首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methylation of B-cell CLL/lymphoma 6 member B (BCL6B) DNA promoter was detected in several malignancies. Here, we quantitatively detect the methylated status of CpG sites of BCL6B DNA promoter of 459 patients with gastric cancer (GC) by using bisulfite gene sequencing. We show that patients with three or more methylated CpG sites in the BCL6B promoter were significantly associated with poor survival. Furthermore, by using the Akaike information criterion value calculation, we show that the methylated count of BCL6B promoter was identified to be the optimal prognostic predictor of GC patients.  相似文献   

2.
3.
We hypothesize that 14-3-3 sigma gene expression and its regulation by methylation can characterize histological types of primary human epithelial ovarian cancer. To test this hypothesis, ovarian cancer cell lines and 54 ovarian cancer tissue samples were analyzed for expression and methylation of 14-3-3 sigma gene using methylation specific PCR. The results of our experiments demonstrate that 14-3-3 sigma gene was methylated and inactivated in ES-2 ovarian cell line, which was derived from clear cell adenocarcinoma. Treatment of this cell line with demethylating agent 5-aza-2'-deoxycytidine restored the expression of 14-3-3 sigma gene. In human ovarian cancer tissues, the expression of 14-3-3 sigma protein was inactivated in most of the ovarian clear cell carcinoma tissues. Interestingly, 14-3-3 sigma protein expression was positive in significantly higher percentages of serous (89.5%), endometrioid (90%), and mucinous (81.8%) ovarian adenocarcinoma tissues. The ovarian clear cell carcinoma samples with inactivated 14-3-3 sigma protein were highly methylated, suggesting that inactivation of 14-3-3 sigma gene is through DNA methylation. Using direct DNA sequencing, 14-3-3 sigma gene methylation on all the 17 CpG sites was significantly higher in ovarian clear cell carcinoma as compared to other histological types of ovarian cancer (serous, endometrioid, and mucinous). This is the first report suggesting that 14-3-3 sigma gene expression and methylation status can characterize histological features of different types of ovarian cancer.  相似文献   

4.
目的:探讨生长分化因子GDF15(Growth Differentiation Factor 15)基因在卵巢上皮性癌组织中的表达及其与铂类耐药的相关性。方法:应用免疫组化、western blot、RT-PCR等方法对80例原发性卵巢癌组织和卵巢癌顺铂敏感/耐药株A2780和CP70、SKOV3和SKOV3/DDP中生长分化因子GDF15表达水平进行测定。结果:生长分化因子GDF15的表达强度与卵巢癌铂类耐药性显著相关。在卵巢癌顺铂耐药株CP70、SKOV3/DDP中GDF15表达水平较顺铂敏感株A2780、SKOV3明显增高。结论:GDF15表达水平与卵巢癌发生发展及铂类耐药相关,对于卵巢癌患者早期筛选、预测预后具有一定的临床指导价值。  相似文献   

5.
Shen L  Kondo Y  Guo Y  Zhang J  Zhang L  Ahmed S  Shu J  Chen X  Waterland RA  Issa JP 《PLoS genetics》2007,3(10):2023-2036
The role of CpG island methylation in normal development and cell differentiation is of keen interest, but remains poorly understood. We performed comprehensive DNA methylation profiling of promoter regions in normal peripheral blood by methylated CpG island amplification in combination with microarrays. This technique allowed us to simultaneously determine the methylation status of 6,177 genes, 92% of which include dense CpG islands. Among these 5,549 autosomal genes with dense CpG island promoters, we have identified 4.0% genes that are nearly completely methylated in normal blood, providing another exception to the general rule that CpG island methylation in normal tissue is limited to X inactivation and imprinted genes. We examined seven genes in detail, including ANKRD30A, FLJ40201, INSL6, SOHLH2, FTMT, C12orf12, and DPPA5. Dense promoter CpG island methylation and gene silencing were found in normal tissues studied except testis and sperm. In both tissues, bisulfite cloning and sequencing identified cells carrying unmethylated alleles. Interestingly, hypomethylation of several genes was associated with gene activation in cancer. Furthermore, reactivation of silenced genes could be induced after treatment with a DNA demethylating agent or in a cell line lacking DNMT1 and/or DNMT3b. Sequence analysis identified five motifs significantly enriched in this class of genes, suggesting that cis-regulatory elements may facilitate preferential methylation at these promoter CpG islands. We have identified a group of non-X-linked bona fide promoter CpG islands that are densely methylated in normal somatic tissues, escape methylation in germline cells, and for which DNA methylation is a primary mechanism of tissue-specific gene silencing.  相似文献   

