首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Oysters Crassostrea gigas were placed at water supply canals of three shrimp farms in Guasave, Mexico where WSSV outbreaks occur. Animals were sampled through April-August and September-December to detect WSSV DNA.By using three different PCR protocols, only oysters from a farm undergoing a WSSV outbreak were found WSSV-positive in gills and digestive gland. Two WSSV amplicons were sequenced and they corresponded over 99% to WSSV genome segments. Results showed that oysters can capture WSSV particles suspended in water. Susceptibility of oysters to WSSV infection and their role as a carrier remain to be determined.  相似文献   

2.
3.
The efficacy of STEL water for protection against white spot syndrome virus (WSSV) infection was evaluated using shrimp. The LC50 of residual chlorine (Cl-) in STEL water for brood-stock and 2-mo-old shrimp were 2.3 and 3.2 ppm, respectively. All 2-month-old shrimp raised in seawater containing more than 40 microl 2l(-1) of a WSSV-infected tissue homogenate died within 3 d post-exposure (dpe). Thus, a 10-fold dose of 400 microl 2 l(-1) was used in the disinfection tests. Low concentrations of STEL water effectively prevented mortality of shrimp at this challenge dose. All 2-month-old shrimp exposed to seawater with 400 microl of viral homogenate disinfected with STEL water at Cl- concentrations over 0.125 ppm for 1 and 10 min, lived until 5 dpe. With 5-mo-old shrimp, all positive control shrimps died within 3 dpe, whereas most shrimp reared in seawater disinfected with STEL water for 1 h before addition of homogenate lived until 5 dpe. Results suggested that continuous disinfection of seawater with STEL water may be effective for preventing WSSV infection in shrimp.  相似文献   

4.
Genotyping of white spot syndrome virus prevalent in shrimp farms of India   总被引:1,自引:0,他引:1  
DNA extracts from white spot syndrome virus (WSSV) that had infected post-larvae and juveniles of cultured shrimp, wild shrimp and crabs, which had been collected from different hatcheries and farms located along both the east and west coasts of India, revealed considerable variation in several previously identified WSSV DNA repeat regions. These include the 54 bp repeat in ORF 94, the 69 bp repeat in ORF 125 and the compound 45 and 57 bp repeat region in ORF 75. In ORF 94, 13 genotypes were observed with the number of repeats ranging from 2 to 16 units. While 7 repeat units were commonly observed (11.3%), no samples with 11 or 15 repeat units were found. In ORF 125, 11 types were found, with repeats ranging from 2 to 14 units. The most prevalent genotype displayed 4 repeat units (47.1%); no samples with 6 or 13 repeats were observed. The compound repeat region of ORF 75 displayed 6 different patterns of repeats. Samples with the same repeat pattern in one ORF did not always show identical repeat patterns in one or both of the other repeat regions. These data suggest that combined analysis of all 3 variable loci could be used to differentiate and characterize specific WSSV strains. For general epidemiological studies, the best marker with maximum variation is ORF 94, followed by ORF 125 and ORF 75. The 3 repeat regions above were used to compare WSSV genotypes from disease outbreaks on 3 sets of farms from different locations in the state of Andhra Pradesh. The genotypes within each farm set were almost identical, but differed between farm sets, suggesting that WSSV transmission occurred directly through virus carriers or water exchange between adjacent farms at each location. These findings show that genotyping can be a useful epidemiological tool for tracing the movement of WSSV within infected populations.  相似文献   

5.
6.
In order to assess changes in the activity of immunecompetency present in Crassostrea gigas infected with Marteilioides chungmuensis (Protozoa), the total hemocyte counts (THC), hemocyte populations, hemocyte viability, and phagocytosis rate were measured in oysters using flow cytometry. THC were increased significantly in oysters infected with M. chungmuensis relative to the healthy appearing oysters (HAO) (P<0.05). Among the total hemocyte composition, granulocyte levels were significantly increased in infected oysters as compared with HAO (P<0.05). In addition, the hyalinocyte was reduced significantly (P<0.05). The hemocyte viability did not differ between infected oysters and HAO. However, the phagocytosis rate was significantly higher in infected oysters relative to HAO (P<0.05). The measurement of alterations in the activity of immunecompetency in oysters, which was conducted via flow cytometry in this study, might be a useful biomarker of the defense system for evaluating the effects of ovarian parasites of C. gigas.  相似文献   

