首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In the present study, iron oxide magnetite nanoparticles, prepared through a co-precipitation method, were coated with phosphonic acid or iminodicarboxylic acid derivatives of calix[4]arene to modulate their surfaces with different acidic groups. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through sol–gel encapsulation. The catalytic activities and enantioselectivities of the two encapsulated lipases in the hydrolysis reaction of (R/S)-naproxen methyl ester and (R/S)-2-phenoxypropionic acid methyl ester were assessed. The results showed that the activity and enantioselectivity of the lipase were improved when the lipase was encapsulated in the presence of calixarene-based additives; the encapsulated lipase with the phosphonic acid derivative of calix[4]arene had an excellent rate of enantioselectivity against the (R/S)-naproxen methyl and (R/S)-2-phenoxypropionic acid methyl esters, with E = 350 and 246, respectively, compared to the free enzyme. The encapsulated lipases (Fe-Calix-N(COOH)) and (Fe-Calix–P) showed good loading ability and little loss of enzyme activity, and the stability of the catalyst was very good; they only lost 6–11% of the enzyme’s activity after five batches.  相似文献   

2.
The immobilization of lipases within sol–gel derived silica, using multi-walled carbon nanotubes (MWNTs) as additives in order to protect the inactivation of lipase during sol–gel process and to enhance the stability of lipase, was investigated. Three sol–gel immobilized lipases (Candida rugosa, Candida antarctica type B, Thermomyces lanuginosus) with 0.33% (w/w) MWNT showed much higher activities than lipase immobilized without MWNT. The influence of MWNT content and MWNT shortened by acid treatment in the sol–gel process on the activity and stability of immobilized C. rugosa lipase was also studied. In hydrolysis reaction, immobilized lipase containing 1.1% pristine MWNT showed 7 times higher activity than lipase immobilized without MWNT. The lipase coimmobilized with 2.7% shortened MWNT showed 10 times higher activity in esterification reaction, compared with lipase immobilized without MWNT. The lipase coimmobilized with 2.7% shortened MWNT retained 96% of initial activity after 5 times reuse, while the lipase immobilized without MWNT was fully inactivated under the same condition.  相似文献   

3.
Amino acid modified chitosan beads (CBs) for immobilization of lipases from Candida rugosa were prepared by activation of a chitosan backbone with epichlorohydrin followed by amino acid coupling. The beads were analyzed by elemental analysis and solid state NMR with coupling yields of the amino acids ranging from 15 to 60%. The immobilized lipase on unmodified chitosan beads showed the highest immobilization yield (92.7%), but its activity was relatively low (10.4%). However, in spite of low immobilization yields (15–50%), the immobilized lipases on the amino acid modified chitosan beads showed activities higher than that of the unmodified chitosan beads, especially on Ala or Leu modified chitosan beads (Ala-CB or Leu-CB) with 49% activity for Ala-CB and 51% for Leu-CB. The immobilized lipases on Ala-CB improved thermal stability at 55 °C, compared to free and immobilized lipases on unmodified chitosan beads and the immobilized lipase on Ala-CB retained 93% of the initial activity when stored at 4 °C for 4 weeks. In addition, the activity of the immobilized lipase on Ala-CB retained 77% of its high initial activity after 10 times of reuse. The kinetic data (kcat/Km) supports that the immobilized lipase on Ala-CB can give better substrate specificity than the unmodified chitosan beads.  相似文献   

4.
Biodiesel conversion from soybean oil reached a maximum of 70% at 18 h using immobilized 1,3-specificRhizopus oryzae lipase alone. Biodiesel conversion failed to reach 20% after 30 h when immobilized nonspecificCandida rugosa lipase alone was used. To increase the biodiesel production yield, a mixture of immobilized 1,3-specificR. oryzae lipase and nonspecificC. rugosa lipase was used. Using this mixture a conversion of greater than 99% at 21 h was attained. When the stability of the immobilized lipases mixture was tested, biodiesel conversion was maintained at over 80% of its original conversion after 10 cycles.  相似文献   