6.
7.
Induction of the heat shock proteins (HSPs) is involved in the increased resistance to cancer therapies such as chemotherapy and hyperthermia. We used two human ovarian cancer cell lines; a cisplatin (CDDP)-sensitive line A2780 and its CDDP-resistant derivative, A2780CP. The concentration of intracellular glutathione (GSH) is higher (2.7-fold increase) in A2780CP cells than in A2780 cells. A mild treatment with a heat stress (42 degrees C for 30 min) induced synthesis of both the heat shock protein 72 (Hsp72) mRNA and the HSP72 protein in A2780CP cells, but not in A2780 cells. In contrast, a severe heat stress (45 degrees C for 30 min) increased synthesis of the HSP72 protein in the two cell lines. The induced level of the HSP72 protein by the severe treatment was higher in A2780CP than in A2780 cells. The gel mobility shift assay showed that DNA binding activities of the heat shock factor (HSF) in the two cell lines were induced similarly and significantly by the mild heat stress. Immunocytochemistry using an anti HSF1 antibody also indicated that mild heat stress activated the HSF1 translocation from the cytosol to the nucleus similarly in the both cell lines. Pretreatment of CDDP-sensitive A2780 cells with N-acetyl-L-cysteine, a precursor of GSH, effectively enhanced induction of the Hsp72 mRNA by the mild heat stress. The present findings demonstrate that induction of the Hsp72 mRNA by the mild heat stress was more extensive in CDDP-resistant A2780CP cells. It is likely that the higher GSH concentration in A2780CP cells plays an important role in promoting Hsp72 gene expression induced by the mild heat stress probably through processes downstream of activation of HSF-DNA binding.  相似文献   

8.
Prolonged wild-type p53 protein accumulation and cisplatin resistance   总被引:2,自引:0,他引:2  
The major limitation for the chemotherapeutic use of DNA-damaging agent cisplatin is the development of resistance in initially responsive tumors. One of the main pathways regulating cell survival following DNA damage is the p53 pathway. In this study we compared the cisplatin-induced response of p53 protein and its downstream targets p21WAF-1 and Mdm2 in the cisplatin-sensitive ovarian carcinoma cell line A2780 and its cisplatin-resistant derivative CP70. A higher dose of cisplatin and a longer exposure time was required to achieve the same level of p53, p21WAF-1, and Mdm2 protein accumulation in the cisplatin-resistant CP70 cells versus cisplatin-sensitive A2780 cells. A significant difference between the two cell lines was observed in cisplatin-induced stabilization of p53 protein. The p53 half-life increased 31-fold in CP70 cells compared to only 6-fold in A2780 cells. In contrast, there was no difference in p21WAF-1 half-life between the two cell lines. These results demonstrate that in A2780 and CP70 cells resistance to cisplatin correlates with prolonged p53 protein stabilization and accumulation.  相似文献   

9.
The green tea polyphenol epigallocatechin-3-gallate (EGCG) has cancer chemopreventive properties against various types of cancers. The compound is known to attack various targets in transformed cells. In this report, we examined the action of EGCG on ovarian cancer cells. Eight ovarian cancer cell lines were tested (SKOV3, CAOV3, OVCAR3, OVCAR10, A2780, CP70, C30, and C200) and showed IC50s for EGCG at the micromolar range, including ones that are resistant to the chemotherapeutic drug cisplatin. The ovarian cancer cells were sensitive to H2O2 at similar concentrations, and EGCG treatment led to enhanced intracellular H2O2. Neutralization with pyruvate, a scavenger of H2O2, suggests that the toxicity of EGCG may be mediated by oxidative stress from the free radical. Addition of Tempol, a superoxide dismutase mimetic, demonstrates that H2O2 might be generated endogenously from superoxide. The toxicity of cisplatin and the development of cisplatin resistance are major obstacles in treatment of ovarian cancer. We found that addition of EGCG amplified the toxicity of cisplatin. EGCG increased cisplatin potency by three to six-fold in SKOV3, CAOV3, and C200 cells, the latter being a cell line induced to have several hundred fold resistant to cisplatin above the parental line. Our findings suggest that EGCG may accentuate oxidative stress to inhibit growth of ovarian cancer cells and sensitize them to cisplatin.  相似文献   

