首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developmental patterns of embryonic heart rate were measured non-invasively in two procellariiform seabirds, the Laysan albatross (Diomedea immutabilis) and wedge-tailed shearwater (Puffinus pacificus), during prepipping and after pipping. The O2 pulse, defined as the O2 consumption per single heart beat, was calculated using the previously reported O2 consumption for these species. The embryonic heart rate of the albatross was not changed by internal pipping (initial pipping event in this species), remained unchanged during the prolonged internal pipping period and tended to increase, although insignificantly, with the initiation of external pipping (second pipping event). Heart rate in the shearwater remained unchanged during the late prepipping stages, did not change with external pipping (initial pipping event), but increased during the prolonged internal pipping period (second pipping event) and reached a maximum on the last day of incubation. The developmental pattern of heart rate in the shearwater was very similar to that reported previously for the brown noddy, a member of the order Charadriiformes but with the same pipping sequence. Developmental patterns of embryonic O2 pulse were also different between the two procellariiform seabirds. However, those of the shearwater and the noddy were similar. The sequence of access to atmospheric O2 during development and hatching may be an important factor determining the developmental patterns of embryonic heart rate and O2 pulse.Abbreviations A-VO2 difference, arteriovenous oxygen difference - BCG ballistocardiogram of egg - CV coefficient of variation - EP external pipping - HR heart rate - IP internal pipping - mass mass of freshly laid egg - SD standard deviation  相似文献   

2.
The developmental patterns of mean heart rate (MHR) and instantaneous heart rate (IHR) were investigated in embryos and chicks of altricial Corvuscorone and Corvus macrorhynchos. The MHR of embryos increased linearly with time from 250 beats · min−1 at mid-incubation to 290 beats · min−1 in hatchlings. MHR during the pipping period was maximal, but only marginally higher than in hatchlings. MHR was stable at about 290–300 beats · min−1 during the 1st week after hatching. Spontaneous heart rate (HR) decelerations and accelerations were found in embryos and chicks, disturbing the baseline HR with increasing frequency during development. However, the IHR accelerations developed later and were less frequent than in precocial species. IHR and body temperature decreased during mild cold exposure (23–25 °C) and IHR accelerations were reduced in nestlings during the 1st week. We suggest that the development of parasympathetic control of HR in crows occurs at 60% of incubation, similar to precocial embryos, but sympathetic control may be delayed and suppressed in contrast to precocial embryos. Accepted: 3 March 1999  相似文献   

3.
We measured oxygen consumption ( ) and carbon dioxide emission ( ) rates, air-cell gas partial pressures of oxygen (PAO2) and CO2 (PACO2), eggshell water vapour conductance and energy content of the ostrich (Struthio camelus) egg, ‘true hatchling’ and residual yolk, and calculated RQ and total oxygen consumption ( ) for ostrich eggs incubated at 36.5°C and 25% relative humidity. The pattern showed a drop of approximately 5% before internal pipping. just prior to internal pipping agrees with allometric calculations. Despite the higher incubation temperature compared to other studies, and the resultant shorter incubation duration (42 days), (91.7 l kg−1) was similar to a previously reported value. RQ values during the second half of incubation (approx. 0.68) were lower than expected for lipid catabolism. Prior to internal pipping, PAO2 and PACO2 were 98 and 48.3 torr (13.1 and 6.4 kPa), respectively. The growth pattern of the ostrich embryo is different from the typical precocial pattern, showing a time delay in the rapid growth phase. As a result, the lowered overall energy expenditure for tissue maintenance, as compared to other species, is reflected in the low yolk utilization and high residual yolk fraction of the whole hatchling dry mass. These could also result from the relatively short incubation period of the ostrich egg, thereby evading desiccation by excess water loss.  相似文献   

