首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 956 毫秒
1.
2.
3.
4.
5.
6.
Niu QW  Lin SS  Reyes JL  Chen KC  Wu HW  Yeh SD  Chua NH 《Nature biotechnology》2006,24(11):1420-1428
Plant microRNAs (miRNAs) regulate the abundance of target mRNAs by guiding their cleavage at the sequence complementary region. We have modified an Arabidopsis thaliana miR159 precursor to express artificial miRNAs (amiRNAs) targeting viral mRNA sequences encoding two gene silencing suppressors, P69 of turnip yellow mosaic virus (TYMV) and HC-Pro of turnip mosaic virus (TuMV). Production of these amiRNAs requires A. thaliana DICER-like protein 1. Transgenic A. thaliana plants expressing amiR-P69(159) and amiR-HC-Pro(159) are specifically resistant to TYMV and TuMV, respectively. Expression of amiR-TuCP(159) targeting TuMV coat protein sequences also confers specific TuMV resistance. However, transgenic plants that express both amiR-P69(159) and amiR-HC-Pro(159) from a dimeric pre-amiR-P69(159)/amiR-HC-Pro(159) transgene are resistant to both viruses. The virus resistance trait is displayed at the cell level and is hereditable. More important, the resistance trait is maintained at 15 degrees C, a temperature that compromises small interfering RNA-mediated gene silencing. The amiRNA-mediated approach should have broad applicability for engineering multiple virus resistance in crop plants.  相似文献   

7.
Plant microRNAs (miRNAs) affect only a small number of targets with high sequence complementarity, while animal miRNAs usually have hundreds of targets with limited complementarity. We used artificial miRNAs (amiRNAs) to determine whether the narrow action spectrum of natural plant miRNAs reflects only intrinsic properties of the plant miRNA machinery or whether it is also due to past selection against natural miRNAs with broader specificity. amiRNAs were designed to target individual genes or groups of endogenous genes. Like natural miRNAs, they had varying numbers of target mismatches. Previously determined parameters of target selection for natural miRNAs could accurately predict direct targets of amiRNAs. The specificity of amiRNAs, as deduced from genome-wide expression profiling, was as high as that of natural plant miRNAs, supporting the notion that extensive base pairing with targets is required for plant miRNA function. amiRNAs make an effective tool for specific gene silencing in plants, especially when several related, but not identical, target genes need to be downregulated. We demonstrate that amiRNAs are also active when expressed under tissue-specific or inducible promoters, with limited nonautonomous effects. The design principles for amiRNAs have been generalized and integrated into a Web-based tool (http://wmd.weigelworld.org).  相似文献   

8.
Duan CG  Wang CH  Fang RX  Guo HS 《Journal of virology》2008,82(22):11084-11095
Short-hairpin RNAs based on microRNA (miRNA) precursors to express the artificial miRNAs (amiRNAs) can specifically induce gene silencing and confer virus resistance in plants. The efficacy of RNA silencing depends not only on the nature of amiRNAs but also on the local structures of the target mRNAs. However, the lack of tools to accurately and reliably predict secondary structures within long RNAs makes it very hard to predict the secondary structures of a viral genome RNA in the natural infection conditions in vivo. In this study, we used an experimental approach to dissect how the endogenous silencing machinery acts on the 3′ untranslated region (UTR) of the Cucumber mosaic virus (CMV) genome. Transiently expressed 3′UTR RNAs were degraded by site-specific cleavage. By comparing the natural cleavage hotspots within the 3′UTR of the CMV-infected wild-type Arabidopsis to those of the triple dcl2/3/4 mutant, we acquired true small RNA programmed RNA-induced silencing complex (siRISC)-mediated cleavage sites to design valid amiRNAs. We showed that the tRNA-like structure within the 3′UTR impeded target site access and restricted amiRNA-RISC-mediated cleavage of the target viral RNA. Moreover, target recognition in the less-structured area also influenced siRISC catalysis, thereby conferring different degrees of resistance to CMV infection. Transgenic plants expressing the designed amiRNAs that target the putative RISC accessible target sites conferred high resistance to the CMV challenge from both CMV subgroup strains. Our work suggests that the experimental approach is credible for studying the course of RISC target recognition to engineer effective gene silencing and virus resistance in plants by amiRNAs.  相似文献   