7.
The innate immunity and resistance against white spot syndrome virus (WSSV) in white shrimp Litopenaeus vannamei which received the Gracilaria tenuistipitata extract were examined. Shrimp immersed in seawater containing the extract at 0 (control), 400 and 600 mg L(-1) for 3 h were challenged with WSSV at 2 × 10(4) copies shrimp(-1). Shrimp not exposed to the extract and not received WSSV challenge served as unchallenged control. The survival rate of shrimp immersed in 400 mg L(-1) or 600 mg L(-1) extract was significantly higher than that of challenged control shrimp over 24-120 h. The haemocyte count, phenoloxidase activity, respiratory burst, superoxide dismutase activity, and lysozyme activity of shrimp immersed in 600 mg L(-1) extract were significantly higher than those of unchallenged control shrimp at 6, 6, 6, 6, and 6-24 h post-challenge. In another experiment, shrimp which had received 3 h immersion of 0, 400, 600 mg L(-1) extract were challenged with WSSV. The shrimp were then received a booster (3 h immersion in the same dose of the extract), and the immune parameters were examined at 12-120 h post-challenge. The immune parameters of shrimp immersed in 600 mg L(-1) extract, and then received a booster at 9, 21, and 45 h were significantly higher than those of unchallenged control shrimp at 12-48 h post-challenge. In conclusion, shrimp which had received the extract exhibited protection against WSSV as evidenced by the higher survival rate and higher values of immune parameters. Shrimp which had received the extract and infected by WSSV showed improved immunity when they received a booster at 9, 21, and 45 h post-WSSV challenge. The extract treatment caused less decrease in PO activity, and showed better performance of lysozyme activity and antioxidant response in WSSV-infected shrimp.  相似文献   

8.
When two species of shellstock oysters were artificially contaminated with Vibrio vulnificus, the bacterium survived when the oysters were stored at 10 degrees C and below. Large numbers of endogenous V. vulnificus cells were found after 7 days at both 0.5 and 10 degrees C in uninoculated control oysters (Crassostrea virginica). Oysters allowed to take up V. vulnificus from seawater retained the bacterium for 14 days at 2 degrees C. The presence of V. vulnificus in the drip exuded from the shellstock presented a possibility of contamination of other shellstock in storage. V. vulnificus injected into shucked Pacific (Crassostrea gigas) and Eastern (C. virginica) oysters survived at 4 degrees C for at least 6 days. An 18-h most-probable-number enrichment step in alkaline peptone water gave higher recovery levels of V. vulnificus than did direct plating to selective agars. The survival of this pathogen in both shellstock and shucked oysters suggests a potential for human illness, even though the product is refrigerated.  相似文献   

9.
When two species of shellstock oysters were artificially contaminated with Vibrio vulnificus, the bacterium survived when the oysters were stored at 10 degrees C and below. Large numbers of endogenous V. vulnificus cells were found after 7 days at both 0.5 and 10 degrees C in uninoculated control oysters (Crassostrea virginica). Oysters allowed to take up V. vulnificus from seawater retained the bacterium for 14 days at 2 degrees C. The presence of V. vulnificus in the drip exuded from the shellstock presented a possibility of contamination of other shellstock in storage. V. vulnificus injected into shucked Pacific (Crassostrea gigas) and Eastern (C. virginica) oysters survived at 4 degrees C for at least 6 days. An 18-h most-probable-number enrichment step in alkaline peptone water gave higher recovery levels of V. vulnificus than did direct plating to selective agars. The survival of this pathogen in both shellstock and shucked oysters suggests a potential for human illness, even though the product is refrigerated.  相似文献   

10.
Marteilioides chungmuensis, a protozoan paramyxean parasite, infects the oocytes of the Pacific oyster, Crassostrea gigas. The effects of infection on the reproductive cycle of C. gigas were investigated over two consecutive years at Okayama Prefecture, Japan. In male oysters, gonadal development began during February/March, maturity was achieved in June and spawning activity extended from July to September. In November and December, male oysters were not seen, probably because their gonads regressed to connective tissue and they transformed into undifferentiated oysters. By contrast, female oysters, in which parasite spore formation occurred, were still carrying oocytes until the following March and the spawning process of female oysters took 5 months longer than that of males in epizootic areas. The prevalence of M. chungmuensis infection increased from July to September, when most female oysters had their spawning period, and declined from October to the following April when oysters were at the spent stage. The prevalence of infection increased again in May of the following year and high prevalence was observed in the following July. When prevalence was compared between oysters of different age classes, higher prevalence was detected in older than in younger oysters. Histological examination showed that infected oysters produced oocytes continuously and spawned repeatedly from October to March, during which period healthy oysters were reproductively inactive. Parasites can infect the oocytes of infected oysters throughout the longer spawning period. These observations suggest that M. chungmuensis extends the reproductive period of infected oysters for its own reproductive benefit.  相似文献   