4.
Heart rate (HR) in avian embryos developing inside an eggshell has been measured by various means while maintaining adequate gas exchange through the eggshell. This is an important requirement in order to avoid adverse effects of impeding gas exchange on the cardiac rhythms of developing embryos. The present report is a review of our ontogenetic study on embryonic HR, which was measured with fulfillment of the above requirement and also hatchling HR measured non-invasively. Firstly, we reviewed measurements of daily changes (developmental patterns) in embryonic mean heart rate (MHR), which were determined from a short-term measurement of HR once a day, in 34 species of altricial and precocial birds. The allometric relationship between the MHR during pipping in altricial birds and their fresh egg masses was the same as that between the MHR at 80% of incubation duration and fresh egg masses in pre-cocial birds. Secondly, we presented the developmental patterns of MHR in chick embryos and hatchlings, which were determined from long-term, continuous measurement of HR before, during and after hatching. The ultradian and circadian rhythms of HR were clearly shown in embryos and hatchlings, respectively. Thirdly, we summarized instantaneous HR fluctuations: HR variability and HR irregularities, in chick embryos and hatchlings. The distinctive patterns were shown in pre-pipped and pipped embryos and newly hatched chicks, individually, which were partly related to autonomic nervous functions and physiological functions.  相似文献   

5.
Mean heart rate (MHR) was determined during incubation and in hatchlings of 14 altricial avian species to investigate (1) if there is a common developmental pattern of heart rate in altricial embryos and (2) if heart rate changes during incubation are correlated with changes in embryonic growth rate. On the basis of normalized incubation MHR increased approximately linearly in 12 of 14 species from as early as 30-40% of incubation to that of pipped embryos. The MHR of hatchlings was equal to or higher than that of pipped embryos in seven species. Passerine embryos and hatchlings maintained higher MHR in comparison to parrots of similar egg mass, which may reflect phylogenetic differences in development. Embryonic MHR increased at a higher rate while embryonic growth rates were highest during the first 40% of incubation in tit, budgerigar and crow embryos than during subsequent development when relative growth rates decreased. MHR became independent of yolk-free wet mass at a smaller fraction of hatchling mass in budgerigar and crow than in the tit, suggesting that MHR is more likely to increase continuously after 40% of incubation in small altricial species than larger species.  相似文献   

6.
Carbon dioxide (CO2) is always maintained at ambient levels by ventilation in commercial egg incubators. However, elevated CO2 levels during the early and late periods have been reported to improve the quality of chicks and shorten the hatch window. This study investigated the effect of precise CO2 supplementation during the early and late periods of incubation on embryo growth and incubation performance by developing and using a CO2 supplementation system to increase the CO2 level in an experimental egg incubator. The CO2 level was maintained at 1% in the early period (from the beginning to the 10th day of incubation, E0E10) and in the late period (from internal pipping (IP) to the 21st day of incubation (E21), IP–E21) in an incubator for the treatment group, whereas the CO2 level was maintained at the ambient level in the other incubators for the control group. A comparative assessment of embryonic development, hatching characteristics, and hormone and nutrient levels was conducted for each trial. The experiment comprised three trials, with 300 Jing Hong No. 1 breeding eggs in each incubator. The elevated CO2 treatment significantly shortened the chick hatching time (H0) by 4 h (P < 0.05) and the hatch window by 3 h (P < 0.05) without affecting hatchability, chick weight at 1 d of age, brooding period, or quality score. At external pipping (EP), the heart weight, intestinal weight, relative intestinal weight, and relative heart weight in the treatment group were significantly higher than those in the control group (P < 0.05). In addition, the embryonic intestine, relative intestine, and relative heart weights of the newly hatched chicks in the treatment group were significantly higher than those in the control group (P < 0.05) at H0. The treatment significantly increased the concentration of corticosterone in the embryonic plasma during the period from IP to EP (P < 0.05), promoted the secretion of triiodothyronine and tetraiodothyronine (P < 0.05), and increased the glycogen content of the embryonic liver on E21 (P < 0.05). This result indicates that elevated CO2 (1%) during the early and late periods of incubation accelerated embryonic organ development and shortened the chick hatching time and hatch window without affecting hatchability or hatchling quality, which can be explained by the synergistic functions of the secretion of plasma corticosterone and thyroid hormones and the accumulation of liver glycogen between the early and late periods of incubation.  相似文献   

