首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
过量施用氮肥造成的环境问题日益严重,氮肥合理使用已成为人们研究的热点.本文研究了西南玉米两种主要套作模式下氮肥运筹对玉米氮素利用和土壤硝态氮残留的影响.结果表明:连续分带轮作种植玉/豆模式后,玉米收获期植株中的氮素积累较玉/薯模式平均提高了6.1%,氮收获指数增加了5.4%,最终使氮肥利用效率提高4.3%,氮素同化量提高了15.1%,氮肥偏生产力提高了22.6%;玉米收获后硝态氮淋溶损失减少,60~120 cm土层中硝态氮残留玉/豆模式较玉/薯模式降低了10.3%,而0~60 cm土层中平均提高了12.9%,有利于培肥地力,两年产量平均较玉/薯模式高1249 kg·hm-2,增产22%;增加施氮量提高了植株氮素积累,降低了氮肥利用率,显著提高了表层土壤中硝态氮的累积,60~100 cm土层中硝态氮的累积量在0~270 kg·hm-2处理间差异不显著,继续增加施氮量会显著增加土壤硝态氮的淋溶;氮肥后移显著提高了土壤0~60 cm土层硝态氮的积累.两种模式下施氮量和底追比对玉米氮素吸收和硝态氮残留的影响结果不一致,玉/豆模式以施氮180~270 kg·hm-2、按底肥∶拔节肥∶穗肥=3∶2∶5的施肥方式有利于提高玉米植株后期氮素积累、氮收获指数和氮肥利用效率,减少了氮肥损失,两年最高产量平均可达7757 kg·hm-2;而玉/薯模式在180 kg·hm-2、按底肥∶穗肥=5∶5的施肥方式下,氮素积累利用及产量均优于其他处理,两年平均产量为6572 kg·hm-2,可实现两种模式下玉米高产、高效、安全的氮肥管理体系.
  相似文献   

2.
This study examined whether ‘Risnod2’ and ‘Risnod27’ non-nodulating mutants of pea (Pisum sativum L.) provided with increasing concentrations of nitrate could achieve a growth and nitrogen accumulation comparable to their parental N2-fixing cv. Finale. In the cv. Finale, nodule number, nodule dry mass accumulation, total C2H2-reducing activity of nodulated roots (TAR) and estimated N2 fixation were considerably inhibited at 5.0 and 10.0 mM root medium NO3 concentrations. In contrast a 0.63 mM level stimulated both the nodule dry mass and TAR. The cv. Finale N2-fixing plants grown on 0 to 2.5 mM NO3 levels had higher shoot N concentrations than the Nod mutants, but within the 5.0 to 10.0 mM levels the Nod mutants approached or even overtopped the N concentration of the cv. Finale plants. Compared with a high positive correlation found in the Nod mutants, shoot N concentration in the cv. Finale was negatively correlated with the root medium NO3 concentration. The pattern of nitrogen content in shoot dry mass was very similar to that seen in the shoot dry mass accumulation. The Nod mutants grown on the 5.0 and/or 10.0 mM NO3 level had plant dry mass, shoot nitrogen concentration, shoot nitrogen content, and root/shoot dry mass ratio comparable with those of the nodulating cv. Finale grown on the same nitrate levels.  相似文献   

3.
Alan Scaife 《Plant and Soil》1989,114(1):139-141
A simple simulation model is described to account for the rates at which plants take up nitrate and reduce it to protein. It is based on the pump and leak principle, with the pump working at a constant rate per unit sap volume provided that there is an adequate concentration of nitrate at the root surface. The rate of leakage is assumed to be proportional to the concentration difference between the inside and the outside of the plant. Nitrogen is removed from the plant nitrate pool (the buffer) at a constant fraction of the photosynthesis rate. When applied to data for the diurnal variation in nitrate uptake by ryegrass, the model predicts an uptake pattern similar to that actually observed, with a time lag of about 5 hours between photosynthesis and uptake.  相似文献   

4.
The nitrate reductase (NR) activity extracted from Suaeda maritima is reduced by half in the presence of 0.1 M sodium chloride. This effect of sodi  相似文献   

