首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrothermal ecosystems have a wide distribution on Earth and many can be found in the basin of the Red Sea. Production of aromatic compounds occurs in a temperature window of ∼60–150 °C by utilizing organic debris. In the past 50 years, the temperature of the Atlantis II Deep brine pool in the Red Sea has increased from 56 to 68 °C, whereas the temperature at the nearby Discovery Deep brine pool has remained relatively stable at about 44 °C. In this report, we confirmed the presence of aromatic compounds in the Atlantis II brine pool as expected. The presence of the aromatic compounds might have disturbed the microbes in the Atlantis II. To show shifted microbial communities and their metabolisms, we sequenced the metagenomes of the microbes from both brine pools. Classification based on metareads and the 16S rRNA gene sequences from clones showed a strong divergence of dominant bacterial species between the pools. Bacteria capable of aromatic degradation were present in the Atlantis II brine pool. A comparison of the metabolic pathways showed that several aromatic degradation pathways were significantly enriched in the Atlantis II brine pool, suggesting the presence of aromatic compounds. Pathways utilizing metabolites derived from aromatic degradation were also significantly affected. In the Discovery brine pool, the most abundant genes from the microbes were related to sugar metabolism pathways and DNA synthesis and repair, suggesting a different strategy for the utilization of carbon and energy sources between the Discovery brine pool and the Atlantis II brine pool.  相似文献   

2.
The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The 'polyextremophiles' that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA) revealed that one sulfur (S)-rich Atlantis II and one nitrogen (N)-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1), group II was characteristic for the N-rich Discovery sample (DD-1), and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction.  相似文献   

3.

Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world’s largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.

  相似文献   

4.
In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.  相似文献   

5.
We have analyzed metagenomic fosmid clones from the deep chlorophyll maximum (DCM), which, by genomic parameters, correspond to the 16S ribosomal RNA (rRNA)-defined marine Euryarchaeota group IIB (MGIIB). The fosmid collections associated with this group add up to 4 Mb and correspond to at least two species within this group. From the proposed essential genes contained in the collections, we infer that large sections of the conserved regions of the genomes of these microbes have been recovered. The genomes indicate a photoheterotrophic lifestyle, similar to that of the available genome of MGIIA (assembled from an estuarine metagenome in Puget Sound, Washington Pacific coast), with a proton-pumping rhodopsin of the same kind. Several genomic features support an aerobic metabolism with diversified substrate degradation capabilities that include xenobiotics and agar. On the other hand, these MGIIB representatives are non-motile and possess similar genome size to the MGIIA-assembled genome, but with a lower GC content. The large phylogenomic gap with other known archaea indicates that this is a new class of marine Euryarchaeota for which we suggest the name Thalassoarchaea. The analysis of recruitment from available metagenomes indicates that the representatives of group IIB described here are largely found at the DCM (ca. 50 m deep), in which they are abundant (up to 0.5% of the reads), and at the surface mostly during the winter mixing, which explains formerly described 16S rRNA distribution patterns. Their uneven representation in environmental samples that are close in space and time might indicate sporadic blooms.  相似文献   

6.
Members of the bacterial phylum Acidobacteria are widespread in soils and sediments worldwide, and are abundant in many soils. Acidobacteria are challenging to culture in vitro, and many basic features of their biology and functional roles in the soil have not been determined. Candidatus Solibacter usitatus strain Ellin6076 has a 9.9 Mb genome that is approximately 2-5 times as large as the other sequenced Acidobacteria genomes. Bacterial genome sizes typically range from 0.5 to 10 Mb and are influenced by gene duplication, horizontal gene transfer, gene loss and other evolutionary processes. Our comparative genome analyses indicate that the Ellin6076 large genome has arisen by horizontal gene transfer via ancient bacteriophage and/or plasmid-mediated transduction, and widespread small-scale gene duplications, resulting in an increased number of paralogs. Low amino acid sequence identities among functional group members, and lack of conserved gene order and orientation in regions containing similar groups of paralogs, suggest that most of the paralogs are not the result of recent duplication events. The genome sizes of additional cultured Acidobacteria strains were estimated using pulsed-field gel electrophoresis to determine the prevalence of the large genome trait within the phylum. Members of subdivision 3 had larger genomes than those of subdivision 1, but none were as large as the Ellin6076 genome. The large genome of Ellin6076 may not be typical of the phylum, and encodes traits that could provide a selective metabolic, defensive and regulatory advantage in the soil environment.  相似文献   

