首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. W. Birky  Jr. 《Genetics》1973,74(3):421-432
In wild-type Saccharomyces cerevisiae, erythromycin and certain other antibacterial antibiotics inhibit the formation of respiratory enzymes in mitochondria by inhibiting translation on mitochondrial ribosomes. This paper is concerned with the origin of mutant cells, resistant to erythromycin by virtue of having a homogeneous population of mutant mitochondrial DNA molecules. Such mutant cells are obtained by plating wild-type (sensitive) cells on a nonfermentable substrate plus the antibiotic. Colonies of mutant cells appear first about four days after the time of appearance of established mutant cells; new colonies continue to appear, often at a constant rate, for many days. Application of the Newcombe respreading experiment demonstrates that most or all of the mutant cells which form the resistant colonies on selective medium arise only after exposure of the population to erythromycin. It is suggested that this result is most probably due to intracellular selection for mitochondrial genomes. Resistant mitochondria arising from spontaneous mutation are postulated to be at a selective disadvantage in the absence of erythromycin; reproducing more slowly than wild-type sensitive mitochondria, they cannot easily accumulate in sufficient numbers in a cell to render it resistant as a whole. In the presence of erythromycin, resistant mitochondria can continue to reproduce while sensitive mitochondria cannot, until there is a sufficient number to make the cell resistant, i.e. to permit normal cell growth. The same phenomenon is seen with respect to chloramphenicol resistance. Intracellular selection is considered more likely than direct induction of mutation by the antibiotic, since mutant cells do not accumulate in the presence of erythromycin if the mitochondrial genome is rendered non-essential by growth on glucose or nontranslatable by chloramphenicol. Intra-cellular selection provides a mechanism for direct adaptation at the cell level, compatible with currently acceptable ideas of spontaneous mutation and selection at the organelle level.  相似文献   

2.
Mutations in ribosomal proteins L4 and L22 confer resistance to erythromycin and other macrolide antibiotics in a variety of bacteria. L4 and L22 have elongated loops whose tips converge in the peptide exit tunnel near the macrolide-binding site, and resistance mutations typically affect residues within these loops. Here, we used bacteriophage λ Red-mediated recombination, or “recombineering,” to uncover new L4 and L22 alleles that confer macrolide resistance in Escherichia coli. We randomized residues at the tips of the L4 and L22 loops using recombineered oligonucleotide libraries and selected the mutagenized cells for erythromycin-resistant mutants. These experiments led to the identification of 341 resistance mutations encoding 278 unique L4 and L22 proteins—the overwhelming majority of which are novel. Many resistance mutations were complex, involving multiple missense mutations, in-frame deletions, and insertions. Transfer of L4 and L22 mutations into wild-type cells by phage P1-mediated transduction demonstrated that each allele was sufficient to confer macrolide resistance. Although L4 and L22 mutants are typically resistant to most macrolides, selections carried out on different antibiotics revealed macrolide-specific resistance mutations. L22 Lys90Trp is one such allele that confers resistance to erythromycin but not to tylosin and spiramycin. Purified L22 Lys90Trp ribosomes show reduced erythromycin binding but have the same affinity for tylosin as wild-type ribosomes. Moreover, dimethyl sulfate methylation protection assays demonstrated that L22 Lys90Trp ribosomes bind tylosin more readily than erythromycin in vivo. This work underscores the exceptional functional plasticity of the L4 and L22 proteins and highlights the utility of Red-mediated recombination in targeted genetic selections.  相似文献   

3.
A better understanding of the origin and natural reservoirs of resistance determinants is fundamental to efficiently tackle antibiotic resistance. This paper reports the identification of a novel 5.8 kb erythromycin resistance plasmid, from Bacillus sp. HS24 isolated from the marine sponge Haliclona simulans. pBHS24B has a mosaic structure and carries the erythromycin resistance gene erm(T). This is the first report of an erythromycin resistance plasmid from a sponge associated bacteria and of the Erm(T) determinant in the genus Bacillus.  相似文献   

