of receptor binding to the cytoskeleton during their patching and capping is driven by clustering the receptors, which reduces their translational entropy and by doing so enhances their avidity for the cytoskeleton.  相似文献   

6.
Molecular mobility and nucleocytoplasmic flux in hepatoma cells   总被引:27,自引:10,他引:17       下载免费PDF全文
Fluorescence microphotolysis (photobleaching) was used to measure, in single polyethylene glycol-induced polykaryons of hepatoma tissue culture cells, nucleocytoplasmic flux and intracellular mobility for a series of dextrans ranging in molecular mass from 3 to 150 kD and for bovine serum albumin. For the dextrans, the cytoplasmic and the nucleoplasmic translational diffusion coefficients amounted to approximately 9 and approximately 15%, respectively, of the value in dilute buffer. The diffusion coefficients depended inversely on molecular radius, suggesting that diffusion was dominated by viscosity effects. By application of the Stokes-Einstein equation, cytoplasmic and nucleoplasmic viscosities were derived to be 6.6 and 8.1 cP, respectively, at 23 degrees C. Between 10 and 37 degrees C nucleoplasmic diffusion coefficients increased by approximately 45-85%, whereas cytoplasmic diffusion coefficients were virtually independent of temperature. In contrast to that of the dextrans, diffusion of bovine serum albumin was more restricted. In the cytoplasm the diffusion coefficient was approximately 1.5% of the value in dilute buffer; in the nucleus albumin was largely immobile. This indicated that albumin mobility is dominated by association with immobile cellular structures. Nucleocytoplasmic flux of dextrans depended inversely on molecular mass with an exclusion limit between 17 and 41 kD. This agrees with previous measurements on primary hepatocytes (Peters, R., 1984, EMBO [Eur. Mol. Biol. Organ.] J. 3:1831-1836), suggesting that in both cell types the nuclear envelope has properties of a molecular sieve with a functional pore radius of approximately 55 A.  相似文献   

7.
To study the membrane mobility of aquaporin water channels, clones of stably transfected LLC-PK1 cells were isolated with plasma membrane expression of GFP-AQP1 and GFP-AQP2, in which the green fluorescent protein (GFP) was fused upstream and in-frame to each aquaporin (AQP). The GFP fusion did not affect AQP tetrameric association or water transport function. GFP-AQP lateral mobility was measured by irreversibly bleaching a spot (diameter 0.8 microm) on the membrane with an Argon laser beam (488 nm) and following the fluorescence recovery into the bleached area resulting from GFP translational diffusion. In cells expressing GFP-AQP1, fluorescence recovered to >96% of its initial level with t(1/2) of 38 +/- 2 s (23 degrees C) and 21 +/- 1 s (37 degrees C), giving diffusion coefficients (D) of 5.3 and 9.3 x 10(-11) cm(2)/s. GFP-AQP1 diffusion was abolished by paraformaldehyde fixation, slowed >50-fold by the cholesterol-binding agent filipin, but not affected by cAMP agonists. In cells expressing GFP-AQP2, fluorescence recovered to >98% with D of 5.7 and 9.0 x 10(-11) cm(2)/s at 23 degrees C and 37 degrees C. In contrast to results for GFP-AQP1, the cAMP agonist forskolin slowed GFP-AQP2 mobility by up to tenfold. The cAMP slowing was blocked by actin filament disruption with cytochalasin D, by K(+)-depletion in combination with hypotonic shock, and by mutation of the protein kinase A phosphorylation consensus site (S256A) at the AQP2 C-terminus. These results indicate unregulated diffusion of AQP1 in membranes, but regulated AQP2 diffusion that was dependent on phosphorylation at serine 256, and an intact actin cytoskeleton and clathrin coated pit. The cAMP-induced immobilization of phosphorylated AQP2 provides evidence for AQP2-protein interactions that may be important for retention of AQP2 in specialized membrane domains for efficient membrane recycling.  相似文献   

