首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An efficient in vitro micropropagation system for Clivia miniata Regel was developed using basal tissues of young petals and young ovaries as explants. For callus induction, explants were incubated on Murashige and Skoog (MS) medium containing either 2.22 μM 6-benzyladenine (BA) and 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) or 4.44 μM BA, 5.37 μM α-naphthaleneacetic acid (NAA), and 9.05 μM 2,4-D. Moreover, callus was induced from young ovaries when these were incubated on MS medium containing 8.88 μM BA, 10.74 μM NAA, and 9.05 or 18.10 μM 2,4-D. Subsequently, callus was transferred to MS medium supplemented with kinetin (KT) and NAA for shoot organogenesis. Frequency of shoot regeneration from petal-derived callus was highest when callus was transferred to medium containing 2.69 μM NAA with either 9.29 or 13.94 μM KT. Shoot regeneration frequency from ovary-derived callus was highest when this callus was transferred to medium containing 9.29 μM KT and 10.74 μM NAA. Overall, different explant types exhibited different organogenic capacities wherein, young petals had higher shoot regeneration frequencies than young ovaries. The highest rooting frequency (98.25 ± 3.04%) was obtained when shoots were transferred to half-strength MS medium without plant growth regulators. Regenerated plantlets were transplanted to soil mix and acclimatized, yielding a 96.80% survival frequency. Only 0.6% of regenerated plantlets exhibited morphological changes. The diploid status (2n = 22) of regenerated plantlets was determined using chromosome counts of root-tips. Moreover, inter-simple sequence repeats were used to assess the genetic fidelity of regenerated plantlets. Overall, regenerated plants shared 90.5–100.0% genetic similarities with mother plants and 89.0–100.0% similarities with each other.  相似文献   

2.
Plantlet regeneration via organogenesis was achieved in callus cultures derived form mature leaves, stems and leaves, petioles and roots of young seedling of Psoralea corylifolia on Murashige and Skoog medium supplemented with 2.5–3.0 mg L-1 BA, 1.0 mg L-1 NAA and 3% (w/v) sucrose. The rate of shoot bud regeneration was positively correlated with the concentration of hormones in the nutrient media. Shoot buds regenerated more readily from juvenile explants (seedling source) as compared to the mature explants. Addition of adenine sulphate (5 mg L-1) to the culture medium increased the growth of shoot buds. Optimum responses were obtained in hypocotyl and leaf explants using NAA in combination with BA, the highest rate of shoot bud regeneration being in hypocotyl explants. Rooting was readily achieved on the differentiated shoots on MS basal media without growth regulators. Regenerated plantlets were successfully established in the greenhouse.  相似文献   

3.
The occurrence of somaclonal variation among regenerants derived through indirect shoot organogenesis from leaf explants of three Dieffenbachia cultivars Camouflage, Camille and Star Bright was evaluated. Three types of somaclonal variants (SV1, SV2, and SV3) were identified from regenerated plants of cv. Camouflage, one type from cv. Camille, but none from cv. Star Bright. The three variants had novel and distinct foliar variegation patterns compared to cv. Camouflage parental plants. Additionally, SV1 was taller with a larger canopy and longer leaves than parental plants and SV2. SV2 and SV3 did not produce basal shoots (single stem) but basal shoot numbers between SV1 and parental plants were similar ranging from three to four. The variant type identified from regenerated cv. Camille had lanceolate leaves compared to the oblong leaves of the parent. This variant type also grew taller and had a larger canopy than parental plants. The rates of somaclonal variation were up to 40.4% among regenerated cv. Camouflage plants and 2.6% for regenerated cv. Camille. The duration of callus culture had no effect on somaclonal variation rates of cv. Camouflage as the rates between plants regenerated from 8 months to 16 months of callus culture were similar. The phenotypes of the identified variants were stable as verified by their progenies after cutting propagation. This study demonstrated the potential for new cultivar development by selecting callus-derived somaclonal variants of Dieffenbachia.  相似文献   

