首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Laboratory, greenhouse, and field experiments were performed with the objective of selecting efficient indigenous strains of entomopathogenic nematodes (EPNs) from Rio Grande do Sul (RS) state, Brazil, for controlling the South American fruit fly, Anastrepha fraterculus (Wied.). Laboratory experiments were conducted in 24 well-plates filled with sterile sand and one insect per well. In greenhouse experiments, plastic trays filled with soil collected from the field were used, while in field experiments, holes were made in soil under the edge of peach tree canopies. Among 19 EPN strains tested, Heterorhabditis bacteriophora Poinar RS88 and Steinernema riobrave Cabanillas, Poinar, & Raulston RS59 resulted in higher A. fraterculus larval (pre-pupal) and pupal mortality, with LD90 of 1630, 457 and 2851, 423 infective juveniles (IJs)/cm2, respectively. Greenhouse experiments showed no differences in pupal mortality at 250 and 500 IJs/cm2 of either nematode. In the field, H. bacteriophora RS88 and S. riobravae RS59 sprayed individually over natural and artificially infested fruit (250 IJs/cm2) resulted in A. fraterculus larval mortality of 51.3%, 28.1% and 20%, 24.3%, respectively. There was no significant difference in A. fraterculus pupal mortality sprayed with an aqueous suspension of either nematode; however, when using infected insect cadavers, H. bacteriophora RS88 was more efficient than S. riobrave RS59. Our results showed that H. bacteriophora RS88 was more virulent to insect larvae, with an efficient host search inside the infested fruit and control of pupae in the soil after being applied by aqueous suspension or infected cadavers.  相似文献   

2.
We examined the influence of insect cadaver desiccation on the virulence and production of entomopathogenic nematodes (EPNs), common natural enemies of many soil-dwelling insects. EPNs are often used in biological control, and we investigated the feasibility of applying EPNs within desiccated insect cadavers. Desiccation studies were conducted using the factitious host, Galleria mellonella (Lepidoptera: Pyralidae, wax moth larvae) and three EPN species (Heterorhabditis bacteriophora ‘HB1’, Steinernema carpocapsae ‘All’, and Steinernema riobrave). Weights of individual insect cadavers were tracked daily during the desiccation process, and cohorts were placed into emergence traps when average mass losses reached 50%, 60%, and 70% levels. We tracked the proportion of insect cadavers producing infective juveniles (IJs), the number and virulence of IJs produced from desiccated insect cadavers, and the influence of soil water potentials on IJ production of desiccated insect cadavers. We observed apparent differences in the desiccation rate of the insect cadavers among the three species, as well as apparent differences among the three species in both the proportion of insect cadavers producing IJs and IJ production per insect cadaver. Exposure of desiccated insect cadavers to water potentials greater than −2.75 kPa stimulated IJ emergence. Among the nematode species examined, H. bacteriophora exhibited lower proportions of desiccated insect cadavers producing IJs than the other two species. Desiccation significantly reduced the number of IJs produced from insect cadavers. At the 60% mass loss level, however, desiccated insect cadavers from each of the three species successfully produced IJs when exposed to moist sand, suggesting that insect cadaver desiccation may be a useful approach for biological control of soil insect pests.  相似文献   

3.
Entomopathogenic nematodes (EPNs) are one of the best non-chemical alternatives for insect pest control, with native EPN strains that are adapted to local conditions considered to be ideal candidates for regional biological control programs. Virulence screening of 17 native Mediterranean EPN strains was performed to select the most promising strain for regional insect pest control. Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) Rioja strain produced 7%, 91% and 33% larval mortality for the insects Agriotes sordidus (Illiger) (Coleoptera: Elateridae), Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), respectively, and was selected as the most promising strain. The S. feltiae Rioja strain-S. littoralis combination was considered the most suitable to develop the Rioja strain as a biocontrol agent for soil applications. The effect of soil texture on the virulence of the Rioja strain against S. littoralis was determined through dose-response experiments. The estimated LC90 to kill larvae in two days was 220, 753 and 4178 IJs/cm2 for soils with a clay content of 5%, 14% and 24%, respectively, which indicates that heavy soils produced negative effects on the virulence of the Rioja strain. The nematode dose corresponding to the LC90 for soils with a 5% and 14% clay content reduced insect damage to Capsicum annuum Linnaeus (Solanales: Solanaceae) plants under greenhouse microcosm conditions. The results of this research suggest that an accurate characterization of new EPN strains to select the most suitable combination of insect, nematode and soil texture might provide valuable data to obtain successful biological control under different ecological scenarios in future field applications.  相似文献   