7.
Oxygen consumption, air cell gases, hematology, blood gases and pH of Puna teal (Anas versicolor puna) embryos were measured at the altitude at which the eggs were laid (4150 m) in the Peruvian Andes. In contrast to the metabolic depression described by other studies on avian embryos incubated above 3700 m, O2 consumption of Puna teal embryos was higher than even that of some lowland avian embryos at equivalent body masses. Air cell O2 tensions dropped from about 80 toor in eggs with small embryos to about 45 toor in eggs containing a 14-g embryo; simultaneously air cell CO2 tension rose from virtually negligible amounts to around 26 torr. Arterial and venous O2 tensions (32–38 and 10–12 toor, respectively, in 12- to 14-g embryos) were lower than described previously in similarly-sized lowland wild avian embryos or chicken embryos incubated in shells with restricted gas exchange. The difference between air cell and arterial O2 tensions dropped significantly during incubation to a minimum of 11 torr, the lowest value recorded in any avian egg. Blood pH (mean 7.49) did not vary significantly during incubation. Hemoglobin concentration and hematocrits rose steadily throughout incubation to 11.5 g · 100 ml-1 and 39.9%, respectively, in 14-g embryos.Abbreviations PO2 partial pressure gradient of O2 - BM body mass - D diffusion coefficient - G gas conductance (cm3·s-1·torr-1) - conductance to water vapor - IP internal pipping of embryos - P ACO2 partial pressure of carbon dioxide in air cell - P AO2 partial pressure of oxygen in air cell - P aCO2 partial pressure of carbon dioxide in arterial blood - P aCO2 partial pressure of oxygen in arteries - P H barometric pressure (torr) - PCO2 partial pressure of carbon dioxide - P IO2 partial pressure in ambiant air - PO2 partial pressure of oxygen - P VCO2 venous carbon dioxide partial pressure - P VO2 mixed venous oxygen partial pressure - SE standard error - VO 2 oxygen consumption  相似文献   

8.
Eggs and embryos of the African elapid genus Aspidelaps were tested for phenotypic plasticity in response to incubation temperature and hygration. Fifty-two fertile eggs, representing both A. lubricus and A. scutatus, were utilized over two successive breeding seasons. Interspecific difference in hatchling snout-vent length (SVL) was significant, but the two species were equivalent in initial egg mass and hatchling mass. Hatchling mass was unaffected by temperature and incubation substrate moisture, but was positively correlated to initial egg mass. In A. lubricus, SVL was influenced by an incubation temperature-substrate moisture interaction. In A. scutatus, SVL was unaffected by the experimental variables. The secondary sex ratio among hatchlings was significantly female skewed under mesic incubation conditions, and male skewed under xeric conditions. One explanation for the biased sex ratios is differential mortality at wet and dry conditions. The results indicate the two species of Aspidelaps are uniform with regard to female investment in egg and hatchling biomass, yet they partition resources differently during embryogenesis to yield morphologically distinct neonates. © 1996 Wiley-Liss, Inc.  相似文献   

9.
The heat increment of feeding (HIF), a transient postprandial increase in metabolic rate, is the energy cost of processing a meal. We measured HIF in house wren chicks (Troglodytes aedon) ranging in mass from 1.6 to 10.3 g. This mass range (age 2–10 days) spanned a transition from blind, naked, ectothermic chicks through alert, endothermic birds with nearly complete feathering. We fed chicks crickets (2.7–10% of chick body mass) and determined HIF from continuous measurements of oxygen consumption rate (O2) before and after meals. At warm ambient temperatures (T a) of 33–36 °C, the magnitude of HIF (in ml O2 or joules) was linearly related to meal mass and was not affected by chick mass. HIF accounted for 6.3% of ingested energy, which is within the range of results for other carnivorous vertebrates. The duration of HIF was inversely related to chick mass; 10-g chicks processed a standard meal approximately twice as fast as 2-g chicks. HIF duration increased with increasing meal mass. The peak O2 during HIF, expressed as the factorial increase above resting metabolism, was independent of body mass and meal mass. In large, endothermic chicks ( > 8 g), HIF substituted for thermoregulatory heat production at low T a. Accepted: 11 December 1996  相似文献   