7.
With the decreasing cost of next-generation sequencing, deep sequencing of clinical samples provides unique opportunities to understand host-associated microbial communities. Among the primary challenges of clinical metagenomic sequencing is the rapid filtering of human reads to survey for pathogens with high specificity and sensitivity. Metagenomes are inherently variable due to different microbes in the samples and their relative abundance, the size and architecture of genomes, and factors such as target DNA amounts in tissue samples (i.e. human DNA versus pathogen DNA concentration). This variation in metagenomes typically manifests in sequencing datasets as low pathogen abundance, a high number of host reads, and the presence of close relatives and complex microbial communities. In addition to these challenges posed by the composition of metagenomes, high numbers of reads generated from high-throughput deep sequencing pose immense computational challenges. Accurate identification of pathogens is confounded by individual reads mapping to multiple different reference genomes due to gene similarity in different taxa present in the community or close relatives in the reference database. Available global and local sequence aligners also vary in sensitivity, specificity, and speed of detection. The efficiency of detection of pathogens in clinical samples is largely dependent on the desired taxonomic resolution of the organisms. We have developed an efficient strategy that identifies “all against all” relationships between sequencing reads and reference genomes. Our approach allows for scaling to large reference databases and then genome reconstruction by aggregating global and local alignments, thus allowing genetic characterization of pathogens at higher taxonomic resolution. These results were consistent with strain level SNP genotyping and bacterial identification from laboratory culture.  相似文献   

8.
Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the "active" archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano.  相似文献   

9.
Molecular approaches that target the total DNA pool recovered from permanently anoxic marine ecosystems have revealed an extraordinary diversity of prokaryotes and unicellular eukaryotes. However, the presence of gene sequences contained within the extracellular DNA pool is still largely neglected. We have investigated the preservation, origin and genetic imprint of extracellular DNA recovered from permanently anoxic deep-sea sediments of the Black Sea. Despite high DNase activities, huge amounts of total extracellular DNA were found in both the surface and subsurface sediment layers, suggesting reduced availability of the extracellular DNA pool to nuclease degradation. The reduced degradation of the total extracellular DNA was confirmed by its low decay rate and the high accumulation in the deeper sediment layers. The copy numbers of 16S and 18S rDNA contained within the extracellular DNA pool in both the surface and subsurface sediment layers was very high, indicating that permanently anoxic sediments of the deep Black Sea are hot spots of preserved extracellular gene sequences. The extracellular DNA recovered from these sediment layers also contained highly diversified 18S rDNA sequences. These were not only representative of the major protistan lineages, but also of new very divergent lineages, branching as independent clades at the base of the tree. Our findings indicate that the extracellular DNA pool is a major archive of present/past eukaryotic gene sequences, and they highlight the importance of integrating molecular cell-oriented approaches with molecular analyses of the extracellular DNA pool, for a better assessment of microbial diversity and temporal changes in marine benthic ecosystems.  相似文献   

10.
The helix-hairpin-helix (HhH) superfamily of base excision repair DNA glycosylases is composed of multiple phylogenetically diverse enzymes that are capable of excising varying spectra of oxidatively and methyl-damaged bases. Although these DNA repair glycosylases have been widely studied through genetic, biochemical, and biophysical approaches, the evolutionary relationships of different HhH homologs and the extent to which they are conserved across phylogeny remain enigmatic. We provide an evolutionary framework for this pervasive and versatile superfamily of DNA glycosylases. Six HhH gene families (named AlkA: alkyladenine glycosylase; MpgII: N-methylpurine glycosylase II; MutY/Mig: A/G-specific adenine glycosylase/mismatch glycosylase; Nth: endonuclease III; OggI: 8-oxoguanine glycosylase I; and OggII: 8-oxoguanine glycosylase II) are identified through phylogenetic analysis of 234 homologs found in 94 genomes (16 archaea, 64 bacteria, and 14 eukaryotes). The number of homologs in each gene family varies from 117 in the Nth family (nearly every genome surveyed harbors at least one Nth homolog) to only five in the divergent OggII family (all from archaeal genomes). Sequences from all three domains of life are included in four of the six gene families, suggesting that the HhH superfamily diversified very early in evolution. The phylogeny provides evidence for multiple lineage-specific gene duplication events, most of which involve eukaryotic homologs in the Nth and AlkA gene families. We observe extensive variation in the number of HhH superfamily glycosylase genes present in different genomes, possibly reflecting major differences among species in the mechanisms and pathways by which damaged bases are repaired and/or disparities in the basic rates and spectra of mutation experienced by different genomes.  相似文献   