4.
冬凌草离体培养体系的建立及主要次生代谢产物的测定   总被引:2,自引:0,他引:2  
以冬凌草叶片为外植体,研究不同浓度激素组合对冬凌草愈伤组织诱导及植株再生的影响,并对不同外植体(茎、叶)诱导愈伤、芽的分化能力及再生植株内主要次生代谢产物的含量进行了比较研究。结果表明:在MS 2.0 mg/L 6-BA 1.0 mg/L NAA培养基上诱导愈伤组织效果较好;在MS 2.0 mg/L 6-BA的培养基上诱导芽的效果较好;叶片和茎段在愈伤诱导培养基上均能产生大量的愈伤组织,但其再分化能力以茎段最好;再生苗生根培养基以0.3 mg/L IBA最好;以叶为外植体诱导的再生植株中冬凌草甲素、迷迭香酸的含量均高于以茎为外植体诱导的再生植株。  相似文献   

5.
A system was developed for in vitro regeneration of Pennisetum glaucum through organogenesis and somatic embryogenesis. Mature embryo and leaf base explants of Pennisetum glaucum (L) Br. cv HH B60 (Poaceae) were cultured on Murashige and Skoog agar medium supplemented with 11.3 microM of 2,4-D for callus induction. Embryogenic calli were induced within eight weeks. Percentage of callus induction and somatic embryogenesis was significantly higher in mature embryo than leaf base explants. Maximum shoot regeneration was obtained via organogenesis on MS medium supplemented with 4.43 microM of BAP and 4.64 microM of kinetin from the calli of both the explants. The frequency of plant regeneration through somatic embryogenesis was comparatively lower than organogenesis. Regeneration frequency was higher in mature embryo explants than leaf base explants. The shoots regenerated via organogenesis were elongated and rooted efficiently on MS medium supplemented with IBA (0.49 microM). The rooted plantlets were hardened and transferred to soil.  相似文献   

6.
The production of strawberry plants from callus cultures   总被引:1,自引:0,他引:1  
Shoots were regenerated from callus of the commercially important strawberry varieties Bogota, Brighton, Cambridge Favourite, Hapil, Ostara, Rapella, Red Gauntlet and JILA33 which is a promising selection from a current breeding programme.The callus was initiated from explants of petiole or lamina of leaves of micropropagated shoots in vitro or of lamina or peduncle from greenhouse plants. There was more shoot regeneration with callus from lamina than from petiole although with the variety Hapil, regeneration occurred only with callus from peduncle.With seven of the varieties, shoot regeneration occurred on culture media with BAP and 2,4-D whilst with the remaining variety, Cambridge Favourite, it occurred only with medium which contained 1AA- alanine conjugate in place of 2,4-D.Regenerated shoots rooted readily and the plants produced are being studied for somaclonal variation.  相似文献   

7.
A protocol for the regeneration of a large number of plantlets via indirect shoot organogenesis and somatic embryogenesis has been developed from the stem and leaf explants of Justicia gendarussa Burm. f. The callus was efficiently induced from the explants using Murashige and Skoog (MS) medium supplemented with α-Naphthalene acetic acid (NAA) + Benzyl amino purine (BAP) (1.0?+?0.1 mg/l). The highest number of plantlets through indirect shoot organogenesis was obtained when the callus was subcultured to MS medium with BAP + NAA (0.1?+?1.0 mg/l). The maximum number of plantlets via somatic embryos was obtained in the medium with BAP + NAA (1.0?+?0.1 mg/l) for stem derived calli and Kinetin (Kn) + NAA (2.0?+?0.1 mg/l) for leaf derived calli. The in vitro developed shoots were rooted well in half strength MS medium supplemented with 0.5 mg/l of Indole-3-acetic acid (IAA). The in vitro regenerated plantlets were hardened using a mixture of sterile sand:soil:manure (1:1:1). The present study is the first report on the regeneration of plants through somatic embryogenesis from stem and leaf derived calli of J. gendarussa.  相似文献   