10.
Incubation temperature and the amount of water taken up by eggs from the substrate during incubation affects hatchling size and morphology in many oviparous reptiles. The Brisbane river turtle Emydura signata lays hard-shelled eggs and hatchling mass was unaffected by the amount of water gained or lost during incubation. Constant temperature incubation of eggs at 24 °C, 26 °C, 28 °C and 31 °C had no effect on hatchling mass, yolk-free hatchling mass, residual yolk mass, carapace length, carapace width, plastron length or plastron width. However, hatchlings incubated at 26 °C and 28 °C had wider heads than hatchlings incubated at 24 °C and 31 °C. Incubation period varied inversely with incubation temperature, while the rate of increase in oxygen consumption during the first part of incubation and the peak rate of oxygen consumption varied directly with incubation temperature. The total amount of oxygen consumed during development and hatchling production cost was significantly greater at 24 °C than at 26 °C, 28 °C and 31 °C. Hatchling mass and dimensions and total embryonic energy expenditure was directly proportional to initial egg mass. Accepted: 18 March 1998  相似文献   

11.
  • 1.1. In this study, we review reported values for fluxes of water vapor and oxygen across the pores in avian eggshells, pore numbers per egg, the changes in O2 and CO2 tensions in the air space during development, and the absolute humidity of bird nests in various climates.
  • 2.2. With egg mass from 1 to 1500 g as the independent variable we use regression analysis of daily water vapor loss, O2 uptake at the preinternal pipping (PIP) stage of development, and pore numbers to show that O2, CO2 and water vapor fluxes per pore are 68, 50 and 49 μl/day, respectively, independent of egg mass. When these fluxes are divided by the invariant pore conductance previously established by Ar and Rahn (Respir. Physiol. 61, 1–20, 1985), predicted air cell O2 and CO2 tensions of ca 100 and 40 Torr just prior to the initiation of lung function are obtained, values which agree well with mean measured gas tensions in 25 species.
  • 3.3. Our analysis complements the model proposed by Ar and Rahn, in which pores serve as basic respiratory units for most bird eggs. In this model, pore number per egg is matched to O2 demand at the PIP stage of development to produce the commonly observed air cell gas tensions. Average, total diffusive water loss in 117 species is 15%, SD 2.6, of initial egg mass. To achieve this value requires the proper combination of pore number, egg temperature and nest water vapor tension; the latter is also a function of nest construction and incubation behavior. Examples of nest absolute humidity are cited for 20 species which incubate in diverse climates with ambient absolute humidities from 4 to 22 Torr. Exceptions to the model are seen in eggs incubated under environmental conditions which are unusual in temperature, humidity, or altitude.
  相似文献   

12.
Body mass of Brünnich's guillemots Uria lomvia breeding at Coats Island, Canada, was measured during incubation and chick‐rearing in 1988–2001. In most years, mass increased during incubation and fell after hatching, leveling off by the time chicks were 18 d old, close to the age at which chicks departed. Mass during incubation increased with age up to about 12 yr, but the mass of birds brooding chicks was not related to age. The trend towards increasing mass during incubation was mainly a consequence of mass increases of young breeders as older birds maintained a constant mass. The variation in adult mass with age during incubation seems likely to reflect age‐related variation in foraging ability, but the loss of mass after hatching, being greater for older birds, appears best explained as a response to the demands of provisioning chicks, with older birds transferring their accumulated reserves to their chicks via higher provisioning rates.  相似文献   

13.

Phenotypic flexibility in avian metabolic rates and body composition have been well-studied in high-latitude species, which typically increase basal metabolic rate (BMR) and summit metabolism (Msum) when acclimatized to winter conditions. Patterns of seasonal metabolic acclimatization are more variable in lower-latitude birds that experience milder winters, with fewer studies investigating adjustments in avian organ and muscle masses in the context of metabolic flexibility in these regions. We quantified seasonal variation (summer vs winter) in the masses of organs and muscles frequently associated with changes in BMR (gizzard, intestines and liver) and Msum (heart and pectoral muscles), in white-browed sparrow-weavers (Plocepasser mahali). We also measured pectoral muscle thickness using a portable ultrasound system to determine whether we could non-lethally estimate muscle size. A concurrent study measured seasonal changes in BMR and Msum in the same population of sparrow-weavers, but different individuals. There was no seasonal variation in the dry masses of the gizzard, intestines or liver of sparrow-weavers, and during the same period, BMR did not vary seasonally. We found significantly higher heart (~ 18% higher) and pectoral muscle (~ 9% higher) dry mass during winter, although ultrasound measurements did not detect seasonal changes in pectoral muscle size. Despite winter increases in pectoral muscle mass, Msum was ~ 26% lower in winter compared to summer. To the best of our knowledge, this is the first study to report an increase in avian pectoral muscle mass but a concomitant decrease in thermogenic capacity.