8.
Comitin (p24) was first identified in Dictyostelium discoideum as a membrane-associated protein which binds in gel overlay assays to G and F actin. To analyze its actin-binding properties we used purified, bacterially expressed comitin and found that it binds to F actin in spin down experiments and increases the viscosity of F actin solutions even under high-salt conditions. Immunofluorescence studies, cell fractionation experiments and EM studies of vesicles precipitated with comitin-specific monoclonal antibodies showed that comitin was present in D. discoideum on: (a) a perinuclear structure with tubular or fibrillary extensions; and (b) on vesicles distributed throughout the cell. In immunofluorescence experiments using comitin antibodies NIH 3T3 fibroblasts showed a similar staining pattern as D. discoideum cells. Using bona fide Golgi markers the perinuclear structure was identified as the Golgi apparatus. The results were supported by an electron microscopic study using cryosections. Based on these data we propose that also in Dictyostelium the stained perinuclear structure is the Golgi apparatus. In vivo the perinuclear structure was found to be attached to the actin and the microtubule network. Alteration of the actin network or depolymerization of the microtubules led to its dispersal into vesicles distributed throughout the cell. These results suggest that the Golgi apparatus in D. discoideum is connected to the actin network by comitin. This protein seems also to be present in mammalian cells.  相似文献   

9.
In neuroendocrine PC-12 cells, evanescent-field fluorescence microscopy was used to track motions of green fluorescent protein (GFP)-labeled actin or GFP-labeled secretory granules in a thin layer of cytoplasm where cells adhered to glass. The layer contained abundant filamentous actin (F-actin) locally condensed into stress fibers. More than 90% of the granules imaged lay within the F-actin layer. One-third of the granules did not move detectably, while two-thirds moved randomly; the average diffusion coefficient was 23 x 10(-4) microm(2)/s. A small minority (<3%) moved rapidly and in a directed fashion over distances more than a micron. Staining of F-actin suggests that such movement occurred along actin bundles. The seemingly random movement of most other granules was not due to diffusion since it was diminished by the myosin inhibitor butanedione monoxime, and blocked by chelating intracellular Mg(2+) and replacing ATP with AMP-PNP. Mobility was blocked also when F-actin was stabilized with phalloidin, and was diminished when the actin cortex was degraded with latrunculin B. We conclude that the movement of granules requires metabolic energy, and that it is mediated as well as limited by the actin cortex. Opposing actions of the actin cortex on mobility may explain why its degradation has variable effects on secretion.  相似文献   

10.
The 64-kD protein DAip1 from Dictyostelium contains nine WD40-repeats and is homologous to the actin-interacting protein 1, Aip1p, from Saccharomyces cerevisiae, and to related proteins from Caenorhabditis, Physarum, and higher eukaryotes.We show that DAip1 is localized to dynamic regions of the cell cortex that are enriched in filamentous actin: phagocytic cups, macropinosomes, lamellipodia, and other pseudopodia. In cells expressing green fluorescent protein (GFP)-tagged DAip1, the protein rapidly redistributes into newly formed cortical protrusions.Functions of DAip1 in vivo were assessed using null mutants generated by gene replacement, and by overexpressing DAip1. DAip1-null cells are impaired in growth and their rates of fluid-phase uptake, phagocytosis, and movement are reduced in comparison to wild-type rates. Cytokinesis is prolonged in DAip1-null cells and they tend to become multinucleate. On the basis of similar results obtained by DAip1 overexpression and effects of latrunculin-A treatment, we propose a function for DAip1 in the control of actin depolymerization in vivo, probably through interaction with cofilin. Our data suggest that DAip1 plays an important regulatory role in the rapid remodeling of the cortical actin meshwork.  相似文献   