11.
12.
Assembling microbial and viral genomes from metagenomes is a powerful and appealing method to understand structure–function relationships in complex environments. To compare the recovery of genomes from microorganisms and their viruses from groundwater, we generated shotgun metagenomes with Illumina sequencing accompanied by long reads derived from the Oxford Nanopore Technologies (ONT) sequencing platform. Assembly and metagenome-assembled genome (MAG) metrics for both microbes and viruses were determined from an Illumina-only assembly, ONT-only assembly, and a hybrid assembly approach. The hybrid approach recovered 2× more mid to high-quality MAGs compared to the Illumina-only approach and 4× more than the ONT-only approach. A similar number of viral genomes were reconstructed using the hybrid and ONT methods, and both recovered nearly fourfold more viral genomes than the Illumina-only approach. While yielding fewer MAGs, the ONT-only approach generated MAGs with a high probability of containing rRNA genes, 3× higher than either of the other methods. Of the shared MAGs recovered from each method, the ONT-only approach generated the longest and least fragmented MAGs, while the hybrid approach yielded the most complete. This work provides quantitative data to inform a cost–benefit analysis of the decision to supplement shotgun metagenomic projects with long reads towards the goal of recovering genomes from environmentally abundant groups.  相似文献   

13.
Henk DA  Fisher MC 《PloS one》2012,7(2):e31268
Fungal genomes range in size from 2.3 Mb for the microsporidian Encephalitozoon intestinalis up to 8000 Mb for Entomophaga aulicae, with a mean genome size of 37 Mb. Basidiobolus, a common inhabitant of vertebrate guts, is distantly related to all other fungi, and is unique in possessing both EF-1α and EFL genes. Using DNA sequencing and a quantitative PCR approach, we estimated a haploid genome size for Basidiobolus at 350 Mb. However, based on allelic variation, the nuclear genome is at least diploid, leading us to believe that the final genome size is at least 700 Mb. We also found that EFL was in three times the copy number of its putatively functionally overlapping paralog EF-1α. This suggests that gene or genome duplication may be an important feature of B. ranarum evolution, and also suggests that B. ranarum may have mechanisms in place that favor the preservation of functionally overlapping genes.  相似文献   

14.
The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep‐sea environments. Using artificial surface‐based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of this study shed new light on microbial community assembly in special habitats and bridge a gap in species sorting theory.  相似文献   

15.
Ammonia-oxidizing archaea (AOA) are ubiquitous and abundant and contribute significantly to the carbon and nitrogen cycles in the ocean. In this study, we assembled AOA draft genomes from two deep marine sediments from Donghae, South Korea, and Svalbard, Arctic region, by sequencing the enriched metagenomes. Three major microorganism clusters belonging to Thaumarchaeota, Epsilonproteobacteria, and Gammaproteobacteria were deduced from their 16S rRNA genes, GC contents, and oligonucleotide frequencies. Three archaeal genomes were identified, two of which were distinct and were designated Ca. “Nitrosopumilus koreensis” AR1 and “Nitrosopumilus sediminis” AR2. AR1 and AR2 exhibited average nucleotide identities of 85.2% and 79.5% to N. maritimus, respectively. The AR1 and AR2 genomes contained genes pertaining to energy metabolism and carbon fixation as conserved in other AOA, but, conversely, had fewer heme-containing proteins and more copper-containing proteins than other AOA. Most of the distinctive AR1 and AR2 genes were located in genomic islands (GIs) that were not present in other AOA genomes or in a reference water-column metagenome from the Sargasso Sea. A putative gene cluster involved in urea utilization was found in the AR2 genome, but not the AR1 genome, suggesting niche specialization in marine AOA. Co-cultured bacterial genome analysis suggested that bacterial sulfur and nitrogen metabolism could be involved in interactions with AOA. Our results provide fundamental information concerning the metabolic potential of deep marine sedimentary AOA.  相似文献   