  相似文献   

14.
Geographic variation in offspring size can be viewed as an adaptive response to local environmental conditions, but the causes of such variation remain unclear. Here, we compared the size and composition of eggs laid by female Chinese skinks (Plestiodon chinensis) from six geographically distinct populations in southeastern China to evaluate geographic variation in hatchling size. We also incubated eggs from these six populations at three constant temperatures (24, 28 and 32 °C) to evaluate the combined effects of incubation temperature and population source on hatchling size. Egg mass and composition varied among populations, and interpopulation differences in yolk dry mass and energy content were still evident after accounting for egg mass. Population mean egg mass and thus hatchling mass were greater in the colder localities. Females from three northern populations increased offspring size by laying larger eggs relative to their own size. Females from an inland population in Rongjiang could increase offspring size by investing relatively more dry materials and thus more energy into individual eggs without enlarging the size of their eggs. The degree of embryonic development at oviposition was almost the same across the six populations, so was the rate of embryonic development and thus incubation length at any given temperature. Both incubation temperature and population source affected hatchling traits examined, but the relative importance of these two factors varied between traits. Our data show that in P. chinensis hatchling traits reflecting overall body size (body mass, snout‐vent length and tail length) are more profoundly affected by population source. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 283–296.  相似文献   

15.
Oxygen consumption rates were measured in chicks (0–7 days of age), and in non-brooding and brooding adults. Brooded chicks maintained a constant oxygen consumption rate at a chamber ambient temperature of 10–35°C (0–5 days of age: 2.95ml O2·g-1·h-1 and 6–17 days of age: 5.80 ml O2·g-1·h-1) while unbrooded chicks increased oxygen consumption rate at ambient temperature below 30°C to double the brooded oxygen consumption rate at 25 and 15°C for chicks < 5 days of age and>5 days of age, respectively. The massspecific oxygen consumption rate of breeding male and females (non-brooding) were significantly elevated within the thermoneutral zone thermal neutral zone (28–35°C) in comparison to non-breeding adults. Below the thermal neutral zone, oxygen consumption rate was not significantly different. The elevation in oxygen consumption rate of breeding quail was not correlated with the presence of broodpatches, which developed only in females, but is a seasonal adjustment in metabolism. Male and females that actively brooded one to five chicks had significantly higher oxygen consumption rate than non-brooding quail at ambient temperature below 30°C. Brooding oxygen consumption rate was constant during day and night, indicating a temporary suppression of the circadian rhythm of metabolism. Brooding oxygen consumption rate increased significantly with brood number, but neither adult body mass nor adult sex were significant factors in the relationship between brooding oxygen consumption rate and ambient temperature. The proportion of daylight hours that chicks were brooded by parents was negatively correlated with ambient temperature. After chicks were 5 days old brooding time was reduced but brooding oxygen consumption rate was unchanged. Heat from the brooding parent appeared to originate mainly from the apteria under the wings and legs rather than the broodpatch. The parental heat contribution to chick temperature regulation below the chicks' thermal neutral zone is achieved by increasing parental thermal conductance by a feedback control similar to that suggested for the control of egg temperature via the brood-patch. It is concluded that the brooding period is an energetic burden to parent quail, and the magnitude of the cost increases directly with brood number and inversely with ambient temperature during this period. The oxygen consumption rate of brooding parents was 5.80–6.90 ml O2·g-1·h-1 (ambient temperature 10–15°C) at night and up to 5.10 ml O2·g-1·h-1 (ambient temperature 18°C) during the day, which are 100 and 40% higher than non-brooding birds, respectively.Abbreviations bm body mass - SMR standard metabolic rate - T a ambient temperature - T b body temperature - I/O2 oxygen consumption rate - C wet wet thermal conductance - TNZ thermal neutral zone - ANOVA analysis of variance - ANCOVA analysis of covariance  相似文献   

