首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flagellate Caduceia versatilis in the gut of the termite Cryptotermes cavifrons reportedly propels itself not by its own flagella but solely by the flagella of ectosymbiotic bacteria. Previous microscopic observations have revealed that the motility symbionts are flagellated rods partially embedded in the host cell surface and that, together with a fusiform type of ectosymbiotic bacteria without flagella, they cover almost the entire surface. To identify these ectosymbionts, we conducted 16S rRNA clone analyses of bacteria physically associated with the Caduceia cells. Two phylotypes were found to predominate in the clone library and were phylogenetically affiliated with the "Synergistes" phylum and the order Bacteroidales in the Bacteroidetes phylum. Probes specifically targeting 16S rRNAs of the respective phylotypes were designed, and fluorescence in situ hybridization (FISH) was performed. As a result, the "Synergistes" phylotype was identified as the motility symbiont; the Bacteroidales phylotype was the fusiform ectobiont. The "Synergistes" phylotype was a member of a cluster comprising exclusively uncultured clones from the guts of various termite species. Interestingly, four other phylotypes in this cluster, including the one sharing 95% sequence identity with the motility symbiont, were identified as nonectosymbiotic, or free-living, gut bacteria by FISH. We thus suggest that the motility ectosymbiont has evolved from a free-living gut bacterium within this termite-specific cluster. Based on these molecular and previous morphological data, we here propose a novel genus and species, "Candidatus Tammella caduceiae," for this unique motility ectosymbiont of Caducaia versatilis.  相似文献   

2.
Zoothamnium niveum is a giant, colonial marine ciliate from sulfide-rich habitats obligatorily covered with chemoautotrophic, sulfide-oxidizing bacteria which appear as coccoid rods and rods with a series of intermediate shapes. Comparative 16S rRNA gene sequence analysis and fluorescence in situ hybridization showed that the ectosymbiont of Z. niveum belongs to only one pleomorphic phylotype. The Z. niveum ectosymbiont is only moderately related to previously identified groups of thiotrophic symbionts within the Gammaproteobacteria, and shows highest 16S rRNA sequence similarity with the free-living sulfur-oxidizing bacterial strain ODIII6 from shallow-water hydrothermal vents of the Mediterranean Sea (94.5%) and an endosymbiont from a deep-sea hydrothermal vent gastropod of the Indian Ocean Ridge (93.1%). A replacement of this specific ectosymbiont by a variety of other bacteria was observed only for senescent basal parts of the host colonies. The taxonomic status “Candidatus Thiobios zoothamnicoli” is proposed for the ectosymbiont of Z. niveum based on its ultrastructure, its 16S rRNA gene, the intergenic spacer region, and its partial 23S rRNA gene sequence.  相似文献   

3.
We investigated the bacterial gut microbiota from 32 colonies of wood-feeding termites, comprising four Microcerotermes species (Termitidae) and four Reticulitermes species (Rhinotermitidae), using terminal restriction fragment length polymorphism analysis and clonal analysis of 16S rRNA. The obtained molecular community profiles were compared statistically between individuals, colonies, locations, and species of termites. Both analyses revealed that the bacterial community structure was remarkably similar within each termite genus, with small but significant differences between sampling sites and/or termite species. In contrast, considerable differences were found between the two termite genera. Only one bacterial phylotype (defined with 97% sequence identity) was shared between the two termite genera, while 18% and 50% of the phylotypes were shared between two congeneric species in the genera Microcerotermes and Reticulitermes, respectively. Nevertheless, a phylogenetic analysis of 228 phylotypes from Microcerotermes spp. and 367 phylotypes from Reticulitermes spp. with other termite gut clones available in public databases demonstrated the monophyly of many phylotypes from distantly related termites. The monophyletic “termite clusters” comprised of phylotypes from more than one termite species were distributed among 15 bacterial phyla, including the novel candidate phyla TG2 and TG3. These termite clusters accounted for 95% of the 960 clones analyzed in this study. Moreover, the clusters in 12 phyla comprised phylotypes from more than one termite (sub)family, accounting for 75% of the analyzed clones. Our results suggest that the majority of gut bacteria are not allochthonous but are specific symbionts that have coevolved with termites and that their community structure is basically consistent within a genus of termites.  相似文献   