5.
The possibility to induce nitrate reductase (NR; EC 1.6.6.2) in needles of Scots pine ( Pinus sylvestris L.) seedlings was studied. The NR activity was measured by an in vivo assay. Although increased NR activities were found in the roots after application of NO3, no such increase could be detected in the needles. Detached seedlings placed in NO3 solution showed increasing NR activities with increasing NO3 concentrations. Exposure of seedlings to NOx (70–80 ppb NO2 and 8–12ppb NO) resulted in an increase of the NR activity from 10–20 nmol NO2 (g fresh weight)−1 h−1 to about 400 nmol NO2 (g fresh weight)−1 h−1. This level was reached after 2–4 days of exposure, thereafter the NR activity decreased to about 200 nmol NO2 (g fresh weight)−1 h−1. Analyses of free amino acids showed low concentrations of arginine and glutamine in NOx-fumigated seedlings compared to corresponding controls.  相似文献   

6.
Amendments with glucose significantly reduced the amount of nitrate leached from a sandy soil amended with nitrate. The decrease was most likely caused by immobilisation of the nitrate into microbial cells. Populations of ciliates and flagellates and amoebae, but not nematodes, increased 7–14 days following glucose amendments. Mineralisation of the immobilised nitrate occurred during this period. Some of the mineralised nitrogen appeared to be available to ryegrass plants only if the roots exploited most of the soil during the period of maximum predator activity. After 28 days, 44% of the organic N remaining in the soil after leaching was taken up by the plants. The difference developed over the last 2 weeks when amoebal populations were large.  相似文献   

7.
A pump/leak/buffer model of nitrate in plants is presented in the form of a differential equation, based on the computer simulation model of Scaife (1989). The equation is solved, and the long-term behaviour of the rate of nitrate uptake of the plants described.  相似文献   

8.
  • A reduction in chemical N-based fertillizer was investigated in Citrus plants. As N and water uptake are connected, the relationship between the physiological response to reductions in N was studied in relation to N metabolism and water.
  • We examined the response of new and mature leaves and roots of Citrus macrophylla, grown under controlled conditions, and given different concentrations of N: 16, 8 or 4 mM. Differences in growth and development were determined for biochemical (mineral content, photosynthetic pigments, proteins and nitrate and nitrite reductase activity), physiological (photosynthesis and transpiration), and molecular (relative expression of nitrate transporters and aquaporins) parameters.
  • Only plants given 4 mM N showed a reduction in growth. Although there were changes in NR activity, protein synthesis, and chlorophyll content in both 8 and 4 mM N plants that were highly related to aquaporin and nitrate transporter expression.
  • The results revealed new findings on the relationship between aquaporins and nitrate transporters in new leaves of Citrus, suggesting a mechanism for ensuring growth under low N when new tissues are being formed.
  相似文献   

9.
Abstract The relations between growth and internal nitrogen concentrations were investigated in nonnodulated Pisum sativum L. cv. Marma and Lemna gibba L. grown at relative rates of nitrate-N additions (RA) varying from 0.03 to 0.27 d 1(Pisum) and 0.05 to 0.40 d 1 (Lemna). At RA≤0.21 d 1(Pisum) and ≤0.30 d 1 (Lemna), the relative growth rate (RGR) correlated well with RA whereas higher RA was not met by any further increawse in growth rate. The tissue nitrogen concentrations at growth-limiting RA increased linearly with RGR. The slope of these lines indicate a maximum nitrogen productivity (amount of biomass formed per unit nitrogen and time) of 14.4 g DW g 1 Nd 1 for Pisum and 15.9 g DW g 1 N d 1 for Lemna. Extrapolation of the plots to RGR=0 yielded intercepts of 10–15 mg N g?1 DW for Pisum tissue, whereas for Lemna the intercepts were closer to the origin than for Pisum. These intercepts formally define a fraction of the total plant nitrogen that appears not to be active in production of new biomass, her termed ‘non-growth nitrogen’. The partitioning of nitrogen as well as biomass to the roots increased at low RA, and is discussed in relation to activity of shoots and roots, respectively.  相似文献   