10.
Tai J  Cheung S  Wu M  Hasman D 《Phytomedicine》2012,19(5):436-443
Rosemary (Rosmarinus officinalis L.) is a popular culinary/medicinal herb. Recent studies have shown it has pharmacologic activities for cancer chemoprevention and therapy. This study evaluated the antiproliferation activity of rosemary extract (RE) against human ovarian cancer cells, and whether the extract and its three main active ingredients carnosol (CS), carnosic acid (CA) and rosmarinic acid (RA) can enhance the antiproliferation activity of cisplatin (CDDP). Our study showed that RE has significant antiproliferation activity on human ovarian cancer A2780 and its CDDP resistant daughter cell line A2780CP70, with IC(50) (50% inhibitory concentration) estimated at 1/1000 and 1/400 dilutions respectively. RE enhanced the antiproliferation effect with CDDP on both A2780 and A2780CP70 cells. A2780 cells were consistently more sensitive to CS, CA, and RA than A2780CP70 cells between 2.5 and 20μg/ml. CS and RA also showed synergistic antiproliferation effect with CDDP on A2780 cells at some concentrations. RE treated by ultrafiltration, dialysis, and removal of phenolics lost the antiproliferation activity suggested that the activity resides in phenolics with MW<1000Da. Apoptosis array study of A2780 cells treated with RE showed that the expression of a number of genes regulating apoptosis were modulated by the treatment. This study showed that RE inhibited the proliferation of ovarian cancer cell lines by affecting the cell cycle at multiple phases. It induced apoptosis by modifying the expression of multiple genes regulating apoptosis, and holds potential as an adjunct to cancer chemotherapy.  相似文献   

11.
12.
In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3′,4′,5′- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer.  相似文献   

13.
Acquisition of platinum resistance following first line platinum/taxane therapy is commonly observed in ovarian cancer patients and prevents clinical effectiveness. There are few options to prevent platinum resistance; however, demethylating agents have been shown to resensitize patients to platinum therapy thereby demonstrating that DNA methylation is a critical contributor to the development of platinum resistance. We previously reported the Epidermal Growth Factor Receptor (EGFR) is a novel regulator of DNA methyltransferase (DNMT) activity and DNA methylation. Others have shown that EGFR activation is linked to cisplatin treatment and platinum resistance. We hypothesized that cisplatin induced activation of the EGFR mediates changes in DNA methylation associated with the development of platinum resistance. To investigate this, we evaluated EGFR signaling and DNMT activity after acute cisplatin exposure. We also developed an in vitro model of platinum resistance to examine the effects of EGFR inhibition on acquisition of cisplatin resistance. Acute cisplatin treatment activates the EGFR and downstream signaling pathways, and induces an EGFR mediated increase in DNMT activity. Cisplatin resistant cells also showed increased DNMT activity and global methylation. EGFR inhibition during repeated cisplatin treatments generated cells that were more sensitive to cisplatin and did not develop increases in DNA methylation or DNMT activity compared to controls. These findings suggest that activation of EGFR during platinum treatment contributes to the development of platinum resistance. Furthermore, EGFR inhibition may be an effective strategy at attenuating the development of platinum resistance thereby enhancing the effectiveness of chemotherapeutic treatment in ovarian cancer.  相似文献   

14.
NBL2 is a tandem 1.4-kb DNA repeat, whose hypomethylation in hepatocellular carcinomas was shown previously to be an independent predictor of disease progression. Here, we examined methylation of all cytosine residues in a 0.2-kb subregion of NBL2 in ovarian carcinomas, Wilms' tumors, and diverse control tissues by hairpin-bisulfite PCR. This new genomic sequencing method detects 5-methylcytosine on covalently linked complementary strands of a DNA fragment. All DNA clones from normal somatic tissues displayed symmetrical methylation at seven CpG positions and no methylation or only hemimethylation at two others. Unexpectedly, 56% of cancer DNA clones had decreased methylation at some normally methylated CpG sites as well as increased methylation at one or both of the normally unmethylated sites. All 146 DNA clones from 10 cancers could be distinguished from all 91 somatic control clones by assessing methylation changes at three of these CpG sites. The special involvement of DNA methyltransferase 3B in NBL2 methylation was indicated by analysis of cells from immunodeficiency, centromeric region instability, and facial anomalies syndrome patients who have mutations in the gene encoding DNA methyltransferase 3B. Blot hybridization of 33 cancer DNAs digested with CpG methylation-sensitive enzymes confirmed that NBL2 arrays are unusually susceptible to cancer-linked hypermethylation and hypomethylation, consistent with our novel genomic sequencing findings. The combined Southern blot and genomic sequencing data indicate that some of the cancer-linked alterations in CpG methylation are occurring with considerable sequence specificity. NBL2 is an attractive candidate for an epigenetic cancer marker and for elucidating the nature of epigenetic changes in cancer.  相似文献   