4.
The bryozoans Bugula neritina and Bugula simplex harbor bacteria in the pallial sinuses of their larvae as seen by electron microscopy. In B. neritina, the bacterial symbiont has been characterized as a gamma-proteobacterium, “Candidatus Endobugula sertula.” “Candidatus E. sertula” has been implicated as the source of the bryostatins, polyketides that provide chemical defense to the host and are also being tested for use in human cancer treatments. In this study, the bacterial symbiont in B. simplex larvae was identified by 16S rRNA-targeted PCR and sequencing as a gamma-proteobacterium closely related to and forming a monophyletic group with “Candidatus E. sertula.” In a fluorescence in situ hybridization, a 16S ribosomal DNA probe specific to the B. simplex symbiont hybridized to long rod-shaped bacteria in the pallial sinus of a B. simplex larva. The taxonomic status “Candidatus Endobugula glebosa” is proposed for the B. simplex larval symbiont. Degenerate polyketide synthase (PKS) primers amplified a gene fragment from B. simplex that closely matched a PKS gene fragment from the bryostatin PKS cluster. PCR surveys show that the symbiont and this PKS gene fragment are consistently and uniquely associated with B. simplex. Bryostatin activity assays and chemical analyses of B. simplex extracts reveal the presence of compounds similar to bryostatins. Taken together, these findings demonstrate a symbiosis in B. simplex that is similar and evolutionarily related to that in B. neritina.  相似文献   

5.
A unique lineage of bacteria belonging to the order Bacteroidales was identified as an intracellular endosymbiont of the protist Pseudotrichonympha grassii (Parabasalia, Hypermastigea) in the gut of the termite Coptotermes formosanus. We identified the 16S rRNA, gyrB, elongation factor Tu, and groEL gene sequences in the endosymbiont and detected a very low level of sequence divergence (<0.9% of the nucleotides) in the endosymbiont population within and among protist cells. The Bacteroidales endosymbiont sequence was affiliated with a cluster comprising only sequences from termite gut bacteria and was not closely related to sequences identified for members of the Bacteroidales attached to the cell surfaces of other gut protists. Transmission electron microscopy showed that there were numerous rod-shaped bacteria in the cytoplasm of the host protist, and we detected the endosymbiont by fluorescence in situ hybridization (FISH) with an oligonucleotide probe specific for the 16S rRNA gene identified. Quantification of the abundance of the Bacteroidales endosymbiont by sequence-specific cleavage of rRNA with RNase H and FISH cell counting revealed, surprisingly, that the endosymbiont accounted for 82% of the total bacterial rRNA and 71% of the total bacterial cells in the gut community. The genetically nearly homogeneous endosymbionts of Pseudotrichonympha were very abundant in the gut symbiotic community of the termite.  相似文献   

6.
The marine bryozoan, Bugula neritina, is the source of the bryostatins, a family of macrocyclic lactones with anticancer activity. Bryostatins have long been suspected to be bacterial products. B. neritina harbors the uncultivated gamma proteobacterial symbiont “Candidatus Endobugula sertula.” In this work several lines of evidence are presented that show that the symbiont is the most likely source of bryostatins. Bryostatins are complex polyketides similar to bacterial secondary metabolites synthesized by modular type I polyketide synthases (PKS-I). PKS-I gene fragments were cloned from DNA extracted from the B. neritina-“E. sertula” association, and then primers specific to one of these clones, KSa, were shown to amplify the KSa gene specifically and universally from total B. neritina DNA. In addition, a KSa RNA probe was shown to bind specifically to the symbiotic bacteria located in the pallial sinus of the larvae of B. neritina and not to B. neritina cells or to other bacteria. Finally, B. neritina colonies grown in the laboratory were treated with antibiotics to reduce the numbers of bacterial symbionts. Decreased symbiont levels resulted in the reduction of the KSa signal as well as the bryostatin content. These data provide evidence that the symbiont E. sertula has the genetic potential to make bryostatins and is necessary in full complement for the host bryozoan to produce normal levels of bryostatins. This study demonstrates that it may be possible to clone bryostatin genes from B. neritina directly and use these to produce bryostatins in heterologous host bacteria.  相似文献   