4.
An anucleate small-protoplast fraction was prepared from a respiratory-competentSaccharomyces cerevisiae strain carrying mitochondrially inherited resistance to erythromycin, and used to transfer mitochondria selectively. Polyethylene glycol and Ca2+ were applied to induce fusion between these small protoplasts and nucleus-containing protoplasts of a respiratory-deficient ρ° mutant derived from an adenine-requiring strain of the same species. The majority of fusion products were haploid and erythromycin resistant, containing the nucleus of the recipient adenine-requiring strain and the mitochondrial genome from the respiratory-competent donor cells. Selective transfer of mitochondria and other cytoplasmic genetic elements also seems possible in a wide variety of fungal and other cells.  相似文献   

5.
Summary Mitochondria from one syngen (or sub-species) of Paramecium aurelia have been introducted into a different syngen by preparing erythromycin-resistant mitochondria from syngen 1 and micro-injecting them into erythromycin-sensitive syngen 7 cells. The recipient sensitive cells were then placed in erythromycin to inhibit the replication of the sensitive mitochondria. Such selected clones contain a syngen 7 nucleus but a mitochondrial genome which is derived from syngen 1 erythromycin-resistant mitochondria.Using this method it has been shown that the mitochondrial enzyme fumarase is not coded by the mitochondrial genome, and by implication, is coded by the nuclear genome. The use of this technique as a method for determining if specific mitochondrial proteins are controlled by nuclear or mitochondrial genes is discussed.  相似文献   

6.
The consequence of excessive use of macrolides is a high occurrence of mechanisms responsible for resistance to these drugs. Of 97 erythromycin-resistant bacterial strains gathered in the Wroc?aw area in Poland, 60% exhibited very high resistance, and those with the inducible MLSB (macrolide-lincosamide-streptogramin B) resistance phenotype predominated. Direct genetic investigation revealed that the erm genes coding for ribosomal methylases are the most frequently occurring erythromycin resistance-determining genes. No genetic resistance determinant was detected in 13% of the erythromycin-resistant strains. The efflux mechanism occurs in strains isolated from the nasopharyngeal cavity twice as often as in those isolated from other material, where the mechanism connected with target site modification predominates. Measurements of radiolabelled antibiotic accumulation inside bacterial cells revealed that in highly resistant strains (MIC > 1024 ??g/ml), an important factor responsible for the resistance is the permeability barrier at the cell wall level. This would be a hitherto unknown mechanism of resistance to erythromycin in Staphylococcus aureus.  相似文献   

7.
Expression of minigenes encoding tetra- or pentapeptides MXLX or MXLXV (E peptides), where X is a nonpolar amino acid, renders cells erythromycin resistant whereas expression of minigenes encoding tripeptide MXL does not. By using a 3A′ reporter gene system beginning with an E-peptide-encoding sequence, we asked whether the codons UGG and GGG, which are known to promote peptidyl-tRNA drop-off at early positions in mRNA, would result in a phenotype of erythromycin resistance if located after this sequence. We find that UGG or GGG, at either position +4 or +5, without a following stop codon, is associated with an erythromycin resistance phenotype upon gene induction. Our results suggest that, while a stop codon at +4 gives a tripeptide product (MIL) and erythromycin sensitivity, UGG or GGG codons at the same position give a tetrapeptide product (MILW or MILG) and phenotype of erythromycin resistance. Thus, the drop-off event on GGG or UGG codons occurs after incorporation of the corresponding amino acid into the growing peptide chain. Drop-off gives rise to a peptidyl-tRNA where the peptide moiety functionally mimics a minigene peptide product of the type previously associated with erythromycin resistance. Several genes in Escherichia coli fulfill the requirements of high mRNA expression and an E-peptide sequence followed by UGG or GGG at position +4 or +5 and should potentially be able to give an erythromycin resistance phenotype.  相似文献   