5.
Zirconium phosphate (ZrP), a low-cost inorganic material with well-defined physicochemical properties, was successfully used as support for immobilizing Candida rugosa lipase by covalent bonding. The immobilized derivative showed high catalytic activity in both aqueous and non-aqueous media. Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy measurements demonstrated that the ZrP fulfilled the morphological requirements for use as a matrix for immobilizing lipases. The free and immobilized lipases were compared in terms of pH, temperature and thermal stability. The immobilized lipase had a higher pH optimum (7.5) and higher optimum temperature (50°C) than the free lipase. Immobilization also increased the thermal stability. The hydrolysis of p-nitrophenyl palmitate (pNPP) by immobilized lipase, examined at 37°C, followed Michaelis–Menten kinetics. Values for Km=1.18 µM and Vmax=325Umg?1 indicated that the immobilized system was subject to mass transfer limitations. The immobilized derivative was also tested under repetitive reaction batches in both ester hydrolysis and synthesis.  相似文献   

6.
Abstract

Porcine pancreatic lipase (PPL), Candida rugosa lipase (CRL), and Castor bean lipase (CBL) were immobilized on celite by deposition from aqueous solution by the addition of hexane. Lipolytic performance of free and immobilized lipases were compared and optimizations of lipolytic enzymatic reactions conditions were performed by free and immobilized derivatives using olive oil as substrate. Afterwards, the influence on lipolysis of castor oil of free lipases and immobilized lipase derivatives have been studied in the case of production of ricinoleic acid. All of the lipases performances were compared and enzyme derivative was selected to be very effective on the production of ricinoleic acid by lipolysis reaction. Various reaction parameters affecting the production of ricinoleic acid were investigated with selected the enzyme derivative.

The maximum ricinoleic acid yield was observed at pH 7–8, 50°C, for 3 hours of reaction period with immobilized 1,3-specific PPL on celite. The kinetic constants Km and Vmax were calculated as 1.6 × 10?4 mM and 22.2 mM from a Lineweaver–Burk plot with the same enzyme derivative. To investigate the operational stability of the lipase, the three step lipolysis process was repeated by transferring the immobilized lipase to a substrate mixture. As a result, the percentange of conversion after usage decreased markedly.  相似文献   

7.
The objective of this study was to prepare cross-linked β-cyclodextrin polymers for immobilization of Candida rugosa lipase. The structures of synthesized macrocyclic compounds were characterized by Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and scanning electron microscope (SEM) techniques. Properties of the immobilized systems were assessed and their performance on hydrolytic reaction were evaluated and compared with the free enzyme. The influence of activation agents (glutaraldehyde (GA) and hexamethylene diisocyanate (HMDI)) and thermal and pH stabilities of the biocatalyst was evaluated. After the optimization of immobilization process, the physical and chemical characterization of immobilized lipase was performed. Obtained data showed that the immobilized enzyme seemed better and offered some advantages in comparison with free enzyme. It can be observed that the free lipase loses its initial activity within around 80 min at 60 °C, while the immobilized lipases retain their initial activities of about 56% by HMDI and 82% by GA after 120 min of heat treatment at 60 °C.Results showed that the specific activity of the immobilized lipase with glutaraldehyde was 62.75 U/mg protein, which is 28.13 times higher than that of the immobilized lipase with HMDI.  相似文献   

8.
Lipases from six different sources were immobilized on Celite and five types of salt. The transesterification activities in hexane for lipases immobilized on EDTA-Na2 increased by 463% for the lipase from Candida rugosa (CRL), 2700% for the lipase from Candida sp. (CSL) and 1215% for the lipase from Pseudomonas sp. (PSL), compared to the salt-free enzyme. With 0.5% sucrose for CRL or 1% sorbitol for PSL as the lyoprotectant during lyophilization process, transesterification activity increased by 100% and 13%, respectively, compared to the immobilized enzyme on EDTA-Na2 without lyoprotectant.  相似文献   