4.
During a survey of entomopathogenic nematodes (EPNs) in the eastern Black Sea region of Turkey in 2009–2012, a steinernematid species was recorded and isolated using the Galleria-baiting method. The isolate was identified as Steinernema kraussei based on its morphological and molecular properties. The analysis of the ITS rDNA sequence placed the Turkish population of S. kraussei in the “feltiae-kraussei” group in the clade that contains different isolates of the species. This is the first record of S. kraussei from Turkey. The efficacy of S. kraussei was tested on Agrotis segetum (Lepidoptera: Noctuidea) larvae at different densities (100, 300, and 500 infective juveniles (IJs) g−1 dry sand ) in laboratory conditions at 25 °C. The highest mortality (98%) was obtained with 500 IJs g−1 dry sand within 7 d after inoculation. Our results indicate that the new isolate is a highly promising biological control agent against A. segetum, one of the most serious soil pests of agricultural area and fruits worldwide.  相似文献   

5.
Nematode strains of the entomopathogenic family Steinernematidae differ in their ability to infect insects at different temperatures. Survival and infectivity of infective juveniles (IJs) of Steinernema rarum (OLI) were studied after their storage at 23 ± 2 °C and at 5 ± 1 °C. Survival at 23 ± 2 °C was always above 95%. At 5 ± 1 °C, survival decreased at week 5, but infectivity did the same after week 2. Unlike other steinernematids, both infectivity and survival of IJs would be higher for S. rarum (OLI) when stored at 23 ± 2 °C.  相似文献   

6.
Release and evaluation studies of the Brazil population of Cyrtobagous salviniae on Salvinia molesta were conducted originally at 18 sites in Texas and Louisiana from 1999 through 2005. However, overall project results could only be continually evaluated at two release and two control sites because the remainder were eventually destroyed or corrupted by floods, droughts, or herbicides. Mean fresh weight biomass of S. molesta ranged from 15.5 kg FW m−2 during the summer to as low as 2.1 kg FW m−2 during the winter prior to the release of C. salviniae. Insect populations established within a year of release and initially spread slowly. Damage to S. molesta increased with increasing C. salviniae detections while S. molesta biomass and surface coverage declined at both release sites by more than 99% while remaining unchanged at the control sites. Water in release sites registered higher levels of dissolved oxygen, higher temperatures, and higher pH than water in control sites. This study provides another example of the effectiveness of C. salviniae against S. molesta even in more temperate climates.  相似文献   