16.
Eggs of two small Australian lizards, Lampropholis guichenoti and Bassiana duperreyi, were incubated to hatching at 25 °C and 30 °C. Incubation periods were significantly longer at 25 °C in both species, and temperature had a greater effect on the incubation period of B. duperreyi (41.0 days at 25 °C; 23.1 days at 30 °C) than L. guichenoti (40.1 days at 25 °C; 27.7 days at 30 °C). Patterns of oxygen consumption were similar in both species at both temperatures, being sigmoidal in shape with a fall in the rate of oxygen consumption just prior to hatching. The higher incubation temperature resulted in higher peak and higher pre-hatch rates of oxygen consumption in both species. Total amount of oxygen consumed during incubation was independent of temperature in B. duperreyi, in which approximately 50 ml oxygen was consumed at both temperatures, but eggs of L. guichenoti incubated at 30 °C consumed significantly more (32.6 ml) than eggs incubated at 25 °C (28.5 ml). Hatchling mass was unaffected by either incubation temperature or the amount of water absorbed by eggs during incubation in both species. The energetic production cost of hatchling B. duperreyi (3.52 kJ · g−1) was independent of incubation temperature, whereas in L. guichenoti the production cost was greater at 30 °C (4.00 kJ · g−1) than at 25 °C (3.47 kJ · g−1). Snout-vent lengths and mass of hatchlings were unaffected by incubation temperature in both species, but hatchling B. duperreyi incubated at 30 °C had longer tails (29.3 mm) than those from eggs incubated at 25 °C (26.2 mm). These results indicate that incubation temperature can affect the quality of hatchling lizards in terms of embryonic energy consumption and hatchling morphology. Accepted: 27 January 2000  相似文献   

17.
Previously, we reported that thermal conditioning at 39°C on days 13–17 of incubation of broiler eggs enabled thermotolerance during post-hatch growth (J. Therm. Biol. 28 (2003) 133). Tolerance to a temperature of 30°C was accompanied by changes in thyroid hormones and metabolic parameters. In the current study, we determined the mechanism of epigenetic heat adaptation during embryonic age by measuring blood physiological parameters that may be associated with the ultimate effects of thermal conditioning. Hatching eggs from Ross breeders were subjected to heat treatment of 39°C at days 13, 14, 15, 16 and 17 of incubation for 2 h per day. Control eggs were incubated at 37.6°C. Samples of eggs were withdrawn on each day of thermal conditioning and at internal pipping (IP) to obtain blood samples from embryos. The remaining eggs were weighed at day 18 and transferred to hatchers. The timing of IP, external pipping (EP) and hatching were monitored every 2 h. At hatch, chicks were weighed and hatchability was determined. Blood samples were obtained from samples of day-old chicks. T3, T4, corticosterone, pCO2, pO2 levels were determined in the blood. Blood pH was measured and T3/T4 ratios were calculated. Heat conditioning significantly increased corticosterone and pO2 levels and blood pH but depressed pCO2 at day 14. These were followed by a significant depression of T4 level on day 15. Remarkably, at day 16, all these parameters were back to normal as in the control embryos. Hatching was delayed by thermal conditioning probably as a result of the depressed corticosterone levels at IP. Hatchability was also lower in the heat-treated group but 1-day old chick weights were comparable to those of the controls. The result suggests that epigenetic thermal conditioning involves changes in these physiological parameters and probably serve as a method for epigenetic temperature adaptation since the same mechanisms are employed for coping with heat during post-embryonic growth. It also suggests that days 14–15 may be the optimal and most sensitive timing for evoking this mechanism during embryonic development. The adverse effects of heat treatment observed in this study may have been due to the continued exposure to heat until day 17. Fine-tuning thermal conditioning to days 14–15 only may improve these production parameters.  相似文献   