15.
Cisplatin resistance is one of the main limitations in the treatment of ovarian cancer, and its mechanism has not been fully understood. The objectives of this study were to determine the role of miR-221/222 and its underlying mechanism in chemoresistance of ovarian cancer. We demonstrated that miR-221/222 expression levels were higher in A2780/CP cells compared with A2780 S cells. An in vitro cell viability assay showed that downregulation of miR-221/222 sensitized A2780/CP cells to cisplatin-induced cytotoxicity. Moreover, we found that knockdown of miR-221/222 by its specific inhibitors promoted the cisplatin-induced apoptosis in A2780/CP cells. Using bioinformatic analysis and luciferase reporter assay, miR-221/222 were found to directly target PTEN. Moreover, knockdown of miR-221/222 in A2780/CP cells significantly upregulated PTEN and downregulated PI3KCA and p-Akt expression. In conclusion, our results demonstrated that miR-221/222 induced cisplatin resistance by targeting PTEN mediated PI3K/Akt pathway in A2780/CP cells, suggesting that miR-221/222/PTEN/PI3K/Akt may be a promising prognostic and therapeutic target to overcome cisplatin resistance and treat ovarian cancer in the future.  相似文献   

16.
Emerging evidence suggests that miR-143 plays an important role in the regulation of tumor sensitivity to chemotherapeutic agents. The study explores the underlying mechanism of miR-143 in reversing cisplatin resistance in ovarian cancer. The cisplatin-resistant ovarian cancer cell line A2780/CDDP was induced and established via treating A2780 cells by gradually increasing cisplatin concentrations. The IC50 values of A2780/CDDP and A2780 to cisplatin were 218.10 ± 1.12 and 21.99 ± 1.12 μM, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that miR-143 was significantly decreased in A2780/CDDP cells compared with A2780 cells. miR-143 overexpression decreased cisplatin resistance in A2780/CDDP, and miR-143 inhibition decreased A2780 sensitivity to cisplatin. Results of qRT-PCR, Western blot analysis, and luciferase reporter assay indicated that the direct target of miR-143 was DNMT3A, which, in turn, was upregulated in A2780/CDDP. DNMT3A overexpression antagonized the sensitizing effect of miR-143 on A2780/CDDP to cisplatin. Knocking down of DNMT3A reduced cisplatin resistance in A2780/CDDP, while overexpression of DNMT3A increased cisplatin resistance in A2780. Methylation-specific polymerase chain reaction results showed that the methylation level in the promoter region of the miR-143 precursor gene was higher in A2780/CDDP cells than in A2780 cells. DNMT3A mediated the hypermethylation of the miR-143 precursor gene, resulting in miR-143 downregulation in A2780/CDDP. miR-143 inhibited cell growth of A2780/CDDP cell in nude mice. Our findings indicated the negative feedback between miR-143 and DNMT3A as a crucial epigenetic modifier of cisplatin resistance in ovarian cancer.  相似文献   

17.
Many differentially methylated genes have been identified in prostate cancer (PCa), primarily using candidate gene-based assays. Recently, several global DNA methylation profiles have been reported in PCa, however, each of these has weaknesses in terms of ability to observe global DNA methylation alterations in PCa. We hypothesize that there remains unidentified aberrant DNA methylation in PCa, which may be identified using higher resolution assay methods. We used the newly developed Illumina HumanMethylation450 BeadChip in PCa (n = 19) and adjacent normal tissues (n = 4) and combined these with gene expression data for identifying new DNA methylation that may have functional consequences in PCa development and progression. We also confirmed our methylation results in an independent data set. Two aberrant DNA methylation genes were validated among an additional 56 PCa samples and 55 adjacent normal tissues. A total 28,735 CpG sites showed significant differences in DNA methylation (FDR adjusted P<0.05), defined as a mean methylation difference of at least 20% between PCa and normal samples. Furthermore, a total of 122 genes had more than one differentially methylated CpG site in their promoter region and a gene expression pattern that was inverse to the direction of change in DNA methylation (e.g. decreased expression with increased methylation, and vice-versa). Aberrant DNA methylation of two genes, AOX1 and SPON2, were confirmed via bisulfate sequencing, with most of the respective CpG sites showing significant differences between tumor samples and normal tissues. The AOX1 promoter region showed hypermethylation in 92.6% of 54 tested PCa samples in contrast to only three out of 53 tested normal tissues. This study used a new BeadChip combined with gene expression data in PCa to identify novel differentially methylated CpG sites located within genes. The newly identified differentially methylated genes may be used as biomarkers for PCa diagnosis.  相似文献   