11.
The spreading of motile cells on a substrate surface is accompanied by reorganization of their actin network. We show that spreading in the highly motile cells of Dictyostelium is non-monotonic, and thus differs from the passage of spreading cells through a regular series of stages. Quantification of the gain and loss of contact area revealed fluctuating forces of protrusion and retraction that dominate the interaction of Dictyostelium cells with a substrate. The molecular basis of these fluctuations is elucidated by dual-fluorescence labeling of filamentous actin together with proteins that highlight specific activities in the actin system. Front-to-tail polarity is established by the sorting out of myosin-II from regions where dense actin assemblies are accumulating. Myosin-IB identifies protruding front regions, and the Arp2/3 complex localizes to lamellipodia protruded from the fronts. Coronin is used as a sensitive indicator of actin disassembly to visualize the delicate balance of polymerization and depolymerization in spreading cells. Short-lived actin patches that co-localize with clathrin suggest that membrane internalization occurs even when the substrate-attached cell surface expands. We conclude that non-monotonic cell spreading is characterized by spatiotemporal patterns formed by motor proteins together with regulatory proteins that either promote or terminate actin polymerization on the scale of seconds.Key words: actin cytoskeleton, Arp 2/3 complex, cell adhesion, cell spreading, Coronin, Dictyostelium, myosin, self-organization, clathrin  相似文献   

12.
The spreading of motile cells on a substrate surface is accompanied by reorganization of their actin network. We show that spreading in the highly motile cells of Dictyostelium is non-monotonic, and thus differs from the passage of spreading cells through a regular series of stages. Quantification of the gain and loss of contact area revealed fluctuating forces of protrusion and retraction that dominate the interaction of Dictyostelium cells with a substrate. The molecular basis of these fluctuations is elucidated by dual-fluorescence labeling of filamentous actin together with proteins that highlight specific activities in the actin system. Front-to-tail polarity is established by the sorting out of myosin-II from regions where dense actin assemblies are accumulating. Myosin-IB identifies protruding front regions, and the Arp2/3 complex localizes to lamellipodia protruded from these regions. Coronin is used as a sensitive indicator of actin disassembly to visualize the delicate balance of polymerization and depolymerization in spreading cells. Short-lived actin patches that co-localize with clathrin suggest that membrane internalization occurs even when the substrate-attached cell surface expands. We conclude that non-monotonic cell spreading is characterized by spatiotemporal patterns formed by motor proteins together with regulatory proteins that either promote or terminate actin polymerization on the scale of seconds.  相似文献   

13.
The crawling locomotion and shape of eukaryotic cells have been associated with the stochastic molecular dynamics of actin and its protein regulators, chiefly Arp2/3 and Rho family GTPases, in making a cytoskeleton meshwork within cell extensions. However, the cell's actin-dependent oscillatory shape and extension dynamics may also yield insights into locomotory mechanisms. Confocal observations of live Dictyostelium cells, expressing a green fluorescent protein-actin fusion protein, demonstrate oscillating supramolecular patterns of filamentous actin throughout the cell, which generate pseudopodia at the cell edge. The distinctively dissipative spatio-temporal behavior of these structures provides strong evidence that reversible actin filament assembly propagates as a self-organized, chemical reaction-diffusion wave.  相似文献   

14.
The visualization of green fluorescent protein (GFP) fusions with microtubule or actin filament (F-actin) binding proteins has provided new insights into the function of the cytoskeleton during plant development. For studies on actin, GFP fusions to talin have been the most generally used reporters. Although GFP-Talin has allowed in vivo F-actin imaging in a variety of plant cells, its utility in monitoring F-actin in stably transformed plants is limited particularly in developing roots where interesting actin dependent cell processes are occurring. In this study, we created a variety of GFP fusions to Arabidopsis Fimbrin 1 (AtFim1) to explore their utility for in vivo F-actin imaging in root cells and to better understand the actin binding properties of AtFim1 in living plant cells. Translational fusions of GFP to full-length AtFim1 or to some truncated variants of AtFim1 showed filamentous labeling in transient expression assays. One truncated fimbrin-GFP fusion was capable of labeling distinct filaments in stably transformed Arabidopsis roots. The filaments decorated by this construct were highly dynamic in growing root hairs and elongating root cells and were sensitive to actin disrupting drugs. Therefore, the fimbrin-GFP reporters we describe in this study provide additional tools for studying the actin cytoskeleton during root cell development. Moreover, the localization of AtFim1-GFP offers insights into the regulation of actin organization in developing roots by this class of actin cross-linking proteins.  相似文献   