8.
Shoot meristem: an ideal explant for Zea mays L. transformation.   总被引:1,自引:0,他引:1  
We report on a rapid high-frequency somatic embryogenesis and plant regeneration protocol for Zea mays. Maize plants were regenerated from complete shoot meristem (3-4 mm) explants via organogenesis and somatic embryogenesis. In organogenesis, the shoot meristems were directly cultured on a high-cytokinin medium comprising 5-10 mg x L(-1) 6-benzylaminopurine (BAP). The number of multiple shoots produced per meristem varied from six to eight Plantlet regeneration through organogenesis resulted in just four weeks. Callus was induced in five days of incubation on an auxin-modified Murashige and Skoog (MS) medium. Prolific callus, with numerous somatic embryos, developed within 3-4 weeks when cultured on an auxin medium containing 5 mg 2,4-dichlorophenoxyacetic acid x L(-1). The number of multiple shoots varied from three to six per callus. Using R23 (Pioneer, Hi-Bred, Johnston, Iowa), the frequency of callus induction was consistently in excess of 80% and plant regeneration ranged between 47 and 64%. All regenerated plantlets survived in the greenhouse and produced normal plants. Each transgenic plant produced leaves, glumes, and anthers that uniformly expressed green fluorescent protein (GFP). The GFP gene segregated in the pollen. Based on this data it is concluded that the transgenics arose from single-cell somatic embryos. The rate of transfer DNA (T-DNA) transfer to complete shoot meristems of Zea mays was high on the auxin medium and was independent of using super-virulent strains of Agrobacterium.  相似文献   

9.
Summary Shoot tips and leaves excised from in vitro shoot cultures of Salvia nemorosa were evaluated for their organogenic capacity under in vitro conditions. The best shoot proliferation from shoot tips was obtained on Murashige and Skoog (MS) medium supplemented with 8.9 μM 6-benzylaminopurine (BA) and 2.9 μM indole-3-acetic acid (IAA). Leaf lamina and petiole explants formed shoots through organogenesis via callus stage and/or directly from explant tissue. The highest values for shoot regeneration were obtained with 0.9 μM BA and 2.9 μM IAA for lamina explants. No shoot organogenesis was obtained on leaf explants cultured on MS medium supplemented with α-naphthaleneacetic acid (NAA). The regenerated shoots rooted the best on MS medium containing 0.6 μM IAA or 0.5 μM NAA. In vitro-propagated plants were transferred to soil with a survival rate of 85% after 3 mo.  相似文献   

10.
以野生黑果枸杞(Lycium ruthenicum Murr.)的无菌苗叶片作为外植体,建立了两条再生体系:一条是经愈伤组织再分化的间接再生体系,一条是不经愈伤组织再分化的直接再生体系。并采用流式细胞术(FCM)及ISSR分子标记技术对两种途径再生苗进行了遗传稳定性分析。结果表明:(1)最佳愈伤组织诱导培养基为MS+1.5 mg·L-12,4-二氯苯氧乙酸(2,4-D),诱导率达100%;最佳分化培养基为MS+1.5 mg·L-16-苄氨基腺嘌呤(6-BA)+0.1 mg·L-1吲哚-3-丁酸(IBA),1 g愈伤组织上的平均不定芽数为39.4个。(2)叶片直接诱导不定芽的最佳培养基为MS+0.5 mg·L-16-BA+0.3 mg·L-1α-萘乙酸(NAA),不定芽诱导率为92.9%,每个外植体上平均不定芽数为18.1个。(3)两条途径再生的不定芽在不含植物生长调节剂的MS培养基上,2周内均可正常生根。(4)FCM结果显示亲本苗及2种再生苗均为二倍体。(5)ISSR分析表明,间接再生苗的平均遗传相似性系数为0.84,直接再生苗的平均遗传相似性系数为0.91,直接再生体系是一种更加快速高效的繁殖方法。  相似文献   