8.
Microinjection of isolated mitochondria into oocytes is an effective method to introduce exogenous mitochondrial DNA. In nuclear transfer procedures in which donor cell mitochondria are transferred with nuclei into recipient oocytes; development and survival rates of reconstructed embryos may be also directly influenced by mitochondrial viability. Mitochondrial viability is dramatically affected by cell culture conditions, such as serum starvation prior to nuclear transfer. This study was conducted to examine the influence of exogenous mitochondria using bovine and mouse parthenogenetic models. Mitochondria were isolated from primary cells at confluency and after serum starvation. The bovine oocytes injected with serum-starved mitochondria showed lower rates of morula and blastocyst formation when compared to uninjected controls (P < 0.05). However, the developmental rates between non-starved mitochondria injection and controls were not different (P > 0.05). The murine oocytes injected with serum-starved mitochondria showed lower rates of development when compared with non-starved mitochondria and controls (P < 0.01). In contrast to mitochondria transfer, ooplasm transfer did not affect murine or bovine parthenogenetic development (P > 0.05). The overall results showed that injection of serum-starved mitochondria influenced parthenogenetic development of both bovine and murine oocytes. Our results illustrate that the somatic mitochondria introduction accompanying nuclei has the capacity to affect reconstructed embryo development; particularly when using serum-starved cells as donor cells.  相似文献   

9.
The growth of HeLa cells in Hepes-buffered medium was significantly more sensitive to the inhibitory effects of erythromycin than in medium buffered by the more conventional bicarbonate-CO2 system. Since growth inhibition by erythromycin became more pronounced as the pH of the medium was increased the difference in erythromycin sensitivity between the Hepes-buffered medium vs. the bicarbonate-CO2-buffered medium is most likely due to pH effects. The relative growth sensitivity to erythromycin of ERY2301, an erythromycin-resistant mutant of HeLa, was also affected by elevated pH of the growth medium. However, ERY2301 cells were able to proliferate to a greater extent in the presence of erythromycin than HeLa cells grown under the same conditions. The selective growth advantage of ERY2301 (in the presence of erythromycin) is best seen in medium of pH 7.4, or in the Hepes-buffered medium. In vitro protein synthesis by intact mitochondria isolated from HeLa cells was relatively insensitive to erythromycin inhibition at pH 7.4 and 7.6, but at high pH values was inhibited approx. 50%. Although the erythromycin sensitivity of ERY2301 mitochondrial protein synthesis was also affected by increasing the pH, the incorporation of [3H]leucine was more resistant to erythromycin than that observed for HeLa mitochondria over the pH range tested. Increasing the concentration of erythromycin at a given pH did not result in a further increase in the inhibition of either HeLa or ERY2301 mitochondrial protein synthesis. When the mitochondrial membranes were disrupted by Triton X-100, erythromycin inhibition of HeLa mitochondrial protein synthesis was pH dependent and, at the lower pH values tested, greater inhibition was observed as the erythromycin concentration was increased. ERY2301 mitochondrial protein synthesis under the same conditions displayed a high level of erythromycin-resistant activity independent of both pH and erythromycin concentration. It is suggested that, as has been proposed for bacterial systems, only the non-protonated molecule of erythromycin is effective in inhibiting mitochondrial protein synthesis. The ability of erythromycin to permeate the mitochondrial membranes and the plasma membres may also be facilitated by a higher pH.  相似文献   

10.
The crude mitochondrial fraction from pea cotyledons can, from days 1 to 7 of germination, be separated into three fractions by sucrose density gradient centrifugation. When seeds were grown in water (control) or cycloheximide (120 micrograms per milliliter of medium) for 4 days, the originally different populations of mitochondria acquired a uniform density and separated together in band 1 (density, 1.205 grams per milliliter). The oxidative and phosphorylative activities of mitochondria obtained from 4-day-old control and 4-day-old cycloheximide-treated pea seeds were the same. However, mitochondria from pea seeds that were grown in d-threo-chloramphenicol (1.5 milligrams per milliliter of medium) or erythromycin (0.5 milligram per milliliter of medium) for 4 days separate into three bands (fully developed mitochondria in the top band [band 1] and partially developed mitochondria in the lower two bands [bands 2 and 3]). Separation patterns and oxidative and phosphorylative activities were the same for mitochondria separated from 4-day-old cotyledons treated with d-threo-chloramphenicol or erythromycin and from 1-day-old cotyledons grown in water. This indicated that these inhibitors prevented the partially developed mitochondria originally in bands 2 and 3 from developing further. In contrast, cycloheximide did not seem to interfere with the mitochondrial structural development. These results along with those obtained from the experiments on the effects of d-threo-chloramphenicol, erthromycin, and cycloheximide on 14C-leucine incorporation into mitochondrial membrane proteins suggest that the increase in mitochondrial activity during germination may be a result of structural development (membrane synthesis) in pre-existing mitochondria.  相似文献   