7.
Many reports have stated that flagellated protists in termite guts harbour ectosymbiotic spirochetes on their cell surface. In this study, we describe another bristle-like ectosymbiont affiliated with the order Bacteroidales. The 16S rRNA phylotype Rs-N74 predominates among Bacteroidales clones obtained from the gut of the termite Reticulitermes speratus. An Rs-N74 phylotype-specific probe was designed in this study and used for detection of the corresponding bacteria in the gut by fluorescence in situ hybridization (FISH) analysis. Surprisingly, the signals were detected specifically from the bristle-like 'appendages' of various flagellate species belonging to the genus Dinenympha; these 'appendages' had been believed to be spirochetal ectosymbionts or structures of the protists. The Rs-N74 bacteria attached to the cell surface of the protists by a tip and coexisted with the spirochetal ectosymbionts. An electron micrograph revealed their morphology to be similar to a typical Bacteroidales bacterium. This bacterium is proposed to represent a novel genus and species, 'Candidatus Symbiothrix dinenymphae', phylogenetically affiliated with a cluster consisting exclusively of uncultured strains from termite guts. A Bacteroidales-specific probe for FISH further revealed that this type of symbiosis exists also in various other protists, including parabasalids and oxymonads, and is widespread in termite guts.  相似文献   

8.
Phylogenetic relationships, diversity, and in situ identification of spirochetes in the gut of the termite Neotermes koshunensis were examined without cultivation, with an emphasis on ectosymbionts attached to flagellated protists. Spirochetes in the gut microbial community investigated so far are related to the genus Treponema and divided into two phylogenetic clusters. In situ hybridizations with a 16S rRNA-targeting consensus oligonucleotide probe for one cluster (known as termite Treponema cluster I) detected both the ectosymbiotic spirochetes on gut protists and the free-swimming spirochetes in the gut fluid of N. koshunensis. The probe for the other cluster (cluster II), which has been identified as ectosymbionts on gut protists of two other termite species, Reticulitermes speratus and Hodotermopsis sjoestedti, failed to detect any spirochete population. The absence of cluster II spirochetes in N. koshunensis was confirmed by intensive 16S ribosomal DNA (rDNA) clone analysis, in which remarkably diverse spirochetes of 45 phylotypes were identified, almost all belonging to cluster I. Ectosymbiotic spirochetes of the three gut protist species Devescovina sp., Stephanonympha sp., and Oxymonas sp. in N. koshunensis were identified by their 16S rDNA and by in situ hybridizations using specific probes. The probes specific for these ectosymbionts did not receive a signal from the free-swimming spirochetes. The ectosymbionts were dispersed in cluster I of the phylogeny, and they formed distinct phylogenetic lineages, suggesting multiple origins of the spirochete attachment. Each single protist cell harbored multiple spirochete species, and some of the spirochetes were common among protist species. The results indicate complex relationships of the ectosymbiotic spirochetes with the gut protists.  相似文献   

9.
The ultrastructural features of two groups of filamentous sulfur bacteria, Thiothrix spp. and an unnamed organism designated “type 021N,” were examined by transmission electron microscopy. Negative staining of whole cells and filaments with uranyl acetate revealed the presence of tufts of fimbriae located at the ends of individual gonidia of Thiothrix sp. strain A1 and “type 021N” strain N7. Holdfast material present at the center of mature rosettes was observed in thin sections stained with ruthenium red. A clearly defined sheath enveloped the trichomes of two of three Thiothrix strains but was absent from “type 021N” filaments. The outer cell wall appeared more complex in “type 021N” strains than in Thiothrix isolates. Bulbs or clusters of irregularly shaped cells, often present in filaments of “type 021N” bacteria, appeared to result from crosswalls which formed at angles oblique to the filament axis. The multicellular nature of these sulfur bacteria was apparent in that only the cytoplasmic membrane and peptidoglycan layer of the cell wall were involved in the septation process. Sulfur inclusions which developed in the presence of sodium thiosulfate were enclosed by a single-layered envelope and located within invaginations of the cytoplasmic membrane.  相似文献   