11.
Tagetes minuta is a source of secondary products which are used as pharmaceuticals, pesticides and as flavour components in the food industry. Cotyledons and hypocotyls of T. minuta were cultured on MS medium with combinations of IAA or NAA and BA. Hypocotyl-derived callus developed adventitious shoots which failed to develop further. Cotyledon-derived callus, cultured on medium with IAA, regenerated adventitious shoots which developed into plantlets on MS medium or half-strength MS with 2.85 μM IAA. Cotyledons cultured on medium with 5.71 μM IAA + 44.4 μM BA and transferred to MS medium for shoot growth yielded the highest number of shoots. Nodal segments from developing shoots were micropropagated on half-strength MS medium with 2.58 μM IAA and 95% of plantlets produced adapted successfully to greenhouse conditions. In vitro plants micropropagated from nodes had many shoots whereas plants regenerated from shoot tips had only a single main stem. This difference in morphology was retained after two months growth in a greenhouse. There were no significant differences in leaf and shoot fresh and dry weights among the regenerated plants after two months growth. After six subcultures of cotyledon-derived callus on medium with IAA and BA all explants lost their ability to regenerate except those cultured on medium with 17.23 μM IAA and 44.4 μM BA. The methods of regeneration developed will facilitate selection of T. minuta plants more tolerant of environmental stress, their micropropagation, and the in vitro production of secondary products. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Rapid and efficient in vitro regeneration methods that minimise somaclonal variation are critical for the genetic transformation and mass propagation of commercial varieties. Using a transverse thin cell layer culture system, we have identified some of the developmental and physiological constraints that limit high-frequency regeneration in sugarcane leaf tissue. Tissue polarity and consequently the orientation of the explant in culture, size and developmental phase of explant, and auxin concentration play a significant role in determining the organogenic potential of leaf tissue in culture. Both adventitious shoot production and somatic embryogenesis occurred on the proximal cut surface of the explant, and a regeneration gradient, decreasing gradually from the basal to the distal end, exists in the leaf roll. Importantly, auxin, when added to the culture medium, reduced this spatial developmental constraint, as well as the effect of genotype on plant regeneration. Transverse sections (1-2 mm thick) obtained from young leaf spindle rolls and orienting explants with its distal end facing the medium (directly in contact with medium) are critical for maximum regeneration. Shoot regeneration was observed as early as 3 weeks on MS medium supplemented with alpha-naphthalenencetic acid (NAA) and 6-benzyladenine, while somatic embryogenesis or both adventitious shoot organogenesis and somatic embryogenesis occurred on medium with NAA and chlorophenoxyacetic acid. Twenty shoots or more could be generated from a single transverse section explant. These shoots regenerated roots and successfully established after transplanted to pots. Large numbers of plantlets can be regenerated directly and rapidly using this system. SmartSett, the registered name for this process and the plants produced, will have significant practical applications for the mass propagation of new cultivars and in genetic modification programs. The SmartSett system has already been used commercially to produce substantial numbers of plants of orange rust-resistant and new cultivars in Australia.  相似文献   

13.

The induction and regeneration of protocorm-like bodies (PLBs) is a morphogenetic pathway widely used for orchid micropropagation. As endopolyploidy, i.e., the coexistence of cells with different ploidy levels, is a common feature in orchid tissues, a natural question arises when using somatic tissues as explants for orchid micropropagation: does endopolyploidy in explants affect the cytogenetic stability of regenerated plantlets? To answer this question, Epidendrum fulgens was used as a model plant, and flow cytometry was used to analyze endopolyploidy in pollinia, petals, labella, leaf bases, leaf tips, root tips, and protocorm bases and apices, which were subsequently used as explants for PLB induction and plant regeneration. Ploidy screenings showed contrasting ploidy patterns in samples, endopolyploidy being detected in all tissues, with C-values ranging from 1 to 16C. Protocorm bases and root tips presented the highest proportion of endopolyploidy, while petals and protocorm apices showed the lowest proportion. Flower parts exhibited high oxidation for PLB induction and pollinia failed to produce PLB or callus. The highest induction rate occurred at 10 µM TDZ, with 92%, 22%, and 0.92% for protocorm bases, leaves, and root tips, respectively. Plantlets were more easily regenerated from PLBs induced from protocorm bases than from leaves and roots. Doubled ploidy levels were registered in a proportion of 11% and 33% for PLB-regenerated plantlets obtained from protocorm bases and leaf bases, respectively, which was not directly associated with the proportion of endopolyploid cells or cycle value of explants.