11.
We have previously reported that white spot syndrome virus-infected Penaeus vannamei (also called Litopenaeus vannamei) maintained at 32 degrees C show higher survival rates and a significant increase in number of apoptotic cells when compared to infected shrimp kept at 26 degrees C. As apoptosis plays an important part in the antiviral response of invertebrates, we hypothesized that this process would reduce WSSV replication, allowing the shrimp to control the disease and survive. To test this hypothesis, shrimp were orally infected and maintained at either 26 degrees C (Group 1) or 32 degrees C (Group 2), DNA was extracted from haemolymph collected at various times from 6 to 216 h post-infection, and the number of viral units was quantified by real time PCR using SYBR Green. In parallel, histological examination was carried out to confirm the WSSV infection and to rule out concomitant diseases. Linear regression of real time PCR units (rtPCRU) of WSSV from Group 1 showed a significant increase with time post-infection (r2 = 0.7383; p < 0.001). Conversely, there was no increase in rtPCRU with time post-infection in Group 2 (r2 = 0.142), indicating that hyperthermia inhibited, either directly or indirectly, viral replication. In addition, comparison between the groups showed no difference in WSSV rtPCRU up to 48 h post-infection. After 72 h, shrimp from Group 1 had a significantly higher viral rtPCRU (ANOVA, p < 0.001). We conclude that hyperthermia-associated WSSV rtPCRU reduction could reflect either an increase in the shrimp antiviral response, or a direct negative effect on viral replication, or both.  相似文献   

12.
In vivo bioassay is the predominant method for evaluating the infectivity of materials potentially harboring viable shrimp pathogens and determining the relative susceptibility of shrimp species to viral infections. A controlled bioassay system for white spot syndrome virus (WSSV) and Taura syndrome virus (TSV) was developed utilizing 260 ml tissue culture flasks modified with an air exchange vent. Individual shrimp (1.00 +/- 0.25 g) were placed in separate flasks containing artificial seawater (100 to 150 ml) and held in an incubator at 27 degrees C. After a 48 h acclimation period, shrimp were either injected intramuscularly with viral inoculum or exposed to virus-laden water. Water was exchanged and shrimp were fed a commercial food pellet daily except 24 h post-infection (p.i.). Bioassays were performed with serial dilutions of stock viral preparations and shrimp mortality was recorded for 7 d p.i. Mortality rates of test animals permitted the estimation of the lethal infective doses, LD50 and LD90. The LD50 of the TSV injection preparation was estimated at viral dilutions of 1:7.692 x 10(7) (Trial 1) and 1:6.667 x 10(7) (Trial 2). The LD50s of 2 different WSSV injection preparations were estimated at 1:4.444 x 10(6) and 1:4.505 x 10(6). The LD50 for the TSV waterborne challenge was 1:9916 (Trial 1) and 1:15 710 (Trial 2) at 20 degrees C and 1:1272 at 27 degrees C. A second waterborne TSV inoculum challenge at 27 degrees C produced an LD50 of 1:2857. WSSV doses used in the waterborne challenge only reached 39% mortality, which did not allow for the estimation of effective lethal doses. Bioassay by injection proved to be a more reliable method of estimating viral infectivity compared to waterborne method. The dose-response curves developed can serve as a basis for controlled comparisons of relative levels of viral infectivity of specific tissue preparations and for controlled comparisons of relative susceptibility of shrimp species or stocks to viral pathogens.  相似文献   

13.
Chimeric positive plasmids have been developed to minimize false-positive reactions caused by polymerase chain reaction (PCR) contamination. Here, we developed a rapid method for identifying false-positive results while detecting white spot syndrome virus (WSSV) by nested PCR, using chimeric positive plasmids. The results of PCRs using WSSV diagnostic primer sets showed PCR products of a similar size (WSSV 1st PCR product, 1,447 bp; WSSV 2nd PCR product, 941 bp) using WSSV chimeric plasmids or DNA from shrimp infected with WSSV. The PCR products were digested with DraI for 1 h at 37 °C. The digested chimeric DNA separated into two DNA bands; however, the WSSV-infected shrimp DNA did not separate. Thus, chimeric plasmid DNA may be used as positive control DNA instead of DNA from WSSV-infected shrimp, in order to prevent PCR contamination. Thus, the use of restriction enzyme digestion allowed us to rapidly distinguish between WSSV DNA and WSSV chimeric plasmid DNA.  相似文献   