7.
There is need for efficacious biocontrol agents for aphids in commercial orchards. As a preliminary step to this end we determined the virulence of several Hypocreales fungi to pecan aphids. In the first experiment we tested the virulence of Isaria fumosorosea (ARSEF 3581) blastospores to three pecan aphids Monellia caryella, Melanocallis caryaefoliae, and Monelliopsis pecanis under laboratory conditions. Rates of 1 × 107 or 1 × 108 spores per ml were applied in 2 ml via a spray tower to 90 mm Petri dishes containing 10 aphids each. Mortality and mycosis were determined after 24, 48 and 72 h. Treatment effects were observed by 48 h post-application, and by 72 h the higher application rate caused >90% mortality and mycosis in M. caryella and M. caryaefoliae, whereas <70% was observed in M. pecanis.We conducted two subsequent experiments (Experiments 2 and 3), using the same methodology, to compare the virulence of several Hypocreales species and strains against the aphid of primary economic concern to most pecan growers, M. caryaefoliae. In Experiment 2, we compared blastospores and conidia of two I. fumosorosea strains (ARSEF 3581 and ATCC 20874 [= strain 97]). The blastospores of ARSEF 3581 and conidia of ATCC 20874 showed higher virulence than other treatments and thus were included in Experiment 3, which also compared the virulence of conidia of Beauveria bassiana (GHA strain) and Metarhizium anisopliae (F52 strain). Results in Experiment 3 indicated the highest virulence in I. fumosorosea 3581 blastospores and M. anisopliae (F52) followed by I. fumosorosea (20874) conidia. The detection of pathogenicity to pecan aphids establishes the potential for commercial usage and additional study. Results reported here will narrow treatments to test in future greenhouse and field trials.  相似文献   

8.
Absract Nitidulid beetles (Coleoptera) are considered serious pests of date palms throughout the world. They attack the ripe fruit, causing it to rot, and damage is reflected in both reduced yield and lower fruit quality. Previous studies demonstrated the susceptibility of larvae of this pest to entomopathogenic nematodes from the genus Heterorhabditidis. In the present study nematode efficacy was evaluated in greenhouse and field. In containers filled with soil, moderate reduction in insect emergence was achieved when the nematodes were applied at concentrations of 25 and 50 IJs/cm2. However, the highest concentration (100 IJs/cm2) treatment resulted in a drastic reduction (by 70–90%) in emergence of the beetles. The lowest emergence was achieved by the IS-19 and IS-21 strains (>10%). Efficacy of the IS-19 strain was retained up to 7 days after application at a rate of 100 IJs/cm2. When the insect larvae were introduced to the soil 2 weeks after nematode application, the percentage emergence of insects increased by 2–2.5 fold as compared to previous introductions but was still lower than in the control. Insect density per container did not have an effect on efficacy of the nematodes when the strains IS-19 and IS-12 were used. Two field trials were conducted in different sites in Israel. In the first trail, conducted in date palm orchard, four strains of Heterorhabditis sp. were tested. No significant difference in insect emergence was recorded among the various treatments or the control. Whereas in the second trial conducted in a fig orchard, substantial reduction (by 50–70%) in insect emergence was recorded following nematode treatment. Further studies, under natural conditions, are needed to optimize application efficiency and evaluate the commercial utilization of these biological control agents.  相似文献   

9.
Mortality of larval, pupal, and adult western cherry fruit fly, Rhagoletis indifferens (Tephritidae) exposed to the steinernematid nematodes Steinernema carpocapsae, Steinernema feltiae, and Steinernema intermedium, was determined in the laboratory and field. Larvae were the most susceptible stage, with mortality in the three nematode treatments ranging from 62 to 100%. S. carpocapsae and S. feltiae were equally effective against larvae at both 50 and 100 infective juveniles (IJs)/cm2. S. intermedium was slightly less effective against larvae than the other two species. Mortalities of R. indifferens larvae at 0, 2, 4, and 6 days following their introduction into soil previously treated with S. carpocapsae and S. feltiae at 50 IJs/cm2 were 78.6, 92.5, 95.0, and 77.5% and 87.5, 52.5, 92.5, and 70.0%, respectively, and at 100 IJs/cm2 were 90.0, 92.0, 100.0, and 84.0% and 90.0, 50.0, 42.0, and 40.0%, respectively. There was no decline in mortality caused by S. carpocapsae as time progressed, whereas there was in one test with S. feltiae. Larval mortalities caused by the two species were the same in a 1:1:1 vermiculite:peat moss:sand soil mix and a more compact silt loam soil. In the field, S. carpocapsae and S. feltiae were equally effective against larvae. Pupae were not infected, but adult flies were infected by all three nematode species in the laboratory. S. carpocapsae was the most effective species at a concentration of 100 IJs/cm2 and infected 11–53% of adults that emerged. The high pathogenicity of S. carpocapsae and S. feltiae against R. indifferens larvae and their persistence in soil as well as efficacy in different soil types indicate both nematodes hold promise as effective biological control agents of flies in isolated and abandoned lots or in yards of homeowners.  相似文献   