11.
There is a major reduction in respiratory competence, and inhibitionof growth, several hours after the addition of erythromycin or chloramphenicol to Saccharomyces cerevisiae growing in medium containing a non-fermentable carbon source. Spectrographic evidence is presented for a loss of cytochrome oxidase as a consequence of the antibiotic treatment. This loss is prevented by cyanide or oligomycin. When glucose is added, however, the loss occurs irrespective of the presence of the respiratory inhibitors. Cycloheximide does not affect respiratory competence or cause loss of cytochrome oxidase, and it prevents the loss elicited by erythromycin if both compounds are added together. However, if cycloheximide is added some time after the addition of erythromycin, it fails to block the response to the latter drug. The results cannot be accounted for on the basis of the segregation of a finite number of mitochondria into an increasing number of progeny cells but, rather, suggest that the mitochondria are modified during growth in chloramphenicol or erythromycin.  相似文献   

12.
The contribution of mitochondrial proteins in the repair of UV-induced lethal and cytoplasmic genetic damages was studied in dark liquid held exponential and stationary phase yeast cells. This was performed by using the specific inhibitors, erythromycin (ER) and chloramphenicol (CAP). It was shown that mitochondrial proteins are involved in the recovery of survival of UV-treated exponential phase cells, but not in the recovery of stationary phase cells. Mitochondrial proteins are partly implicated in the mechanisms leading to the restoration of the ϱ+ genotype in UV-irradiated dark liquid held exponential phase cells. Here again, in statonary phase cells, mitochondrial enzymes do not seem to participate in the negative liquid holding (NLH) processes for the ϱ induction, as shown by inhibiting mitochondrial protein synthesis or both mitochondrial and nuclear protein synthesis.When cells are grown in glycerol, the response after dark liquid holding of UV-treated cells in the different growth stages are similar to that found for glucose-grown cells. In other words, the fate of cytoplasmic genetic damage, in particular, is not correlated with the repressedor depressed state of the mitochondria.  相似文献   

13.
Erythromycin resistance in Campylobacter coli from meat animals is frequently encountered and could represent a substantial barrier to antibiotic treatment of human infections. Erythromycin resistance in this organism has been associated with a point mutation (A2075G) in the 23S rRNA gene. However, the mechanisms responsible for possible dissemination of erythromycin resistance in C. coli remain poorly understood. In this study, we investigated transformation-mediated acquisition of erythromycin resistance by genotypically diverse C. coli strains from turkeys and swine, with total genomic DNA from erythromycin-resistant C. coli of either turkey or swine origin used as a donor. Overall, transformation to erythromycin resistance was significantly more frequent in C. coli strains from turkeys than in swine-derived strains (P < 0.01). The frequency of transformation to erythromycin resistance was 10−5 to 10−6 for turkey-derived strains but 10−7 or less for C. coli from swine. Transformants harbored the point mutation A2075G in the 23S rRNA gene, as did the erythromycin-resistant strains used as DNA donors. Erythromycin resistance was stable in transformants following serial transfers in the absence of the antibiotic, and most transformants had high MICs (>256 μg/ml), as did the C. coli donor strains. In contrast to the results obtained with transformation, spontaneous mutants had relatively low erythromycin MICs (32 to 64 μg/ml) and lacked the A2075G mutation in the 23S rRNA gene. These findings suggest that natural transformation has the potential to contribute to the dissemination of high-level resistance to erythromycin among C. coli strains colonizing meat animals.  相似文献   