18.
Summary The effect of two different incubation media, sand and vermiculite, on the water exchange of eggs and the mass of hatchlings of snapping turtles (Chelydra serpentina) was assessed. The eggs were incubated fully buried in either sand or vermiculite at 30 °C and egg mass was measured periodically throughout incubation. The wet and dry masses of each hatchling and its residual yolk were measured at the end of incubation. The media had similar water potentials () but their thermal conductivities differed 2.8-fold. The eggs experienced a net water gain during incubation. The rates of water uptake between treatments were not statistically different throught the first 36 days of incubation but were statistically different thereafter, with eggs incubating in sand taking up water at about twice the rate of eggs incubating in vermiculite. Hatchling masses were similar to both media but hatchling water contents were significantly different. Hatchlings incubated in sand had lower water contents than hatchlings incubated in vermiculite even though the eggs in sand took up more water. Hatchling mass was correlated with egg water exchange for eggs incubated in vermiculite but not for eggs incubated in sand. The difference in egg water exchange in the two media appears to be attributable to differences in the thermal conductivity of the media. The presence of such a thermal effect supports the hypothesis that the eggs exchanged water with the media as water vapor. Egg water exchange was limited by the shell and shell membranes and not by the media. The shell and shell membranes appear to present an effective barrier to water uptake.Abbreviations M H 2 O water flux (cm3·day-1) - L p hydraulic conductivity (cm·day-1·kPa-1) - A shell area (cm2) - A p pore area (cm2) - l shell thickness (cm) - r pore radius (cm) - viscosity (kPa·day) - P EH 2 O egg water potential (kPa) - P AH 2 O medium water potential (kPa) - G H 2 O water vapor conductance (cm3·day-1·kPa-1) - D H 2 O diffusion coefficient (cm2·day-1) - R gas constant (cm3·kPa·K-1·cm-3) - T temperature (K) - P EH 2 O egg water vapor pressure (kPa) - P AH 2 O medium water vapor pressure (kPa) - d egg diameter - K soil hydraulic conductivity (cm2·day-1·kPa-1) - DHM hatchling dry mass - WHM hatchiling wet mass - WU water uptake - IM initial egg mass  相似文献   

19.
The rate of oxygen consumption throughout embryonic development is used to indirectly determine the ‘cost’ of development, which includes both differentiation and growth. This cost is affected by temperature and the duration of incubation in anamniote fish and amphibian embryos. The influences of temperature on embryonic development rate, respiration rate and energetics were investigated in the Australian lungfish, Neoceratodus forsteri, and compared with published data. Developmental stage and oxygen consumption rate were measured until hatching, upon which wet and dry gut-free masses were determined. A measure of the cost of development, the total oxygen required to produce 1 mg of embryonic dry tissue, increased as temperature decreased. The relationship between the oxygen cost of development (C, ml mg−1) and dry hatchling mass (M, mg) in fishes and amphibians is described by C = 0.30 M0.22 ± 0.13 (95% CI), r 2 = 0.52. The scaling exponent indicates that the cost of embryonic development increases disproportionally with increasing hatchling mass. At 15 and 20°C, N. forsteri cost of development is significantly lower than the regression mean for all species, and at 25°C is lower than the allometrically scaled data set. Unexpectedly, incubation of N. forsteri is long, despite natural development under relatively warm conditions, and may be related to a large genome size. The low cost of development may be associated with construction of a rather sluggish fish with a low capacity for aerobic metabolism. The metabolic rate is lower in N. forsteri hatchlings than in any other fishes or amphibians at the same temperature, which matches the extremely low aerobic metabolic scope of the juveniles.  相似文献   

20.
At hatching, breaking eggshell induces a surge in oxygen availability that is likely to generate oxidative stress in newborn chicks. To investigate the involvement of potential adaptive antioxidant mechanisms, we explored some markers of oxidative stress and the regulation of muscle avian uncoupling protein (avUCP) and adenine nucleotide translocase (ANT) in ducklings in the peri-hatching period. When compared with pre-hatching levels, the amount of peroxidized lipids were increased 24 h after external pipping in gastrocnemius muscle (+37%) and heart (+39%) as well as the muscle avUCP mRNA expression (+60%) but the susceptibility of red blood cells to free radicals (a functional test of oxidative status) was not affected. In order to relate these changes to the oxidative transition of hatching, an imposed hypoxia/re-oxygenation protocol was used. Hatched chicks that had spent the last 24 h of incubation in artificial severe hypoxia showed a rise in muscle (+50%) and heart (+69%) lipid peroxidation, an increased susceptibility of red blood cells to free radicals, a marked over-expression of avUCP mRNA (+105%) and a rise in mitochondrial ANT content (+54%). These results suggest that avian UCP and ANT may contribute to prepare incubating eggs to the oxidative stress generated by the hypoxia/re-oxygenation transition naturally occurring at hatching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号