14.
White spot syndrome virus (WSSV) is one of the major causes of disease in the shrimp culture industry causing enormous economic losses. In this study, we displayed peptides from a cDNA library obtained from the hemolymph of shrimp infected with WSSV, on the surface of phage and screened for the peptides that interacted with the WSSV. One WSSV binding protein (WBP) gene was found to consist of 171 bp that had no matches in the NCBI database. This WBP was shown to bind to the VP26 protein of the WSSV by Western blotting. In addition, WBP reduced the binding of WSSV to shrimp haemocytes from 2.0 × 10(7)copies in the control to 6.0 × 10(2) after treatment with 80 μg of WBP. The survival rate of shrimp after WSSV were mixed with WBP at 80 μg, was 89% and the binding of WBP remained unchanged for at least 24h. Therefore, the results indicate that the WBP can bind to VP26 and inhibit the invasion of WSSV into host cells. This finding may introduce another future way to try to fight this disease in shrimp culture.  相似文献   

15.
A standardized inoculation model was used in 2 separate experiments to gauge the virulence of 3 white spot syndrome virus (WSSV) isolates from Thailand and Vietnam (WSSV Thai-1, WSSV Thai-2, and WSSV Viet) in Penaeus vannamei juveniles. Mortality patterns (Expt 1) were compared and WSSV-positive cells quantified (Expt 2) in tissues following intramuscular inoculation of shrimp with the most (WSSV Thai-1) and least (WSSV Viet) virulent isolates as determined by Expt 1. The results of Expt 1 demonstrated that mortalities began at 36 h post inoculation (hpi) for both Thai isolate groups and at 36 to 60 hpi for the Viet isolate group. Cumulative mortality reached 100% 96 to 240 h later in shrimp challenged with the WSSV Viet isolate compared to shrimp challenged with the Thai isolates. WSSV infection was verified in all groups by indirect immunofluorescence. In Expt 2, WSSV-infected cells were quantified by immunohistochemical analysis of both dead and time-course sampled shrimp. WSSV-positive cells were detected in tissues of Thai-1 inoculated dead and euthanized shrimp from 24 hpi onwards and from 36 hpi onwards in shrimp injected with the Viet isolate. Significantly more infected cells were found in tissues of dead shrimp inoculated with the Thai-1 than in Viet isolate-inoculated shrimp. In these experiments, substantial differences in virulence were demonstrated between the WSSV isolates. The Vietnamese isolate induced a more chronic disease and mortality pattern than was found for the Thai isolates, possibly because it infected fewer cells. This difference was most pronounced in gills.  相似文献   

16.
The in vitro culture of the Eastern oyster parasite Perkinsus marinus has provided a unique opportunity to examine its susceptibility to putative recognition and effector defense mechanisms operative in refractory bivalve species. In this study, we report the effect of supplementing the culture medium with plasma from: (1) uninfected to heavily infected Eastern oysters; (2) oyster species considered to be disease-resistant; and (3) bivalve mollusk species that are naturally exposed to the parasite but show no signs of disease. We also examined in vitro the interaction between hemocytes from Crassostrea virginica and C. gigas and P. marinus trophozoites. Our results revealed a significant decrease (32%) in proliferation of P. marinus in the presence of plasma from heavily infected C. virginica oysters. The inhibitory effects were less pronounced with plasma from moderately infected and uninfected oysters. In contrast, plasma from C. rivularis and C. gigas enhanced P. marinus proliferation. Proliferation was significantly reduced in media supplemented with plasma from Mytilus edulis, Mercenaria mercenaria, and Anadara ovalis. The highest inhibitory activity was apparent in M. edulis, for which 5% plasma-supplemented medium reduced growth by 35% relative to the controls. M. edulis active component(s) was heat-stable, yet pronase-sensitive. The significantly higher uptake of live P. marinus trophozoites by hemocytes from C. virginica, relative to those from C. gigas, suggests a certain level of specificity in the recognition/endocytosis of the parasite by its natural bivalve host species.  相似文献   