14.
Bacterial contamination of fuel ethanol fermentations by lactic acid bacteria (LAB) can have crippling effects on bioethanol production. Producers have had success controlling bacterial growth through prophylactic addition of antibiotics to fermentors, yet concerns have arisen about antibiotic resistance among the LAB. Here, we report on mechanisms used by 32 LAB isolates from eight different US bioethanol facilities to persist under conditions of antibiotic stress. Minimum inhibitory concentration assays with penicillin, erythromycin, and virginiamycin revealed broad resistance to each of the antibiotics as well as high levels of resistance to individual antibiotics. Phenotypic assays revealed that antibiotic inactivation mechanisms contributed to the high levels of individual resistances among the isolates, especially to erythromycin and virginiamycin, yet none of the isolates appeared to use a β-lactamase. Biofilm formation was noted among the majority of the isolates and may contribute to persistence under low levels of antibiotics. Nearly all of the isolates carried at least one canonical antibiotic resistance gene and many carried more than one. The erythromycin ribosomal methyltransferase (erm) gene class was found in 19 of 32 isolates, yet a number of these isolates exhibit little to no resistance to erythromycin. The erm genes were present in 15 isolates that encoded more than one antibiotic resistance mechanism, suggestive of potential genetic linkages.  相似文献   

15.
The changes in distribution and density of mitochondria and the level of mitochondrial RNA during Drosophila oogenesis were studied simultaneously in the 3 cell types ie follicle cells, nurse cells and oocyte, making up the egg chamber. Up to stage 6, mitochondrial density (mitochondrial and cellular areas ratio) was elevated and increased similarly in both follicle and nurse cells. Thereafter the mitochondrial density of follicle cells continued to increase and that of the nurse cells declined markedly while the nurse cell mitochondria assembled in dense groups and decreased in size. This can be related to a transfer of nurse cell cytoplasm, including mitochondria, to the oocyte. In the oocyte from stage 4 to stage 7 we observed a significant decrease of the mitochondrial density due to the absence of mitochondrial biogenesis. Then the cytoplasm transfer caused mitochondrial density to increase up to the level found in the nurse cells at the end of oogenesis. The mature oocyte contains enough mitochondria to supply 15 000 somatic cells. Our results strongly suggest that the variations in size, distribution and density of mitochondria relate to the particular energetic requirements of the different cell types during the first half of oogenesis. Later they relate to the developmental requirements of the nurse cells and the oocyte, in particular the storage of mitochondria in the oocyte. The level of mitochondrial RNA was studied through in situ hybridization. Throughout oogenesis the follicle and nurse cell RNA evolved similarly. Up to stage 9, there was no change in RNA densities in these cells, suggesting a correlation with the cell volume and/or the nuclear DNA content. Thereafter the cellular RNA concentration declined rapidly. In the oocyte the RNA concentration evolved differently especially from stage 10 to the end, the RNA density being stabilized. This can be related to the injection of nurse cell mitochondria, followed by their assignment to reserve status. Our results suggest that the mt RNA density is under extramitochondrial control mechanisms.  相似文献   

16.
Acanthamoeba castellanii (line OS4) differentiates into a cyst when treated with mitochondrial inhibitors berenil, ethidium bromide, erythromycin, and chloramphenicol. The process is a function of cell density at the time of inhibition: Early log phase cells yield 0–20% cysts, whereas mid-log phase cells yield up to 55, 65, or 95% cysts when treated with chloramphenicol or erythromycin, ethidium bromide, or berenil, respectively. Medium from encysting mid-log phase cells contains an encystment enhancing activity (EEA) which, when transferred to low-density early log phase cultures, causes high levels of encystment. EEA has a nominal molecular weight of between 1000 and 10,000. It is resistant to nucleases, proteases, amylase, boiling, and 1 N NaOH, 25°C, but is inactivated by snake venom phosphodiesterase, autoclaving, and acidic or harsher alkaline treatments. Other lines, OS1 and OS5, which do not encyst well at any cell density in response to the four inhibitors or to EEA, nevertheless produce EEAs to which OS4 can respond. OS4 has been adapted to growth in a chemically defined medium; when starved for glucose and acetate, the cells produce a phosphodiesterase-sensitive EEA. A similar activity can be obtained from mitochondria treated with berenil in vitro. Several lines of evidence suggest that EEAs from the various sources are the same. We propose that they may be of mitochondrial origin and may act as developmental effectors under conditions unfavorable for cell growth.  相似文献   