  相似文献   

14.
The effects of the auxins 2,4-D, NAA and IAA either alone or in combination with kinetin or BA were investigated to assess the morphogenetic potential of leaf, root and hypocotyl explants of Digitalis thapsi. Calluses were obtained from the three explants in basal medium without the addition of growth regulators and in leaves, the calluses formed roots. Application of 2,4-D, NAA or BA increased callus formation. The presence of NAA induced root formation and that of BA induced shoot formation via callus interphase. Indole-3-acetic acid alone only induced the generation of roots in the hypocotyl callus. Kinetin was ineffective in all the explants tested. Combinations of NAA with kinetin or BA were more effective in inducing organogenesis in leaf explants. Optimum responses were obtained in hypocotyl and root explants by using IAA in combination with BA, the highest rate of shoot regeneration being observed in hypocotyl explants.Rooting of the differentiated shoots was readily achieved in media without growth regulators. Regenerated plantlets were transferred to soil and grew with a survival rate of 70%.Abbreviations BA benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indoleacetic acid, Kin-kinetin - NAA naphthaleneacetic acid  相似文献   

15.
Factors influencing reliable shoot regeneration from leaf explants of rapeseed (Brassica napus L.) were examined. Addition of AgNO3 to callus induction medium was significantly effective for shoot regeneration in all three genotypes initially tested. When 48 genotypes subsequently were surveyed, a large variation of shoot regenerability was observed, ranging from 100 to 0% in frequency of bud formation and from 7.5 to 0 in the number of buds per explant. A significant correlation (r=0.84) was observed between the frequency of bud formation and the number of buds per explant. The shoot regenerability from leaf explants was not related to that from cotyledonary explants (r=0.28). Histological observations showed that an organized structure developed from calluses produced at vascular bundle tissues after 7 days of culture on callus induction medium, and they developed shoot apical meristems one week after transfer onto shoot induction medium. Regenerated plantlets were obtained 2 months after the initiation of culture and they normally flowered and set seeds. No alterations of morphology or DNA contents were observed in regenerated plants and their S1 progenies.  相似文献   

16.
A regeneration system was developed for oriental lily (Lilium orientalis) based on both leaf and bulb scale. Adventitious shoots were regenerated from leaves of in vitro cultures on Murashige and Skoog medium containing thidiazuron (TDZ) or 6-benzylaminopurine (BA) and naphthaleneacetic acid (NAA). The highest percent regeneration from leaf explants was 74.2%, being observed on medium containing 10.8 μM TDZ and 0.54 μM NAA. The highest mean number of shoots generated was 4.4 and was obtained from bulb scale explants on medium containing 0.54 μM TDZ and 0.54 μM NAA. Adventitious shoots were successfully rooted at rates ranging from 79.2% to 100%. The rooted plantlets survived after acclimatization in the greenhouse. The effect of kanamycin concentration on adventitious shoot regeneration was also evaluated, a value of 100 mg l−1 being suggested as a lethal dose for lily transformation. Eighteen ISSR markers were employed to determine the genetic stability of the regenerated shoots in comparison to their mother plant. Eleven primers in total produced 70 clear and reproducible bands. Genetic similarity indicators among the clonal derivatives and the mother plant ranged from 0.92 to 1.0. All 15 micropropagated progenies and the mother plant could be grouped together in one major cluster with a similarity level of 92%. The somaclonal variation rate across the plantlets was estimated as 4.2%, indicating that direct shoot formation from explant regeneration is a safe method for multiplication of “true-to-type” plants.  相似文献   

17.
Summary Random amplified polymorphic DNA (RAPD) markers were used to verify the clonal fidelity of two micropropagated Drosera species, D. anglica and D. binata, which were regenerated by adventitious budding from leaf explants and shoot tips, respectively. Twenty arbitrary decamers were used to screen 15 randomly selected plantlets of each species. No genetic variation was detected among D. binata regenerants, whereas a 0.08% polymorphism frequency was estimated for D. anglica plantlets. These results indicate that the regeneration of plants through shoot-tip culture is a low-risk method for generating genetic variability, whereas material regenerated through leaf explants requires further verification.  相似文献   