10.
Symbiosis between insects and bacteria result in a variety of arrangements, genomic modifications, and metabolic interconnections. Here, we present genomic, phylogenetic, and morphological characteristics of a symbiotic system associated with Melophagus ovinus, a member of the blood-feeding family Hippoboscidae. The system comprises four unrelated bacteria representing different stages in symbiosis evolution, from typical obligate mutualists inhabiting bacteriomes to freely associated commensals and parasites. Interestingly, the whole system provides a remarkable analogy to the association between Glossina and its symbiotic bacteria. In both, the symbiotic systems are composed of an obligate symbiont and two facultative intracellular associates, Sodalis and Wolbachia. In addition, extracellular Bartonella resides in the gut of Melophagus. However, the phylogenetic origins of the two obligate mutualist symbionts differ. In Glossina, the mutualistic Wigglesworthia appears to be a relatively isolated symbiotic lineage, whereas in Melophagus, the obligate symbiont originated within the widely distributed Arsenophonus cluster. Although phylogenetically distant, the two obligate symbionts display several remarkably similar traits (e.g., transmission via the host''s “milk glands” or similar pattern of genome reduction). To obtain better insight into the biology and possible role of the M. ovinus obligate symbiont, “Candidatus Arsenophonus melophagi,” we performed several comparisons of its gene content based on assignments of the Cluster of Orthologous Genes (COG). Using this criterion, we show that within a set of 44 primary and secondary symbionts, “Ca. Arsenophonus melophagi” is most similar to Wigglesworthia. On the other hand, these two bacteria also display interesting differences, such as absence of flagellar genes in Arsenophonus and their presence in Wigglesworthia. This finding implies that a flagellum is not essential for bacterial transmission via milk glands.  相似文献   

11.
12.
Marginal chlorosis is a new disease of strawberry in which the uncultured phloem-restricted proteobacterium “Candidatus Phlomobacter fragariae” is involved. In order to identify the insect(s) vector(s) of this bacterium, homopteran insects have been captured. Because a PCR test based on the 16S rRNA gene (rDNA) applied to these insects was unable to discriminate between “P. fragariae” and other insect-associated proteobacteria, isolation of “P. fragariae” genes other than 16S rDNA was undertaken. Using comparative randomly amplified polymorphic DNAs, an amplicon was specifically amplified from “P. fragariae”-infected strawberry plants. It encodes part of a “P. fragariae” open reading frame sharing appreciable homology with the spoT gene from other proteobacteria. A spoT-based PCR test combined with restriction fragment length polymorphisms was developed and was able to distinguish “P. fragariae” from other insect bacteria. None of the many leafhoppers and psyllids captured during several years in and around infected strawberry fields was found to carry “P. fragariae.” Interestingly however, the “P. fragariae” spoT sequence could be easily detected in whiteflies proliferating on “P. fragariae”-infected strawberry plants under confined greenhouse conditions but not on control whiteflies, indicating that these insects can become infected with the bacterium.  相似文献   

13.
The giant marine ciliate Zoothamnium niveum ( Ciliophora, Oligohymenophora ) is obligatorily covered by a monolayer of putative chemoautotrophic sulfur-oxidizing (thiotrophic) bacteria. For Z. niveum specimens from the Caribbean Sea it has been demonstrated that this ectosymbiotic population consists of only a single pleomorphic phylotype described as Candidatus Thiobios zoothamnicoli. The goal of our study was to identify and phylogenetically analyse the ectosymbiont(s) of a recently discovered Z. niveum population from the Mediterranean Sea, and to compare marker genes encoding key enzymes of the carbon and sulfur metabolism between the two symbiont populations. We identified a single bacterial phylotype representing the ectosymbiont of Z. niveum from the Mediterranean population showing 99.7% 16S rRNA gene (99.2% intergenic spacer region) similarity to the Caribbean Z. niveum ectosymbiont. Genes encoding enzymes typical for an inorganic carbon metabolism [ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO)] and for sulfur metabolism (5'-adenylylsulfate reductase, dissimilatory sulfite reductase) were detected in both symbiotic populations. The very high amino acid sequence identity (97–100%) and the high nucleic acid sequence identity (90–98%) of these marker enzymes in two geographically distant symbiont populations suggests that the association of Z. niveum with Cand . Thiobios zoothamnicoli is very specific as well as temporally and spatially stable.  相似文献   