15.
Cofilin is a low molecular weight actin-modulating protein whose structure and function are conserved among eucaryotes. Cofilin exhibits in vitro both a monomeric actin-sequestering activity and a filamentous actin-severing activity. To investigate in vivo functions of cofilin, cofilin was overexpressed in Dictyostelium discoideum cells. An increase in the content of D. discoideum cofilin (d-cofilin) by sevenfold induced a co-overproduction of actin by threefold. In cells over-expressing d-cofilin, the amount of filamentous actin but not that of monomeric actin was increased. Overexpressed d-cofilin co-sedimented with actin filaments, suggesting that the sequestering activity of d- cofilin is weak in vivo. The overexpression of d-cofilin increased actin bundles just beneath ruffling membranes where d-cofilin was co- localized. The overexpression of d-cofilin also stimulated cell movement as well as membrane ruffling. We have demonstrated in vitro that d-cofilin transformed latticework of actin filaments cross-linked by alpha-actinin into bundles probably by severing the filaments. D. discoideum cofilin may sever actin filaments in vivo and induce bundling of the filaments in the presence of cross-linking proteins so as to generate contractile systems involved in membrane ruffling and cell movement.  相似文献   

16.
In vivo visualization of filamentous actin in all cells of Arabidopsis thaliana seedlings is essential for understanding the numerous roles of the actin cytoskeleton in diverse processes of cell differentiation. A previously introduced reporter construct based on the actin-binding domain of mouse talin proved to be useful for unravelling some of these aspects in cell layers close to the organ surface. However, cells more deeply embedded, especially stelar cells active in polar transport of auxin, show either diffuse or no fluorescence at all due to the lack of expression of the fusion protein. The same problem is encountered in the root meristem. Recently introduced actin reporters based on fusions between A. thaliana fimbrin 1 and GFP gave brilliant results in organs from the root differentiation zone upwards to the leaves, however failed to depict the filamentous actin cytoskeleton in the transition zone of the root, in the apical meristem and the root cap. To overcome these problems, we have prepared new transgenic lines for the visualization of F-actin in vivo. We report here that a construct consisting of GFP fused to the C-terminal half of A. thaliana fimbrin 1 reveals dynamic arrays of F-actin in all cells of stably transformed A. thaliana seedlings.  相似文献   

17.
Actin filaments of different lengths were prepared by polymerizing actin in the presence of various concentrations of gelsolin, a protein which accelerates actin polymerization by stabilizing nuclei from which filaments grow and which binds to their fast growing ends. The lengths of the actin filaments following polymerization were measured by electron microscopy and showed that the number-average filament length agreed with the predicted length if each gelsolin molecule acted as a seed for the growth of an actin filament. The distribution of lengths was independent of the actin:gelsolin ratio and was similar to that of actin filaments polymerized in the absence of gelsolin (Lw/Ln = 1.8). The mobility of these filaments in solution was studied by quasielastic light scattering and by viscometry. The translational diffusion constant determined by quasielastic light scattering was in agreement with the infinite dilution values calculated from the dimensions and the distribution of lengths determined by electron microscopy for relatively short filament lengths. Under conditions where overlap of the rotational domains of the filaments would be expected to occur, the measured diffusion rates deviated from their predicted dilute solution values and the solution viscosity increased abruptly. The dependence of the diffusion constant and the solution viscosity on the length of the actin filaments can be explained in terms of a theory that describes the restraints on diffusion of independent rigid rods in semi-dilute solution. The results suggest that the rheology of actin filaments can be accounted for by steric restraints. The length of cytoplasmic actin filaments in some cell types is such that these steric constraints are significant and could produce large changes in physical properties with small changes in filament length.  相似文献   