10.
Coffee berry borer (CBB) is the Worlds most devastating coffee pest causing an estimated US$500 million worth of losses annually through damage and control costs. Beauveria bassiana and Metarhizium anisopliae have been employed to control this pest but their low virulence (slow kill and large inoculums) is an important factor constraining their use. M. anisopliae (AaIT-Ma549) has been modified to express the scorpion toxin (AaIT) in insect hemolymph and this greatly increased pathogenicity against Manduca sexta and Aedes aegypti. Here, we demonstrate that AaIT-Ma549 was also dramatically more virulent against CBB, and we provide a much more comprehensive analysis of infection processes and post-mortality development than in the previous research. We evaluated several spore concentrations (101 through 107 spores/ml) of both the wild type and recombinant strain. At concentrations of 101, 102 and 103 spores/ml, the recombinant strain significantly increased mortality of CBB by 32.2%, 56.6% and 24.6%, respectively. The medial lethal concentration (LC50) was reduced 15.7-fold and the average survival time (AST) was reduced by 20.1% to 2.98 ± 0.1 days with 107 spores/ml. This is the first occasion that an entomopathogenic fungus has been found to kill CBB in less than 3 days. However, AaIT-Ma549 produces significantly fewer spores on cadavers than the parental strain.  相似文献   

11.
In this study, two Membrane Biological Reactors (MBR) with submerged flat membranes, one at lab-scale conditions and the other at pilot-plant conditions, were operated at environmental temperature to treat an industrial wastewater characterised by low phenol concentrations (8-16 mg L−1) and high salinity (∼150-160 mS cm−1). During the operation of both reactors, the phenol loading rate was progressively increased and less than 1 mg phenol L−1 was detected even at very low HRTs (0.5-0.7 days). Membrane fouling was minimized by the cross flow aeration rate inside the MBRs and by intermittent permeation. Microbial community analysis of both reactors revealed that members of the genera Halomonas and Marinobacter (gammaproteobacteria) were major components. Growth-linked phenol degradation by pure cultures of Marinobacter isolates demonstrated that this bacterium played a major role in the removal of phenol from the bioreactors.  相似文献   

12.
A method for screening codling moth granulovirus (CpGV) formulation sensitivity to sunlight using specially prepared half apples and a solar simulator is described. The half apple preparation allows an even coverage of virus over the surface of the fruit that would not be possible using whole apples. Leaves and artificial medium were not usable for extended periods of exposure in the solar simulator due to excess drying. Fruit was sprayed with 10−3 and 10−5 dilutions of three commercial formulations of CpGV (Carpovirusine, Cyd-X, and Virosoft) and infested with codling moth neonates. Half of the sprayed fruit was exposed to 650 W/m2 for 4 h in an Atlas Suntest CPS solar simulator resulting in an accumulated radiant energy of 9.36 × 106 J/m2 before they were infested with neonate codling moth larvae. Spraying non-irradiated fruit with the 10−3 dilution of Cyd-X and Virosoft resulted in nearly 100% mortality of neonate larvae. Irradiation reduced viral activity by 71-98% at the 10−3 dilution and by up to 32% at the 10−5 dilution relative to non-irradiated fruit. The procedures utilized enabled good preservation of the fruit throughout the incubation period and minimized invasion of the fruit by plant pathogens and saprophytic organisms. This laboratory method for screening candidate formulations and potential UV protectants could conserve time and resources by eliminating adjuvants with less potential in laboratory tests and field testing only the most promising candidates. It also enables year-round testing.  相似文献   