9.
Candida rugosa lipase was immobilized on magnetic nanoparticles supported ionic liquids having different cation chain length (C1, C4 and C8) and anions (Cl, BF4 and PF6). Magnetic nanoparticles supported ionic liquids were obtained by covalent bonding of ionic liquids–silane on magnetic silica nanoparticles. The particles are superparamagnetic with diameter of about 55 nm. Large amount of lipase (63.89 mg/(100 mg carrier)) was loaded on the support through ionic adsorption. Activity of the immobilized lipase was examined by the catalysis of esterification between oleic acid and butanol. The activity of bound lipase was 118.3% compared to that of the native lipase. Immobilized lipase maintained 60% of its initial activity even when the temperature was up to 80 °C. In addition, immobilized lipase retained 60% of its initial activity after 8 repeated batches reaction, while no activity was detected after 6 cycles for the free enzyme.  相似文献   

10.
The present article describes formation of excipient-CRL complex from water soluble calix[4]arene derivative (3 as excipient) and Candida rugosa lipase (CRL), which is proposed as a reusable form of enzyme that is free from steric and diffusion limitations associated with those enzymes immobilized onto porous solid supports. The excipient-CRL could completely hydrolyze 50 mM p-nitrophenyl palmitate (p-NPP) in Tris–HCl buffer at a wide range of temperatures, i.e. 30–80 °C. It is stable under stirred conditions and could be reused multiple times without loss of enzyme activity. It was observed that excipient-CRL complex shows a significant effect on the enzyme activity with an enhancement in thermal stability, while pH and temperature affect the activity of excipient-CRL as well as free CRL. Consequently, the excipient-CRL was found more active than free CRL for the hydrolysis of p-NPP in respect of its reusability.  相似文献   

11.
Lipase from Candida rugosa (CRL) was encapsulated within a chemically inert sol-gel support in the presence of calix(aza)crowns as the new additives. The catalytic activity of the encapsulated lipases was evaluated both in the hydrolysis of p-nitrophenyl palmitate (p-NPP) and the enantioselective hydrolysis of racemic Naproxen methyl ester. It has been observed that the percent activity yields of the calix(aza)crown based encapsulated lipases were higher than that of the free lipase. Improved enantioselectivity was observed with the calix(aza)crown-based encapsulated lipases as compared to encapsulated free lipase. The reaction of Naproxen methyl ester resulted in 48.4% conversion for 24 h and 98% enantiomeric excess for the S-acid, corresponding to an E value of >300 (= 166 for the encapsulated free enzyme). Moreover, the encapsulated lipases were still retained about 18% of their conversion ratios after the sixth reuse in the enantioselective reaction.  相似文献   

12.
Abstract

Commercial lipases from the yeast Candida rugosa have been compared with two recombinant C. rugosa lipases, rCRL1 and rCRL1lid3, with respect to their immobilization and exploitation in biotransformations aimed at the synthesis of pyrimidine nucleosides. Immobilization on octyl-agarose and decaoctyl-Sepabeads but not on Eupergit® C gave comparable results to commercial lipases for rCRL1, while only a low percentage (12%) of rCRL1lid3 was efficiently immobilized. When immobilized on decaoctyl-Sepabeads, rCRL1 showed a markedly higher stability to chemical inactivation, since it could maintain 100% activity after 180 h incubation in 30% (v/v) acetonitrile. Hydrolysis of peracylated uridine and cytidine and their fluorinated counterparts proceeded with high regioselectivity and good yield, and even improved when rCRL1 was immobilized on decaoctyl-Sepabeads.  相似文献   

13.