16.
Phylogenetic surveys based on cultivation-independent methods have revealed that tidal flat sediments are environments with extensive microbial diversity. Since most of prokaryotes in nature cannot be easily cultivated under general laboratory conditions, our knowledge on prokaryotic dwellers in tidal flat sediment is mainly based on the analysis of metagenomes. Microbial community analysis based on the 16S rRNA gene and other phylogenetic markers has been widely used to provide important information on the role of microorganisms, but it is basically an indirect means, compared with direct sequencing of metagenomic DNAs. In this study, we applied a sequence-based metagenomic approach to characterize uncultivated prokaryotes from tidal flat sediment. Two large-insert genomic libraries based on fosmid were constructed from tidal flat metagenomic DNA. A survey based on end-sequencing of selected fosmid clones resulted in the identification of clones containing 274 bacterial and 16 archaeal homologs in which majority were of proteobacterial origins. Two fosmid clones containing large metagenomic DNAs were completely sequenced using the shotgun method. Both DNA inserts contained more than 20 genes encoding putative proteins which implied their ecological roles in tidal flat sediment. Phylogenetic analyses of evolutionary conserved proteins indicate that these clones are not closely related to known prokaryotes whose genome sequence is known, and genes in tidal flat may be subjected to extensive lateral gene transfer, notably between domains Bacteria and Archaea. This is the first report demonstrating that direct sequencing of metagenomic gene library is useful in underpinning the genetic makeup and functional roles of prokaryotes in tidal flat sediments.  相似文献   

17.
Evolutionary adaptations of prokaryotes to the environment sometimes result in genome reduction. Our knowledge of this phenomenon among free-living bacteria remains scarce. We address the dynamics and limits of genome reduction by examining one of the most abundant bacteria in the ocean, the SAR86 clade. Despite its abundance, comparative genomics has been limited by the absence of pure cultures and the poor representation in metagenome-assembled genomes. We co-assembled multiple previously available single-amplified genomes to obtain the first complete genomes from members of the four families. All families showed a convergent evolutionary trajectory with characteristic features of streamlined genomes, most pronounced in the TMED112 family. This family has a genome size of ca. 1 Mb and only 1 bp as median intergenic distance, exceeding values found in other abundant microbes such as SAR11, OM43 and Prochlorococcus. This genomic simplification led to a reduction in the biosynthesis of essential molecules, DNA repair-related genes, and the ability to sense and respond to environmental factors, which could suggest an evolutionary dependence on other co-occurring microbes for survival (Black Queen hypothesis). Therefore, these reconstructed genomes within the SAR86 clade provide new insights into the limits of genome reduction in free-living marine bacteria.  相似文献   

18.
19.
昆虫基因组及其大小   总被引:5,自引:0,他引:5  
薛建  程家安  张传溪 《昆虫学报》2009,52(8):901-906
昆虫基因组大小是由于基因组各种重复序列在扩增、缺失和分化过程中所致的数量差异造成的。这些差异使得昆虫不同类群间、种间和同种的不同种群间表现出基因组大小的不同。目前有59种昆虫已经列入基因组测序计划, 其中6种昆虫(黑腹果蝇Drosophila melanogaster、冈比亚按蚊Anopheles gambiae、家蚕Bombyx mori、意大利蜜蜂Apis mellifera、埃及伊蚊Aedes aegypti和赤拟谷盗Tribolium castaneum)的全基因组序列已经报道。有725种昆虫的基因组大小得到了估计, 大小在0.09~16.93 pg (88~16 558 Mb)之间。本文还介绍了昆虫基因组大小的估计方法, 讨论了昆虫基因组大小的变化及其意义。  相似文献   

20.

Background  

High gene numbers in plant genomes reflect polyploidy and major gene duplication events. Oryza sativa, cultivated rice, is a diploid monocotyledonous species with a ~390 Mb genome that has undergone segmental duplication of a substantial portion of its genome. This, coupled with other genetic events such as tandem duplications, has resulted in a substantial number of its genes, and resulting proteins, occurring in paralogous families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号