13.
A granulosis virus (GV) was isolated from the diseased caterpillars of Arctornis submarginata (Walker) (Lymantriidae), a defoliating pest of tea from Darjeeling foothill region. The phase contrast and transmission electron microscopic studies identified the virus as granulosis virus. SDS-PAGE analysis of major protein of the occlusion bodies was found to be 31 kDa, characteristic for granulin. The total genomic DNA was isolated. The major band found was of molecular weight 16 kDa. Bioassay conducted with the occlusion bodies (OBs) of the virus showed LC50 value of 4.46 × 104 OBs/ml for the second instar caterpillars. Median lethal time (LT50) were 6.6 days for 1 × 10OBs/ml, 5.09 days for 1 × 105 OBs/ml, 4.45 days for 1 × 106 OBs/ml and 3.87 days for 1 × 107OBs/ml concentrations. The results indicated the potential of the virus for its future application as microbial pesticide against A. submarginata in future.  相似文献   

14.
In this study, interactions between Cry1Ac, a toxic crystal protein produced by Bacillus thuringiensis (Berliner), and Beauveria bassiana on the mortality and survival of Ostrinia furnacalis was evaluated in the laboratory. The results showed that Cry1Ac is toxic to O. furnacalis. Not only were larval growth and development delayed, but pupation, pupal weight and adult emergency also decreased when larvae were fed on artificial diet containing purified Cry1Ac toxin. When third instars O. furnacalis were exposed to combination of B. bassiana (1.8 × 105, 1.8 × 106 or 1.8 × 107 conidia ml−1) and Cry1Ac, (0.2 or 0.8 μg g−1), the effect on mortality was additive, however, the combinations of sublethal concentrations showed antagonism between Cry1Ac (3.2 or 13 μg g−1) and B. bassiana (1.8 × 105 or 1.8 × 106 conidia ml−1). When neonates were reared on sublethal concentrations of Cry1AC until the third instar, and survivors exposed B. bassiana conidial suspension, such treatments showed additive effect on mortality of O. furnacalis except for the combination of Cry1Ac (0.2 μg g−1) and B. bassiana (1.8 × 106 conidia ml−1) that showed antagonism.  相似文献   

15.
The repellent activity of the essential oil of the catmint plant, Nepeta cataria (Lamiaceae), and the main iridoid compounds (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone, was assessed against (i) major Afro-tropical pathogen vector mosquitoes, i.e. the malaria mosquito, Anopheles gambiae s.s. and the Southern house mosquito, Culex quinquefasciatus, using a World Health Organisation (WHO)-approved topical application bioassay (ii) the brown ear tick, Rhipicephalus appendiculatus, using a climbing repellency assay, and (iii) the red poultry mite, Dermanyssus gallinae, using field trapping experiments. Gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS) analysis of two N. cataria chemotypes (A and B) used in the repellency assays showed that (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone were present in different proportions, with one of the oils (from chemotype A) being dominated by the (4aS,7S,7aR) isomer (91.95% by GC), and the other oil (from chemotype B) containing the two (4aS,7S,7aR) and (4aS,7S,7aS) isomers in 16.98% and 69.83% (by GC), respectively. The sesquiterpene hydrocarbon (E)-(1R,9S)-caryophyllene was identified as the only other major component in the oils (8.05% and 13.19% by GC, respectively). Using the topical application bioassay, the oils showed high repellent activity (chemotype A RD50 = 0.081 mg cm−2 and chemotype B RD50 = 0.091 mg cm−2) for An. gambiae comparable with the synthetic repellent DEET (RD50 = 0.12 mg cm−2), whilst for Cx. quinquefasciatus, lower repellent activity was recorded (chemotype A RD50 = 0.34 mg cm−2 and chemotype B RD50 = 0.074 mg cm−2). Further repellency testing against An. gambiae using the purified (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone isomers revealed overall lower repellent activity, compared to the chemotype A and B oils. Testing of binary mixtures of the (4aS,7S,7aR) and (4aS,7S,7aS) isomers across a range of ratios, but all at the same overall dose (0.1 mg), revealed not only a synergistic effect between the two, but also a surprising ratio-dependent effect, with lower activity for the pure isomers and equivalent or near-equivalent mixtures, but higher activity for non-equivalent ratios. Furthermore, a binary mixture of (4aS,7S,7aR) and (4aS,7S,7aS) isomers, in a ratio equivalent to that found in chemotype B oil, was less repellent than the oil itself, when tested at two doses equivalent to 0.1 and 0.01 mg chemotype B oil. The three-component blend including (E)-(1R,9S)-caryophyllene at the level found in chemotype B oil had the same activity as chemotype B oil. In a tick climbing repellency assay using R. appendiculatus, the oils showed high repellent activity comparable with data for other repellent essential oils (chemotype A RD50 = 0.005 mg and chemotype B RD50 = 0.0012 mg). In field trapping assays with D. gallinae, addition of the chemotype A and B oils, and a combination of the two, to traps pre-conditioned with D. gallinae, all resulted in a significant reduction of D. gallinae trap capture. In summary, these data suggest that although the nepetalactone isomers have the potential to be used in human and livestock protection against major pathogen vectors, intact, i.e. unfractionated, Nepeta spp. oils offer potentially greater protection, due to the presence of both nepetalactone isomers and other components such as (E)-(1R,9S)-caryophyllene.  相似文献   