17.
This paper describes investigations into the effects of ethidium bromide on the mitochondrial genomes of a number of different petite mutants derived from one respiratory competent strain of Saccharomyces cerevisiae. It is shown that the mutagenic effects of ethidium bromide on petite mutants occur by a similar mechanism to that previously reported for the action of this dye on grande cells. The consequences of ethidium bromide action in both cases are inhibition of the replication of mitochondrial DNA, fragmentation of pre-existing mitochondrial DNA, and the induction, often in high frequency, of cells devoid of mitochondrial genetic information (ρ ° cells).The susceptibility of the mitochondrial genomes to these effects of ethidium bromide varies in the different clones studied. The inhibition of mitochondrial DNA replication requires higher concentrations of ethidium bromide in petite cells than in the parent grande strain. Furthermore, the susceptibility of mitochondrial DNA replication to inhibition by ethidium bromide varies in different petite clones.It is found that during ethidium bromide treatment of the suppressive petite clones, the over-all suppressiveness of the cultures is reduced in parallel with the reduction in the over-all cellular levels of mitochondrial DNA. Furthermore, ethidium bromide treatment of petite clones carrying mitochondrial erythromycin resistance genes (ρ?ERr) leads to the elimination of these genes from the cultures. The rates of elimination of these genes are different in two ρ?ERr clones, and in both the gene elimination rate is slower than in the parent ρ+ ERr strain. It is proposed that the rate of elimination of erythromycin resistance genes by ethidium bromide is related to the absolute number of copies of these genes in different cell types. In general, the more copies of the gene in the starting cells, the slower is the rate of elimination by ethidium bromide. These concepts lead us to suggest that petite mutants provide a system for the biological purification of particular regions of yeast mitochondrial DNA and of particular relevance is the possible purification of erythromycin resistance genes.  相似文献   

18.
Transferable lincosamide-macrolide resistance in Bacteroides.   总被引:27,自引:0,他引:27  
R A Welch  K R Jones  F L Macrina 《Plasmid》1979,2(2):261-268
Inter- and intraspecies transfer of resistance to clindamycin, lincomycin, and erythromycin in the strict anaerobe, Bacteroides, is described. This lincosamide-macrolide resistance was found to be specified by a 27 × 106-dalton plasmid, designated pBF4, originally identified in a clinical Bacteroides fragilis isolate. Transfer of this plasmid to a strain of Bacteroides uniformis was demonstrated to occur by a deoxyribonuclease insensitive process which required cell-to-cell contact. Chloroform sterilized donor cell supernatants or filtrates of donor cells did not mediate resistance transfer. Transfer of the antibiotic resistance and pBF4 plasmid deoxyribonucleic acid (DNA) were always coincident. Drug resistant progeny recovered from such matings were able to transfer the pBF4 plasmid and its associated resistance markers to a suitable B.fragilis recipient strain. Compared to interspecies matings, resistance transfer was 100- to 1000-fold greater between isogenic donor and recipient strains, suggesting the possibility of a host controlled restriction-modification system.  相似文献   

19.
Erythromycin resistance in mouse L cells   总被引:3,自引:0,他引:3  
The sensitivity of mouse cell lines in culture to the macrolide antibiotic, erythromycin stearate, was investigated. Both resistant and sensitive lines were found. Experiments indicated that in sensitive cells erythromycin stearate inhibits mitochondrial protein synthesis. Mutants resistant to erythromycin stearate were selected from the line LM(TK-), and these are also less sensitive to other macrolide antibiotics such as carbomycin and spiramycin. Attempts to transfer the erythromycin resistance of either the mutants or naturally resistant lines by fusion of cytoplasts with sensitive cells were unsuccessful, and it is concluded that resistance to erythromycin stearate is controlled by nuclear genetic factors.  相似文献   

20.
Summary Janus green B was found to be a specific inhibitor of mitochondrial function in yeast. This is consistent with the Janus green specificity in supravital staining of mitochondria.A mutant of S. cerevisiae resistant to Janus green B was isolated. It shows cross resistance to oligomycin, ethidium bromide and a weak resistance to chloramphenicol. The mutant was found to be sensitive to cycloheximide and erythromycin.Genetic analysis of this mutant showed that mitochondrial genes are not involved in the determination of Janus green resistance. Tetrad analysis suggested that two or more nuclear genes are concerned, but many unusual genetic features suggestive of the involvement of a cytoplasmic element remain to be explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号