18.
以文心兰切花品种'南茜'无菌苗为材料,取其茎尖通过组织培养诱导形成原球茎和幼苗,观察并分析了原球茎各形态发生阶段的特征及其可溶性糖和蛋白质含量、抗氧化酶(POD、CAT和SOD)活性以及相关同功酶(POD、EST和SOD)的变化.结果显示:(1)文心兰原球茎形态发生可分为外植体期、外植体膨大期、愈伤组织期、原球茎形成期、原球茎成熟期、叶鞘伸展期、顶端腋芽发育期及幼苗期8个阶段.(2)可溶性糖和蛋白质含量均在叶鞘伸展期出现最大峰值;POD活性在外植体膨大期、CAT和SOD活性在愈伤组织期分别出现最大峰值.SOD同工酶的2条酶带在愈伤组织期到幼苗期交替出现;EST同工酶在原球茎形成期有2条特异酶带.研究表明,可溶性糖和蛋白质的含量以及POD、CAT、SOD活性的特异变化与文心兰茎尖脱分化及原球茎再分化的实现密切相关,不同类型的同工酶在原球茎同一发生阶段表现出较大差异,EST同工酶的2条特异酶带可作为原球茎形成的标志.  相似文献   

19.
An efficient somatic embryogenesis and regeneration system was developed for the first time in onion using shoot apex explants. These explants were used to initiate callus in Murashige and Skoog (MS) medium supplemented with 4.0 mg l?1 2,4-dichlorophenoxyacetic acid. The induction frequency of primary callus in this medium was 85.3%. The primary calli were then transferred onto medium supplemented with 2.0 mg l?1 2,4-dichlorophenoxyacetic acid. Following two biweekly subcultures, embryogenic callus formed. Inclusion of a low concentration of 6-benzylaminopurine in the subculture medium promoted the formation of embryogenic callus. The addition of 2.0 mg l?1 glycine, 690 mg l?1 proline, and 1.0 g l?1 casein hydrolysate also increased the frequency of callus induction and embryogenic callus formation. The highest frequency of embryogenic callus (86.9%) and greatest number of somatic embryos (26.3 per callus) were obtained by the further addition of 8.0 mg l?1 silver nitrate. Somatic embryos formed plantlets on regeneration medium supplemented with 1.5 mg l?1 6-benzylaminopurine; addition of 2.0 mg l?1 glycine to the regeneration medium promoted a high frequency of regeneration (78.1%) and plantlet formation (28.7 plants per callus). The regenerated plantlets were transferred to half-strength MS medium supplemented with 1.5 mg l?1 indole-3-butyric acid for root development; the maximum frequency of root formation was 87.7% and the average number of roots was 7.6 per shoot. The regenerated plantlets were successfully grown to maturity after hardening in the soil. This is the first report of somatic embryogenesis and regeneration from shoot apex explants of onion.  相似文献   

20.
W. Tang 《Plant cell reports》2000,19(7):727-732
 The morphogenesis ability of light yellowish globular callus derived from cotyledons of mature zygotic embryos of Panax ginseng was investigated. The optimal media for somatic embryogenesis and shoot organogenesis were MS medium containing 0.5 mg l–1 2,4-dichlorophenoxyacetic acid, 0.1 mg l–1 6-benzyladenine (BA), and 500 mg l–1 lactoalbumin hydrolysate, and SH medium supplemented with 0.5 mg l–1 α-naphthaleneacetic acid, 0.1 mg l–1 BA, and 500 mg l–1casein hydrolysate. The influences of glucose, mannose, fructose, and sorbose in the media on somatic embryogenesis and shoot organogenesis were revealed as differences in the numbers of somatic embryos and adventitious shoots per gram of morphogenic callus. The best regeneration of somatic embryos was obtained on medium containing glucose, with a mean of 8.7 somatic embryos per gram of callus. The best regeneration of shoots was observed on medium containing fructose, with an average of 12.2 adventitious shoots per gram of callus. Of the somatic embryos 95% were converted into regenerated plantlets, and 100% of adventitious shoots rooted to form regenerated plantlets. Regenerated plants were successfully established in soil. Flowering was observed in 5.7% of the regenerated plants derived from shoot organogenesis and in 1.4% of the regenerated plants derived from somatic embryogenesis. Received: 1 December 1998 / Revision received: 13 September 1999 / Accepted: 20 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号