In the present work, we have investigated biochemical thermo-kinetic stability of lipases immobilized on a biocompatible polymeric material. Immobilization of lipase Candida rugosa (CRL) was carried out on biocompatible blend of poly vinyl alcohol (PVA) and chitosan (CHY) support via entrapment and glutardehyde (Glu) cross-linking method to produce PVA:CHY:CRL and PVA:CHY:Glu:CRL as robust biocatalyst. These immobilized lipases were characterized by various physico-biochemical characterization techniques. Later on, thermal and solvent stability of polymer immobilized lipase was determined in term of half-life time (t 0.5), D values, enthalpy (ΔH°), entropy (ΔS°), and free energy (ΔG°) of deactivation at different temperatures and in various solvents. The thermodynamic deactivation stability trend was found as: cross-linked lipase CRL > entrapped lipase CRL > free lipase CRL. Moreover, kinetic parameters, such as K m, V max, and catalytic efficiency, were also determined to understand the kinetic features. The polymer immobilized enzyme was reused to investigate the economic viability of the developed biocatalyst.

  相似文献   

14.
Diffuse reflectance and luminescence techniques were used to study the photophysics and photochemistry of pyrene within p-tert-butylcalix[n]arenes with n = 4, 6, and 8, and to study their ability to form inclusion complexes in heterogeneous media. Evidences for inclusion complex formation were found for the three hosts under study. Ground state diffuse reflectance results have shown the formation of ground state dimers of pyrene inside the cavity of calix[6]arene and calix[8]arene, with this feature much more evident for calix[6]arene. For calix[4]arene, only a monomer fits inside the cavity and the presence of pyrene microcrystals outside the cavity was detected. A luminescence lifetime distribution analysis was performed, revealing the presence of prompt emissions from the pyrene microcrystals outside the cavity in the case of calix[4]arene and from the constrained dimers inside the cavities of calix[6]arene and calix[8]arene. Transient absorption results have shown the presence of pyrene radical cation and also of trapped electrons for the three hosts under study. The formation of the phenoxyl radical of the calixarene following the laser pulsed excitation of pyrene at 355 nm is increased for calix[6]arene and calix[8]arene. This feature is particularly relevant for calix[6]arene, suggesting a very favourable situation for the hydrogen atom abstraction to occur. The analysis of the degradation products revealed the presence of hydroxypyrene as a major photodegradation product for the three hosts. Dihydro-hydroxypyrene was also formed in the case of calix[6]arene and calix[8]arene. The formation of the calixarene's phenoxyl radical and subsequent hydrogen abstraction is consistent with the formation of dihydro-dihydroxypyrene.  相似文献   

15.
Aggregation agent type and concentration, lipase and glutaraldehyde concentration, and pH are able to affect the formation of cross-linked lipase. The carrier-free immobilized Candida rugosa lipase with a particle size of 40–50 μm showed higher activity than that of the lipase with other particle sizes. The carrier-free immobilized C. rugosa lipase can keep 86% original lipase activity (0.018 g g−1 min−1). The enantioselectivity of the carrier-free immobilized lipase (23.3) was about 1.8 times as much as that of the native lipase (13.0) in kinetic resolution of ibuprofen racemic mixture.  相似文献   

16.
Summary Semipurified lipase of Candida rugosa and pure isoforms (lipase A and lipase B) have been chemically modified using two methodologies based on polyethyleneglycol (PEG). The activation of PEG with p-NO2-phenylchloroformate gives better biocatalysts than those obtained with cyanuric chloride-PEG in the enzymatic activity of the lipase. The chemical modification increases the stability of pure lipases in isooctane at 50 °C.  相似文献   