14.
Fluorescent in situ hybridization with a 16S rRNA probe specific for Verrucomicrobia was used to (i) confirm the division-level identity of and (ii) study the behavior of the obligate intracellular verrucomicrobium “Candidatus Xiphinematobacter” in its nematode hosts. Endosymbionts in the egg move to the pole where the gut primordium arises; hence, they populate the intestinal epithelia of juvenile worms. During the host's molt to adult female, the endosymbionts concentrate around the developing ovaries to occupy the ovarian wall. Some bacteria are enclosed in the ripening oocytes for vertical transmission. Verrucomicrobia in males stay outside the testes because the tiny spermatozoids are not suitable for transmission of cytoplasmic bacteria.  相似文献   

15.
We investigated the fine-scale population structure of the “Candidatus Accumulibacter” lineage in enhanced biological phosphorus removal (EBPR) systems using the polyphosphate kinase 1 gene (ppk1) as a genetic marker. We retrieved fragments of “Candidatus Accumulibacter” 16S rRNA and ppk1 genes from one laboratory-scale and several full-scale EBPR systems. Phylogenies reconstructed using 16S rRNA genes and ppk1 were largely congruent, with ppk1 granting higher phylogenetic resolution and clearer tree topology and thus serving as a better genetic marker than 16S rRNA for revealing population structure within the “Candidatus Accumulibacter” lineage. Sequences from at least five clades of “Candidatus Accumulibacter” were recovered by ppk1-targeted PCR, and subsequently, specific primer sets were designed to target the ppk1 gene for each clade. Quantitative real-time PCR (qPCR) assays using “Candidatus Accumulibacter”-specific 16S rRNA and “Candidatus Accumulibacter” clade-specific ppk1 primers were developed and conducted on three laboratory-scale and nine full-scale EBPR samples and two full-scale non-EBPR samples to determine the abundance of the total “Candidatus Accumulibacter” lineage and the relative distributions and abundances of the five “Candidatus Accumulibacter” clades. The qPCR-based estimation of the total “Candidatus Accumulibacter” fraction as a proportion of the bacterial community as measured using 16S rRNA genes was not significantly different from the estimation measured using ppk1, demonstrating the power of ppk1 as a genetic marker for detection of all currently defined “Candidatus Accumulibacter” clades. The relative distributions of “Candidatus Accumulibacter” clades varied among different EBPR systems and also temporally within a system. Our results suggest that the “Candidatus Accumulibacter” lineage is more diverse than previously realized and that different clades within the lineage are ecologically distinct.  相似文献   

16.
The primary endosymbiotic bacteria from three species of parasitic primate lice were characterized molecularly. We have confirmed the characterization of the primary endosymbiont (P-endosymbiont) of the human head/body louse Pediculus humanus and provide new characterizations of the P-endosymbionts from Pediculus schaeffi from chimpanzees and Pthirus pubis, the pubic louse of humans. The endosymbionts show an average percent sequence divergence of 11 to 15% from the most closely related known bacterium “Candidatus Arsenophonus insecticola.” We propose that two additional species be added to the genus “Candidatus Riesia.” The new species proposed within “Candidatus Riesia” have sequence divergences of 3.4% and 10 to 12% based on uncorrected pairwise differences. Our Bayesian analysis shows that the branching pattern for the primary endosymbionts was the same as that for their louse hosts, suggesting a long coevolutionary history between primate lice and their primary endosymbionts. We used a calibration of 5.6 million years to date the divergence between endosymbionts from human and chimpanzee lice and estimated an evolutionary rate of nucleotide substitution of 0.67% per million years, which is 15 to 30 times faster than previous estimates calculated for Buchnera, the primary endosymbiont in aphids. Given the evidence for cospeciation with primate lice and the evidence for fast evolutionary rates, this lineage of endosymbiotic bacteria can be evaluated as a fast-evolving marker of both louse and primate evolutionary histories.  相似文献   