16.
Entomopathogenic ascomycete fungi are ubiquitous in soil and on phylloplanes, and are important natural enemies of many soil-borne arthropods including larval western corn rootworm, Diabrotica virgifera virgifera, which is a major pest of corn. We measured the prevalence of Beauveria bassiana and Metarhizium anisopliae sensu lato in ten cornfields in Iowa, USA by baiting with larval insects. B. bassiana and M. anisopliae s.l. were present in 60% ± 6.3% and 55% ± 6.4% of soil samples, respectively. Subsequent laboratory bioassays found that some M. anisopliae s.l. strains collected from cornfields killed a greater proportion of D.v. virgifera larvae than a standard commercial strain.  相似文献   

17.
Infectivity of six entomopathogenic nematode (EPNs) species against Bactrocera oleae was compared. Similar infection levels were observed when third-instar larvae were exposed to infective juveniles (IJs) on a sand-potting soil substrate. When IJs were sprayed over naturally infested fallen olives, many larvae died within treated olives as well as in the soil; Steinernema feltiae caused the highest overall mortality of 67.9%. In addition, three laboratory experiments were conducted to optimize a time period for S. feltiae field application. (1) Abundance of fly larvae inside fallen olives was estimated over the 2006–2007 season with the highest number of susceptible larvae (3 mm and larger) per 100 olives being observed during December, 2006. (2) S. feltiae efficacy against fly larvae dropped to the soil post-IJ-application was determined. B. oleae added to the substrate before and after nematode application were infected at similar levels. (3) Effect of three temperature regimes (min–max: 10–27, 6–18, and 3–12 °C) corresponding to October through December in Davis, California on S. feltiae survival and infectivity was determined. After 8 weeks, the IJs at the 3–12 °C treatment showed the highest survival rate. However, the cold temperature significantly limited S. feltiae infectivity. Our results demonstrate that B. oleae mature larvae are susceptible to EPN infection both in the soil and within infested olives. Being the most effective species, S. feltiae may have the potential to suppress overwintering populations of B. oleae. We suggest that November is the optimal time for S. feltiae field application in Northern California.  相似文献   