17.
Abstract

The aim of this study was to prepare the encapsulation of Candida rugosa lipase (CRL) with magnetic sporopollenin. The sporopollenin was covalent immobilized onto magnetic nanoparticles (Fe3O4), grafted amino (APTES), or epoxy groups (EPPTMS). CRL was sol-gel encapsulated in the presence of magnetic sporopollenin/Fe3O4 nanoparticles. The influence of activation agents ([3-(2,3-epoxypropoxy) propyl] trimethoxysilane (EPPTMS), (3-Aminopropyl)triethoxysilane (APTES) and pH and thermal stabilities of the biocatalyst were assessed. Experimental data showed the improved catalytic activity at different pH and temperature values. At 60?°C, free lipase lost its initial activity within 80?min of time, although the encapsulated lipases retained their initial activities of about 65% by APTES and 60% by EPPTMS after 120?min of heat treatment at 60?°C. The catalytic properties of the encapsulated lipases were utilized to hydrolysis of racemic aromatic carboxylic acid methyl esters (Naproxen and 2-phenoxypropionic acid). The results show that the sporopollenin-based encapsulated lipase (Fe-A-Spo-E) has greater enantioselectivity and conversion in comparison with the encapsulated lipase without supports (lipase-enc).  相似文献   

18.
Three novel lipase-producing microorganisms have been isolated from 526 actinomycete strains by employing screening techniques on solid media. Time-course and scale-up of enzyme production were analyzed. The lipases, produced by microorganisms belonging to the Streptomyces genus, were tested in several reactions in organic medium using unnatural substrates. The lyophilized crude lipases are stable at least for 1 month at 4°C (100% recovered activity). The lipase activity per milliliter of cell culture broth was higher than described in the literature for other lipases from actinomycetes. The three selected lipases displayed better activity than commercial lipase from Candida rugosa in the resolution of chiral secondary alcohols. The lipase from S. halstedii also displayed very good activity in the synthesis of carbamates.  相似文献   

19.
Candida rugosa lipase (CRL) is one of the most widely used lipases. To enhance the catalytic abilities of CRL in both aqueous and non-aqueous phases, hollow silica microspheres (HSMSs) with a pore size of 18.07 nm were used as an immobilization support, and aldehydecontaining dextrans were employed to further cross-link the adsorbed CRL. In the experimental ranges examined, the loading amount of lipase linearly increased to 171 ± 3.4 mgprotein/gsupport with the CRL concentration and all the adsorption equilibriums were reached within 30 min. After simple cross-linking, the tolerance to pH 4.0 ~ 8.0 as well as the thermal stability of immobilized CRL at 40 ~ 80°C were both substantially increased, and 82 ± 2.1% activity remaining after the sixth reuse. The immobilized CRL was successfully applied to the resolution of racemic ibuprofen in non-aqueous phase. The initial reaction rate increased by 1.4- and 3.6-fold compared with the rates of adsorbed and native lipases, respectively. Furthermore, the R-ibuprofen was obtained at ee > 93%, and the enantiomeric ratio reached E > 140 at the conversion of 50 ± 1.5% within 48 h.  相似文献   

20.
The supramolecular compound calix[4]arene C-90 (5,11,17,23-tetra(trifluoro)methyl(phenylsulfonylimino)-methylamino-25,26,27,28-tetrapropoxycalix[4]arene) is shown to efficiently inhibit the ATP hydrolase activity of Ca2+,Mg2+-ATPase in the myometrium cell plasma membrane fraction and also in a preparation of the purified enzyme solubilized from this subcellular fraction. The inhibition coefficient I 0.5 values were 20.2 ± 0.5 and 58.5 ± 6.4 μM for the membrane fraction and the solubilized enzyme, respectively. The inhibitory effect of calix[4]arene C-90 was selective comparatively to other ATPases localized in the plasma membrane: calix[4]arene C-90 did not influence the activities of Na+,K+-ATPase and “basal” Mg2+-ATPase. The inhibitory effect of calix[4]arene C-90 on the Ca2+,Mg2+-ATPase activity was associated with the cooperative action of four trifluoromethylphenyl sulfonylimine (sulfonylamidine) groups oriented similarly on the upper rim of the calix[4]arene macrocycle (the calix[4]arene “bowl”). The experimental findings seem to be of importance for studies, using calix[4]arene C-90, of membrane mechanisms of regulation of calcium homeostasis in smooth muscle cells and also for investigation of the participation of the plasma membrane Ca2+-pump in control of electro- and pharmacomechanical coupling in myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号