18.
《Epigenetics》2013,8(3):165-175
Hypomethylation of DNA repeats, including satellite 2 DNA (Sat2), is one of the most frequent epigenetic changes in cancer. We examined ovarian epithelial tumors and diverse control tissues for methylation on only one strand (hemimethylation), both strands (symmetrical methylation), or neither strand at Sat2 CpG dyads using hairpin genomic sequencing. Analysis of the resulting cloned DNA molecules indicated that although carcinomas displayed much symmetrical hypomethylation of CpG dyads, there was cancer-linked hypermethylation at one of the thirteen dyads in the examined 0.2-kb Sat2 region. Hemimethylated sites were seen in both carcinomas and controls but, importantly, in carcinoma DNA molecules, they were significantly more likely to occur in clusters displaying the same orientation (the same strand methylated). Our data suggest that hemimethylated CpG dyads are intermediates in active demethylation during carcinogenesis and not just due to a failure of maintenance methylation during replicative DNA synthesis. Constitutive heterochromatin may be especially suitable for providing a snapshot of demethylation intermediates because hemimethylation might be more long-lived in heterochromatin due to its highly condensed state.  相似文献   

19.
DNA methylation has been proposed to be important in many biological processes and is the subject of intense study. Traditional bisulfite genomic sequencing allows detailed high-resolution methylation pattern analysis of each molecule with haplotype information across a few hundred bases at each locus, but lacks the capacity to gather voluminous data. Although recent technological developments are aimed at assessing DNA methylation patterns in a high-throughput manner across the genome, the haplotype information cannot be accurately assembled when the sequencing reads are short or when each hybridization target only includes one or two cytosine-phosphate-guanine (CpG) sites. Whether a distinct and nonrandom DNA methylation pattern is present at a given locus is difficult to discern without the haplotype information, and the DNA methylation patterns are much less apparent because the data are often obtained only as methylation frequencies at each CpG site with some of these methods. It would facilitate the interpretation of data obtained from high-throughput bisulfite sequencing if the loci with nonrandom DNA methylation patterns could be distinguished from those that are randomly methylated. In this study, we carried out traditional genomic bisulfite sequencing using the normal diploid human embryonic stem (hES) cell lines, and utilized Hamming distance analysis to evaluate the existence of a distinct and nonrandom DNA methylation pattern at each locus studied. Our findings suggest that Hamming distance is a simple, quick, and useful tool to identify loci with nonrandom DNA methylation patterns and may be utilized to discern links between biological changes and DNA methylation patterns in the high-throughput bisulfite sequencing data sets.  相似文献   

20.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a promising target for ovarian cancer therapy. Cross-reacting material 197 (CRM197), a specific HB-EGF inhibitor, has been proven to represent possible chemotherapeutic agent for ovarian cancer. However, the effect of CRM197 on the resistant ovarian carcinoma cells has not been sufficiently elucidated. Here, we found that HB-EGF was over-expressed in a paclitaxel-resistant human ovarian carcinoma cell line (A2780/Taxol) and a cisplatin-resistant cell line (A2780/CDDP), as well as the xenograft mouse tissue samples with these cells. To investigate the possible significance of the HB-EGF over-expression in A2780/Taxol and A2780/CDDP cells, we inhibited HB-EGF expression by CRM197 to investigate the effect of CRM197 treatment on these cells. We observed that CRM197 significantly induced anti-proliferative activity in a dose-dependent manner with the cell-cycle arrest at the G0/G1 phase and enhanced apoptosis in A2780/Taxol and A2780/CDDP cells. The sensitive ovarian carcinoma parental cell line (A2780), A2780/Taxol and A2780/CDDP cells formed tumors in nude mice, and enhanced tumorigenicity was observed in drug-resistant tumors. Furthermore, we observed that CRM197 significantly suppressed the growth of drug-resistant ovarian cancer xenografts in vivo (p<0.001). These results suggest that CRM197 as an HB-EGF-targeted agent has potent anti-tumor activity in paclitaxel- and cisplatin-resistant ovarian cancer which over-express HB-EGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号