10.
13NO3 influx into the roots and in vivo nitrate reductase activity (NRA) in the roots and leaves have been measured in trembling aspen (Populus tremuloides Michx.) and lodgepole pine (Pinus contorta Dougl.) seedlings after exposure to either 0·1 or 1·5 mol m–3 NO3 for varying periods up to 20 d. Both NO3 influx and NRA were inducible in these species and, in trembling aspen, peak induction of nitrate influx and NRA were achieved within 12 h, compared to 2–4 d for influx and 4–12 d for NRA in lodgepole pine. In trembling aspen, ≈ 30% of the total 13N absorbed during a 10 min influx period followed by 2 min of desorption was translocated to the shoot. In lodgepole pine, by contrast, translocation of 13N to the shoot was undetectable during the same time period. Root NRA as well as NO3 influx from 0·1 mol m–3 NO3 were substantially higher in trembling aspen than in lodgepole pine at all stages of NO3 exposure, i.e. during the uninduced, the peak induction, and steady-state stages. In order to examine whether the lower rates of NO3 influx and NRA were related to proportionately fewer young (unsuberized) roots in lodgepole pine, we determined these parameters in young and old (suberized) roots of this species separately. Induction of influx and NRA were initially greater in young roots but at steady-state there were only minor differences between the young and the old roots. However, even the elevated initial rates in the young roots of lodgepole pine were substantially lower than those of aspen. In pine, influx at 1·5 mol m–3 NO3 was ~ 6-fold higher than at 0·1 mol m–3 NO3 and appeared to be mostly via a constitutive system. By contrast, in aspen, steady-state influxes at 0·1 and 1·5 mol m–3 were not significantly different, being similar to the rate attained by pine at only the higher [NO3]. In aspen, leaf NRA was ~ 2-fold higher than that of roots. In lodgepole pine NRA of the needles was below the detection limit. These results show that trembling aspen seedlings are better adapted for NO3 acquisition and utilization than lodgepole pine seedlings.  相似文献   

11.
近年来人为活动导致的大气硝酸盐不断增加,危害人体健康和生态环境。厘清大气硝酸盐的来源及形成机理至关重要。多氧稳定同位素技术是一种强有力的示踪手段,能够有效指示大气硝酸盐生成的氧化路径,在气溶胶、水体、土壤、森林、古气候研究中得到了广泛应用。本文总结了大气硝酸盐氧同位素异常(Δ17O)的测定方法(热裂解法、反硝化细菌法、化学法),探讨了Δ17O的产生原因,并围绕硝酸盐的形成过程阐明硝酸盐Δ17O的示踪机制,综述了Δ17O在大气化学反应机制研究中的应用。在此基础上,本文提出目前Δ17O研究的不足并对未来需要开展的研究进行了展望。  相似文献   

12.
Tritordeum is a fertile amphiploid derived from durum wheat (Triticum turgidum L. conv. durum) × a wild barley (Hordeum chilense Roem. et Schultz.). The organic nitrogen content of tritordeum grain (34 mg g-1 DW) was significantly higher than that of its wheat parent (25 mg g-1 DW). Leaf and root nitrogen content became higher in tritordeum than in wheat after four weeks of growth, independently of the nitrogen source (either NO3 - or NH4 +). Under NO3 - nutrition, tritordeum generally exhibited higher levels of nitrate reductase (NR) activity than wheat. Nitrite reductase (NiR) levels were however lower in tritordeum than in its wheat parent. In NH4 +-grown plants, both NR and NiR activities progressively decreased in the two species, becoming imperceptible after 3 to 5 weeks of growth. Results indicate that, in addition to a higher rate of NO3 - reduction, other physiological factors must be responsible for the greater accumulation of organic nitrogen in tritordeum grain.  相似文献   

13.
BACKGROUND AND AIMS: Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. METHODS: Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. RESULTS: Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. CONCLUSIONS: V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.  相似文献   