17.
Photobacterium mandapamensis” (proposed name) and Photobacterium leiognathi are closely related, phenotypically similar marine bacteria that form bioluminescent symbioses with marine animals. Despite their similarity, however, these bacteria can be distinguished phylogenetically by sequence divergence of their luminescence genes, luxCDAB(F)E, by the presence (P. mandapamensis) or the absence (P. leiognathi) of luxF and, as shown here, by the sequence divergence of genes involved in the synthesis of riboflavin, ribBHA. To gain insight into the possibility that P. mandapamensis and P. leiognathi are ecologically distinct, we used these phylogenetic criteria to determine the incidence of P. mandapamensis as a bioluminescent symbiont of marine animals. Five fish species, Acropoma japonicum (Perciformes, Acropomatidae), Photopectoralis panayensis and Photopectoralis bindus (Perciformes, Leiognathidae), Siphamia versicolor (Perciformes, Apogonidae), and Gadella jordani (Gadiformes, Moridae), were found to harbor P. mandapamensis in their light organs. Specimens of A. japonicus, P. panayensis, and P. bindus harbored P. mandapamensis and P. leiognathi together as cosymbionts of the same light organ. Regardless of cosymbiosis, P. mandapamensis was the predominant symbiont of A. japonicum, and it was the apparently exclusive symbiont of S. versicolor and G. jordani. In contrast, P. leiognathi was found to be the predominant symbiont of P. panayensis and P. bindus, and it appears to be the exclusive symbiont of other leiognathid fishes and a loliginid squid. A phylogenetic test for cospeciation revealed no evidence of codivergence between P. mandapamensis and its host fishes, indicating that coevolution apparently is not the basis for this bacterium's host preferences. These results, which are the first report of bacterial cosymbiosis in fish light organs and the first demonstration that P. leiognathi is not the exclusive light organ symbiont of leiognathid fishes, demonstrate that the host species ranges of P. mandapamensis and P. leiognathi are substantially distinct. The host range difference underscores possible differences in the environmental distributions and physiologies of these two bacterial species.  相似文献   

18.
Presence of glycogen granules in anaerobic ammonium-oxidizing (anammox) bacteria has been reported so far. However, very little is known about their glycogen metabolism and the exact roles. Here, we studied the glycogen metabolism in “Ca. Brocadia sinica” growing in continuous retentostat cultures with bicarbonate as a carbon source. The effect of the culture growth phase was investigated. During the growing phase, intracellular glycogen content increased up to 32.6 mg-glucose (g-biomass dry wt)−1 while the specific growth rate and ATP/ADP ratio decreased. The accumulated glycogen begun to decrease at the onset of entering the near-zero growth phase and was consumed rapidly when substrates were depleted. This clearly indicates that glycogen was synthesized and utilized as an energy storage. The proteomic analysis revealed that “Ca. B. sinica” synthesized glycogen via three known glycogen biosynthesis pathways and simultaneously degraded during the progress of active anammox, implying that glycogen is being continuously recycled. When cells were starved, a part of stored glycogen was converted to trehalose, a potential stress protectant. This suggests that glycogen serves at least as a primary carbon source of trehalose synthesis for survival. This study provides the first physiological evidence of glycogen metabolism in anammox bacteria and its significance in survival under natural substrate-limited habitat.Subject terms: Applied microbiology, Water microbiology  相似文献   