9.
Cucurbits are economically important crops worldwide. The genomic data of many cucurbits are now available. However, functional analyses of cucurbit genes and noncoding RNAs have been impeded because genetic transformation is difficult for many cucurbitaceous plants. Here, we developed a set of tobacco ringspot virus (TRSV)-based vectors for gene and microRNA (miRNA) function studies in cucurbits. A TRSV-based expression vector could simultaneously express GREEN FLUORESCENT PROTEIN (GFP) and heterologous viral suppressors of RNA silencing in TRSV-infected plants, while a TRSV-based gene silencing vector could knock down endogenous genes exemplified by PHYTOENE DESATURASE (PDS) in Cucumis melo, Citrullus lanatus, Cucumis sativus, and Nicotiana benthamiana plants. We also developed a TRSV-based miRNA silencing vector to dissect the functions of endogenous miRNAs. Four representative miRNAs, namely, miR159, miR166, miR172, and miR319, from different cucurbits were inserted into the TRSV vector using a short tandem target mimic strategy and induced characteristic phenotypes in TRSV-miRNA-infected plants. This TRSV-based vector system will facilitate functional genomic studies in cucurbits.  相似文献   

10.
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a crucial role in gene regulation. They are produced through an enzyme-guided process called dicing and have an asymmetrical structure with two nucleotide overhangs at the 3′ ends. Artificial microRNAs (amiRNAs or amiRs) are designed to mimic the structure of miRNAs and can be used to silence specific genes of interest. Traditionally, amiRNAs are designed based on an endogenous miRNA precursor with certain mismatches at specific positions to increase their efficiency. In this study, the authors modified the highly expressed miR168a in Arabidopsis thaliana by replacing the single miR168 stem-loop/duplex with tandem asymmetrical amiRNA duplexes that follow the statistical rules of miRNA secondary structures. These tandem amiRNA duplexes, called “two-hit” amiRNAs, were shown to have a higher efficiency in silencing GFP and endogenous PDS reporter genes compared to traditional “one-hit” amiRNAs. The authors also demonstrated the effectiveness of “two-hit” amiRNAs in silencing genes involved in miRNA, tasiRNA, and hormone signalling pathways, individually or in families. Importantly, “two-hit” amiRNAs were also able to over-express endogenous miRNAs for their functions. The authors compare “two-hit” amiRNA technology with CRISPR/Cas9 and provide a web-based amiRNA designer for easy design and wide application in plants and even animals.  相似文献   

11.
12.
13.
Apple miRNAs and tasiRNAs with novel regulatory networks   总被引:2,自引:0,他引:2  
Xia R  Zhu H  An YQ  Beers EP  Liu Z 《Genome biology》2012,13(6):R47-18
  相似文献   

14.
MicroRNAs (miRNAs) act as down-regulators of gene expression, and play a dominant role in eukaryote development. In Arabidopsis thaliana, DICER-LIKE 1 (DCL1) is the main processor in miRNA biogenesis, and dcl1 mutants show various developmental defects at the early stage of embryogenesis or at gamete formation. However, miRNAs responsible for the respective developmental stages of the dcl1 defects have not been identified. Here, we developed a DCL1-independent miRNA expression system using the unique DCL4-dependent miRNA, miR839. By replacing the mature sequence in the miR839 precursor sequence with that of miR172, one of the most widely conserved miRNAs in angiosperms, we succeeded in expressing miR172 from a chimeric miR839 precursor in dcl1-7 plants and observed the repression of miR172 target gene expression. In parallel, the DCL4-dependent miR172 expression rescued the late flowering phenotype of dcl1-7 by acceleration of flowering. We established the DCL1-independent miRNA expression system, and revealed that the reduction of miR172 expression is responsible for the dcl1-7 late flowering phenotype.  相似文献   

15.
16.
Highly specific gene silencing by artificial miRNAs in rice   总被引:2,自引:0,他引:2  
  相似文献   

17.
18.
19.
Plant miRNAs, the critical regulator of gene expression, involve many development processes in vivo. However, the roles of miRNAs in plant cell proliferation and redifferntiation in vitro remain unknown. To determine better the molecular mechanism of these processes, we have recently reported that a set of miRNAs with different expression patterns between cells of totipotent and non-totipotent Arabidopsis calli. Some of these were specifically up- or downregulated during callus formation or shoot regeneration, and other development. Among them, miR160, and one of its target genes, ARF10, regulated Arabidopsis in vitro shoot regeneration via WUS, CLV3 and CUC1/2. The miR160-overexpressing, 35S transgenic lines, exhibited reduced shoot regeneration efficiency. The mARF10, a miR160-resistant form of ARF10, showed a high level of shoot regeneration ability. In the transgenic, expression of the above shoot meristem-specific genes was elevated, which is consistent with the improved shoot regeneration. In contrast, the ARF10 deficient knockout mutant produced fewer regenerated shoot. However, overexpressors of ARF10 were only marginally more efficient than the wild type with the respect to shoot regeneration. Our observation strongly supports that proper shoot regeneration from in vitro cultured cells requires the miR160-directed negative influence of ARF10. The enhanced expression of ARF10 is likely to have contributed to the improved regeneration ability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号