14.
以河北山前平原区秸秆还田条件下小麦-玉米轮作体系为研究对象,设置农民习惯、高产高效、再高产和再高产高效4个模式,通过定位试验探讨各栽培模式对3个轮作周期作物产量、土壤硝态氮累积量及氮平衡的影响.结果表明: 小麦、玉米产量均以再高产模式最高,高产高效和再高产高效模式次之,均显著高于农民习惯模式;小麦季和玉米季氮肥利用效率(PFP)均以高产高效模式最高,显著高于其他模式;0~400 cm土体硝态氮累积量在 768.4~1133.3 kg·hm-2之间,其中80%~85%累积在根下90~400 cm土层;4种模式的土壤硝态氮均有明显向下淋移现象,120~150 cm和270~330 cm处均出现了累积峰,以270~330 cm土层硝态氮累积量最大;高产高效模式的土壤硝态氮含量整体水平均低于其他模式,浓度基本维持在30 mg·kg-1以下,在一定程度上能有效缓解环境压力;冬小麦季0~90 cm土体氮素盈余量均小于夏玉米季,并以高产高效模式的氮素表观损失量最低,显著低于其他模式.综合考虑产量、氮肥利用效率、硝态氮累积和氮平衡,以高产高效模式表现最优,但还有一定的提升空间.  相似文献   

15.
采用密闭室法和离子交换树脂袋法,研究了科尔沁沙质草地不同处理(水添加、氮添加、水氮添加)氧挥发的损失量和硝态氮的淋溶量.结果表明:氮添加处理和水氮添加处理显著促进了氨挥发(P<0.05),最大氨挥发速率显著高于对照;氮添加处理和水氮添加处理的氨挥发累积量为111.80和148.64 mg·m-2,分别占氮添加量的1.1%和1.5%;水氮同时添加条件下,氨挥发累计量显著高于氨添加处理(P<0.05),水添加处理和对照相比没有显著差异(P>0.05);水氮添加处理显著增加了土壤深度20 cm处的硝态氮淋溶量(P<0.05),氮添加处理和水氮添加处理的硝态氮淋溶量分别是对照的1.96和4.22倍,然而在土壤深度40 cm处各处理硝态氮淋溶量差异不显著(P>0.05);可见,氮添加和水氮添加均促进了土壤的氧挥发,对硝态氮的淋溶没有显著影响.  相似文献   

16.
以霍格兰营养液为培养基质,采用15N同位素示踪技术,研究不同浓度15NO3--N (0、2.5、5、10和20 mmol·L-1,分别以N0、N1、N2、N3和N4表示)对平邑甜茶幼苗生长、光合作用、15N吸收、利用及分配的影响.结果表明:与其他处理相比,N2处理幼苗叶绿素含量、叶面积及各器官干质量最大.叶片净光合速率(Pn)随15NO3--N浓度的增加显著增大,但15NO3--N浓度超过N2处理后Pn略有下降.处理20 d时,N2处理幼苗根系活力最大,根系长度、根系总表面积和根尖数也显著高于其他处理.各处理间15N分配率差异显著,N2处理幼苗各器官间15N分配率最均衡,15N利用率也较高;随15NO3--N浓度增加,各处理幼苗全氮量和15N吸收量呈先升高后降低的趋势,且在N2处理时最大,分别为103.77和21.57 mg.处理12 d后,叶片硝酸还原酶(NR)活性以N2处理最高,N4处理最低,至第16天时,N4处理较N2处理降低了84.9%.因此,15NO3--N供应过低抑制幼苗光合作用及氮素吸收,15NO3--N供应过高则抑制幼苗体内硝态氮同化及根系生长,均不利于苹果幼苗生长及氮素营养吸收利用,适量供氮有利于苹果幼苗的生长、光合作用的提高,以及氮素的吸收、利用和分配.  相似文献   

17.
To study aspects of the ecology of grassland species, in a comparative experiment, plants ofP. lanceolata andP. major were grown in pots in a greenhouse, and subjected to a gradual nitrate depletion for several weeks. Control plants were weekly supplied with nitrate. Growth, leaf appearance and disappearance, concentrations of cations and inorganic anions, soluble and insoluble reduced nitrogen concentrations,in vivo nitrate reductase activity (NRA) and the concentration of non-structural carbohydrates in several parts of the plants were followed. Depletion of nitrate caused a reduction of shoot growth, both in biomass and number of leaves. Withering of leaves increased. Accumulation of root dry matter was little (P. lanceolata), or not (P. major) affected. The concentration of reduced nitrogen in all tissues also decreased, both that of the soluble and that of the insoluble fraction. As a result, nitrogen use efficiency (NUE, g dry matter produced per mmol N incorporated) increased by nitrate depletion. NRA was higher in the roots than in the leaves, and decreased with increasing nitrate depletion. In control plants, nitrate became also limiting. This resulted in decreasing nitrate concentrations in leaves and roots. In the leaves, the decrease in nitrate concentration was preceded by a decrease in NRA. The decrease of the nitrate concentration was parallelled by an increase in the concentration of soluble sugar. No major differences in the response towards nitrate depletion were observed between the two species. Grassland Species Research Group, publication no. 129  相似文献   