19.
Pyoverdine isoelectric focusing analysis and pyoverdine-mediated iron uptake were used as siderotyping methods to analyze a collection of 57 northern and central European isolates of P. tolaasii and “P. reactans.” The bacteria, isolated from cultivated Agaricus bisporus or Pleurotus ostreatus mushroom sporophores presenting brown blotch disease symptoms, were identified according to the white line test (W. C. Wong and T. F. Preece, J. Appl. Bacteriol. 47:401–407, 1979) and their pathogenicity towards A. bisporus and were grouped into siderovars according to the type of pyoverdine they produced. Seventeen P. tolaasii isolates were recognized, which divided into two siderovars, with the first one containing reference strains and isolates of various geographical origins while the second one contained Finnish isolates exclusively. The 40 “P. reactans” isolates divided into eight siderovars. Pyoverdine isoelectric focusing profiles and cross-uptake studies demonstrated an identity for some “P. reactans” isolates, with reference strains belonging to the P. fluorescens biovars II, III, or V. Thus, the easy and rapid methods of siderotyping proved to be reliable by supporting and strengthening previous taxonomical data. Moreover, two potentially novel pyoverdines characterizing one P. tolaasii siderovar and one “P. reactans” siderovar were found.  相似文献   

20.
Insect intestinal tracts harbor several novel, deep-rooting clades of as-yet-uncultivated bacteria whose biology is typically completely unknown. Here, we report the isolation of the first representative of the termite group 1 (TG1) phylum from sterile-filtered gut homogenates of a humivorous scarab beetle larva. Strain Pei191T is a mesophilic, obligately anaerobic ultramicrobacterium with a gram-negative cell envelope. Cells are typically rod shaped, but cultures are pleomorphic in all growth phases (0.3 to 2.5 μm long and 0.17 to 0.3 μm wide). The isolate grows heterotrophically on sugars and ferments d-galactose, d-glucose, d-fructose, d-glucosamine, and N-acetyl-d-glucosamine to acetate, ethanol, hydrogen, and alanine as major products but only if amino acids are present in the medium. PCR-based screening and comparative 16S rRNA gene sequence analysis revealed that strain Pei191T belongs to the “intestinal cluster,” a lineage of hitherto uncultivated bacteria present in arthropod and mammalian gut systems. It is only distantly related to the previously described so-called “endomicrobia” lineage, which comprises mainly uncultivated endosymbionts of termite gut flagellates. We propose the name “Elusimicrobium minutum” gen. nov., sp. nov. (type strain, Pei191T = ATCC BAA-1559T = JCM 14958T) for the first isolate of this deep-branching lineage and the name “Elusimicrobia” phyl. nov. for the former TG1 phylum.Insect intestinal tracts harbor an enormous diversity of as-yet-uncultivated bacteria that are characterized only by their 16S rRNA gene sequences and whose biology is typically completely obscure (9, 17, 49). As in other environments (45), many of these sequences form deep-branching phylogenetic lineages that do not contain a single isolate (18, 28). One of these lineages is the termite group 1 (TG1), which was originally discovered by Ohkuma and Kudo (37) and recognized as a phylum-level group (candidate division) by Hugenholtz et al. (20). TG1 bacteria form a major proportion of the microbial community in the hindgut of lower termites (17, 69), where they inhabit the cytoplasm of the intestinal flagellates (38, 53). These so-called “endomicrobia” are specific for the respective flagellate species (21) and, at least in the case of “Candidatus Endomicrobium trichonymphae,” are cospeciating with their flagellate host (22).However, the TG1 phylum also comprises several other deep-rooting lineages (>15% 16S rRNA gene sequence divergence). They are present in a variety of environments, including soils, sediments, and intestinal tracts (14). One of these lineages, the “intestinal cluster,” comprises sequences originating exclusively from intestinal habitats, including the termite gut, but is only distantly related to the lineage comprising the “endomicrobia” (14). Here, we report the isolation of a member of the intestinal cluster from the hindgut of a humivorous scarab beetle larva and its physiological and ultrastructural characterization. We propose a new species, “Elusimicrobium minutum” gen. nov. sp. nov., and define the phylogenetic framework for the first cultivated representative of the TG1 phylum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号