18.
Properties of filamentous acetamidofluorescein-labeled actin and acetamidotetramethylrhodamine-labeled actin (AF and ATR-actin, respectively) were examined to resolve discrepancies in the reported translational diffusion coefficients of F-actin measured in vitro by FPR and other techniques. Using falling-ball viscometry and two independent versions of fluorescence photobleaching recovery (FPR), the present data indicate that several factors are responsible for these discrepancies. Gel filtration chromatography profoundly affects the viscosity of actin solutions and filament diffusion coefficients. ATR-actin and, to a lesser degree, AF-actin show a reduction in viscosity in proportion to the fraction labeled, presumably due to filament shortening. Actin filaments containing AF-actin or ATR-actin are susceptible to photoinduced damage, including a covalent cross-linking of actin protomers within filaments and an apparent cleavage of filaments detected by a decrease of the measured viscosity and an increase in the measured filament diffusion coefficients. Quantum yields of the two photoinduced effects are quite different. Multiple cross-links are produced relative to each photobleaching event, whereas less than 1% filament cleavage occurs. Substantial differences in the filament diffusion coefficients measured by FPR are also the result of differences in illumination geometry and sampling time. However, under controlled conditions, FPR can be used as a quantitative tool for measuring the hydrodynamic properties of actin filaments. Incremented filament shortening caused by photoinduced cleavage or incremental addition of filament capping proteins produces a continuous and approximately linear increase of filament diffusion coefficients, indicating that filaments are not associated in solution. Our results indicate that actin filaments exhibit low mobilities and it is inferred that actin filaments formed in vitro by column-purified actin, under standard conditions, are much longer than has conventionally been presumed.  相似文献   

19.
Magnetosome dynamics in magnetotactic bacteria.   总被引:2,自引:0,他引:2  
Diffusive motions of the magnetosomes (enveloped Fe3O4 particles) in the magnetotactic bacterium Aquaspirillum magnetotacticum result in a very broad-line Mössbauer spectrum (T approximately 100 mm/s) above freezing temperatures. The line width increases with increasing temperature. The data are analyzed using a bounded diffusion model to yield the rotational and translational motions of the magnetosomes as well as the effective viscosity of the material surrounding the magnetosomes. The results are [theta 2] l/2 less than 1.5 degrees and [x2] 1/2 less than 8.4 A for the rotational and translational motions, respectively, implying that the particles are fixed in whole cells. The effective viscosity is 10 cP at 295 K and increases with decreasing temperature. Additional Fe3+ material in the cell is shown to be associated with the magnetosomes. Fe2+ material in the cell appears to be associated with the cell envelope.  相似文献   

20.
Red fluorescent proteins (RFPs) combined with GFP are attractive probes for double-fluorescence labeling of proteins in live cells. However, the application of these proteins is restrained by stable oligomer formation and by their weak fluorescence in vivo. Previous attempts to eliminate these problems by mutagenesis of RFP from Discosoma (DsRed) resulted in the monomeric mRFP1 and in the tetrameric RedStar RFP, which is distinguished by its enhanced fluorescence in vivo. Based on these mutations, we have generated an enhanced monomeric RFP, mRFPmars, and report its spectral properties. Together with green fluorescent labels, we used mRFPmars to visualize filamentous actin structures and microtubules in Dictyostelium cells. This enhanced RFP proved to be suitable to monitor the dynamics of cytoskeletal proteins in cell motility, mitosis, and endocytosis using dual-wavelength fluorescence microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号