18.
19.
The uptake of 15N-labelled alanine, ammonium and nitrate was studied in ectomycorrhizal morphotypes of intact Pinus sylvestris seedlings. PCR-RFLP analysis of the ITS-region of fungal rDNA was used to identify the morphotypes. Seedlings were grown in forest soil collected at an experimental site in southern Sweden. The treatments compared were a control, N fertilisation (600 kg N ha-1 as urea), sulfur application (1200 kg S ha-1) and lime application (6000 kg CaCO3 ha-1). The forest, which had been dominated by Picea abies, was clear-cut two years before the forest soil was sampled. Soil was also collected from an adjacent standing forest. The aim of the present study was to detect changes in the ectomycorrhizal communities in forest soils and relate these changes to the functional parameter of uptake of nitrogen from organic (alanine and protein) and inorganic (ammonium and nitrate) sources.Liming resulted in the detection of a morphotype not found in other samples, and one morphotype was only found in samples from the standing forest (the fungi in these two morphotypes could not be identified). All mycorrhizal root tips showed a higher 15N concentration after exposure to different nitrogen forms than non-mycorrhizal long roots. Uptake of15 N from a labelled solution of alanine or ammonium was higher (about tenfold) than uptake from a 15N-labelled solution of nitrate. Uptake of ammonium and alanine varied between 0.2 and 0.5 mg N g-1 h-1 and between 0.1 and 0.33 mg N g-1 h-1, respectively, among the different morphotypes.In seedlings grown in the control soil and in soil from standing forest, alanine and ammonium were taken up to a similar degree from a supply solution by all morphotypes, whereas ammonium uptake was higher than alanine uptake in seedlings grown in lime-treated soil (about twofold) and, to a lesser extent, in the nitrogen- and sulfur-treated soils. The higher ammonium uptake by morphotypes from the limed soil was confirmed in pure culture studies. In cases where ammonium was used as the N source, an isolate of the S. variegatus morphotype collected in the limed soil produced more biomass compared with isolates of S. variegatus collected in nitrogen- or sulphur-treated soil. One isolate of a silvery white morphotype produced about equal amounts of biomass on alanine and ammonium, whereas all S. variegatus isolated performed better with ammonium as their N source. Based on the results it is hypothesised that liming can induce a shift in the ectomycorrhizal community, favouring individuals that mainly utilise inorganic nitrogen over those that primarily utilise organic nitrogen.  相似文献   

20.
Nitrogen assimilation was studied in the deciduous, perennial climber Clematis vitalba. When solely supplied with NO3 in a hydroponic system, growth and N-assimilation characteristics were similar to those reported for a range of other species. When solely supplied with NH4+, however, nitrate reductase (NR) activity dramatically increased in shoot tissue, and particularly leaf tissue, to up to three times the maximum level achieved in NO3 supplied plants. NO3 was not detected in plant material that had been solely supplied with NH4+, there was no NO3 contamination of the hydroponic system, and the NH4+-induced activity did not occur in tobacco or barley grown under similar conditions. Western Blot analysis revealed that the induction of NR activity, either by NO3 or NH4+, was matched by NR and nitrite reductase protein synthesis, but this was not the case for the ammonium assimilation enzyme glutamine synthetase. Exposure of leaf disks to N revealed that NO3 assimilation was induced in leaves directly by NO3 and NH4+ but not glutamine. Our results suggest that the NH4+-induced potential for NO3 assimilation occurs when externally sourced NH4+ is assimilated in the absence of any NO3 assimilation. These data show that the potential for nitrate assimilation in C. vitalba is induced by a nitrogenous compound in the absence of its substrate and suggest that NO3 assimilation in C. vitalba may have a significant role beyond the supply of reduced N for growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号