17.
This study was to examine the immune response of white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus and WSSV when shrimp received the Sargassum hemiphyllum var. chinense powder and its hot-water extract. Both powder and extract showed activation of prophenoloxidase and generation of superoxide anion in the shrimp in vitro. The haemocyte count, phenoloxidase (PO) activity, respiratory burst, and lysozyme activity were examined after the shrimp were immersed in seawater containing S. hemiphyllum var. chinense powder or its extract at 0, 100, 300, and 500 mg L?1 for 1, 3, and 5 h. These immune parameters of shrimp immersed in 300 and 500 mg L?1 powder, and 100 and 300 mg L?1 extract were significantly higher than those of control shrimp after 3 h, but slightly decreased after 5 h. In another experiment, shrimp immersed in seawater containing the powder or the extract at 0, 100, 300, and 500 mg L?1 after 3 h were challenged with V. alginolyticus at 8 × 10? colony-forming unit (cfu) shrimp?1, or challenged with WSSV at 1 × 10? copies shrimp?1, and then placed in seawater. Survival rate of shrimp immersed in 500 mg L?1 powder was significantly higher than that of control shrimp after 24-120 h in the V. alginolyticus-challenge test, and after 72 h in the WSSV-challenge test, respectively. Survival rate of shrimp immersed in 300 mg L?1 extract was significantly higher than that of control shrimp after 72-120 h in both V. alginolyticus-challenge and WSSV-challenge tests. It was concluded that the shrimp immersed in seawater containing the powder at 500 mg L?1, and the extract at 300 mg L?1 had increased immunity and resistance against V. alginolyticus infection, and the shrimp that received extract at 300 mg L?1 showed resistance against WSSV infection.  相似文献   

18.
White spot syndrome virus (WSSV) is devastating shrimp aquaculture throughout the world, but despite its economic importance no work has been done on modeling epidemics of this pathogen. Therefore we developed a Reed-Frost epidemic model for WSSV in Litopenaeus vannamei. The model includes uninfected susceptible, latently infected, acutely infected, and dead infected shrimp. The source of new infections during an outbreak is considered to be dead infected shrimp. The transmission coefficient, patency coefficient, virulence coefficient, and removal coefficient (disappearance of dead infected shrimp) control the dynamics of the model. In addition, an explicit area parameter is included to help to clarify the distinction between density and absolute shrimp population size. An analysis of the model finds that as number of shrimp, initial dose, transmission coefficient, patency coefficient, virulence coefficient, or removal coefficient changes, the speed of the epidemic changes. The model predicts that a threshold density of susceptible shrimp exists below which an outbreak of WSSV will not occur. Only initial dose, transmission coefficient, removal coefficient, and area coefficient affect the predicted threshold density. Increases in the transmission coefficient reduce the threshold value, whereas increases in the other factors cause the threshold value to increase. Epidemic models may prove useful to the shrimp aquaculture industry by suggesting testable hypotheses, some of which may contribute to the eventual control of WSSV outbreaks.  相似文献   

19.
The present work provides the first evidence of polychaete worms as passive vectors of white spot syndrome virus (WSSV) in the transmission of white spot disease to Penaeus monodon broodstocks. The study was based on live polychaete worms, Marphysa spp., obtained from worm suppliers/worm fishers as well as samples collected from 8 stations on the northern coast of Tamilnadu (India). Tiger shrimp Penaeus monodon broodstock with undeveloped ovaries were experimentally infected with WSSV by feeding with polychaete worms exposed to WSSV. Fifty percent of polychaete worms obtained from worm suppliers were found to be WSSV positive by 2-step PCR, indicating high prevalence of WSSV in the live polychaetes used as broodstock feed by hatcheries in this area. Of 8 stations surveyed, 5 had WSSV positive worms with prevalence ranging from 16.7 to 75%. Polychaetes collected from areas near shrimp farms showed a higher level of contamination. Laboratory challenge experiments confirmed the field observations, and > 60% of worms exposed to WSSV inoculum were proved to be WSSV positive after a 7 d exposure. It was also confirmed that P. monodon broodstock could be infected with WSSV by feeding on WSSV contaminated polychaete worms. Though the present study indicates only a low level infectivity in wild polychaetes, laboratory experiments clearly indicated the possibility of WSSV transfer from the live feed to shrimp broodstock, suggesting that polychaete worms could play a role in the epizootiology of WSSV.  相似文献   

20.
WSSV和IHHNV二重实时荧光PCR检测方法的建立   总被引:6,自引:2,他引:4  
根据基因库中对虾白斑综合征病毒WSSV(AF369029)和传染性皮下及造血器官坏死病毒IHHNV(AF218226)基因序列,设计了WSSV和IHHNV的两对特异性引物和两条用不同荧光基团标记的TaqMan探针。对反应条件和试剂浓度进行优化,建立了能够同时检测WSSV和IHHNV的二重实时荧光PCR方法。该方法特异性好,对WSSV和IHHNV的检测敏感性分别达到2和20个模板拷贝数;此外抗干扰能力强,对WSSV和IHHNV不同模板浓度进行组合,仍可有效地同时检测这二个病毒。对保存的30份经常规PCR检测仅为WSSV或IHHNV阳性的样品进行二重实时荧光PCR检测,结果都为阳性,其中1份为WSSV和IHHNV混合感染。本研究建立的二重实时荧光PCR方法用于WSSV和IHHNV的检测具有特异、敏感、快速、定量等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号