18.
In this paper we analyze through a polyphasic approach several Bradyrhizobium strains isolated in Spain and Morocco from root nodules of Retama sphaerocarpa and Retama monosperma. All the strains have identical 16S rRNA genes and their closest relative species is Bradyrhizobium lablabi CCBAU 23086T, with 99.41% identity with respect to the strain Ro19T. Despite the closeness of the 16S rRNA genes, the housekeeping genes recA, atpD and glnII were divergent in Ro19T and B. lablabi CCBAU 23086T, with identity values of 95.71%, 93.75% and 93.11%, respectively. These differences were congruent with DNA–DNA hybridization analysis that revealed an average of 35% relatedness between the novel species and B. lablabi CCBAU 23086T. Also, differential phenotypic characteristics of the new species were found with respect to the already described species of Bradyrhizobium. Based on the genotypic and phenotypic data obtained in this study, we propose to classify the group of strains isolated from R. sphaerocarpa and R. monosperma as a novel species named Bradyrhizobium retamae sp. nov. (type strain Ro19T = LMG 27393T = CECT 8261T). The analysis of symbiotic genes revealed that some of these strains constitute a new symbiovar within genus Bradyrhizobium for which we propose the name “retamae”, that mainly contains nodulating strains isolated from Retama species in different continents.  相似文献   

19.
Gram-negative, facultatively anaerobic bacteria were isolated from symptomatic oak tissue in the UK and USA. Partial gyrB sequencing placed ten strains in the genus Brenneria, with B. goodwinii as the closest phylogenetic relative. The strains were investigated further using a polyphasic approach including MLSA (based on partial gyrB, rpoB, infB and atpD gene sequences), 16S rRNA gene sequencing, DNA–DNA relatedness studies and both phenotypic and chemotaxonomic assays. The MLSA and 16S rRNA gene analyses separated the strains into two groups based on origin, suggesting that they belong to Brenneria as two novel species. However, the DNA–DNA relatedness values revealed a closer relationship between the groups and indicated that they should belong to the same species. As the two groups of strains from the UK and USA can be differentiated from each other phenotypically and by ERIC PCR fingerprints, it is proposed to classify them as novel subspecies of a novel Brenneria species. The name Brenneria roseae sp. nov. (FRB 222T = LMG 27714T = NCPPB 4581T) is proposed, with Brenneria roseae subsp. roseae ssp. nov. (FRB 222T = LMG 27714T = NCPPB 4581T) for the strains from the UK and Brenneria roseae subsp. americana ssp. nov. (FRB 223T = LMG 27715T = NCPPB 4582T) for the strains from the USA.  相似文献   

20.
The brown alga Laminaria japonica is distributed from southern Hokkaido to the northeastern Honshu in Japan. Recently, aquaculture of L. japonica has expanded to the southern coast of Japan and to China along the East China Sea. In order to elucidate the growth, biomass and productivity of L. japonica in a subtropical area, we cultivated and examined it in the Uwa Sea, in southwestern Japan over a period of 2 years. The seawater temperature ranged from 13.8 to 26.8 °C in 2001/2002 and from 13.1 to 27.2 °C in 2002/2003. In 2001/2002, the maximum density, maximum mean length and maximum mean wet wt. of L. japonica were 59.7 ± 28.0 ind. 50 cm− 1 (mean ± S.D.), 187.5 ± 82.7 cm (360 cm in the largest individual) and 130.1 ± 94.6 g wet wt., respectively. In 2002/2003, these values were 94.7 ± 22.2 ind. 50 cm− 1, 159.3 ± 74.4 cm (300 cm in the largest individual) and 95.2 ± 69.5 g wet wt., respectively. Thus, the length and weight increased when the density was low (2001/2002), and the length and weight decreased when the density was high (2002/2003). The maximum biomass was estimated to be 7200 ± 3400 g wet wt. 50 cm− 1 in 2001/2002 and 7300 ± 2000 g wet wt. 50 cm− 1 in 2002/2003. Annual production was estimated to be 33.3 kg wet wt. m− 1 year− 1 in 2001/2002 and 34.0 kg wet wt. m− 1 year− 1 in 2002/2003. The present study indicates that the annual production of L. japonica per rope of 1 m at Uwajima Bay, the Uwa Sea corresponded to 1.1-2.2 m2 of that of Hokkaido in their native area. Thus, the present study indicates that L. japonica is highly adaptable because it is able to keep a high level of productivity when grown in water with a high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号