首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Analogues of neuropeptide Y (NPY) containing small N- and C-terminal segments linked via flexible spacer arms were found to exhibit receptor binding affinity constants almost as high as NPY as well as post- and presynaptic NPY-agonistic activities. One of the most active analogues contains N-terminal NPY segment 1-4 linked via epsilon-aminocaproic acid (Aca) to the C-terminal partially alpha-helical peptide amide segment 25-36. NPY 1-4-Aca-25-36 is the first highly potent NPY agonist, which is of considerably reduced size in comparison to the native hormone. The analogues are accessible by solid-phase synthesis using Fmoc strategy.  相似文献   

2.
Peptide YY (PYY) not only has distinct sequence homology with neuropeptide Y (NPY) and avian pancreatic polypeptide (APP), but it also exhibits both NPY- and APP-like biological activities. We synthesized two analogues of PYY, A1 and A2, with modified N-terminal regions, and compared their chemical and biological properties to those of PYY and the C-terminal fragment of PYY, (13-36)PYY. This study shows that there is a good correlation between the stability of amphiphilic alpha-helical structure and the biological activity of these peptides. A CD study of (13-36)PYY in mixed H2O and trifluoroethanol (TFE) solutions indicated a significant increase in alpha-helical segments (26-79%) with increasing TFE proportions. Since the fragment (13-36)PYY had potent activity in the rat vas deferens (RVD) assay, the secondary structure is possibly required on the RVD cell surface receptors. The analogues, A1 and A2, were designed to increase the stability of the alpha-helical structures by incorporation of modified N-terminal regions. The CD studies and the RVD assays of A1 and A2, suggest that the amphiphilic alpha-helical structures are stabilized by intramolecular hydrophobic interactions with the N-terminal regions and/or by intermolecular hydrophobic interactions in the self-association process, and subsequently potentiate the activities of the peptides compared to those of PYY and (13-36)PYY.  相似文献   

3.
The effects of neuropeptide Y (NPY), peptide YY (PYY), desamido-NPY and five C-terminal fragments of NPY or PYY were tested on different smooth muscle preparations in vitro. The fragments were NPY 19-36, NPY 24-36, PYY 13-36, PYY 24-36 and PYY 27-36. NPY and PYY appear to exert three principally different effects at the level of the sympathetic neuroeffector junction. Firstly, they have a direct post-junctional effect, leading to constriction of certain blood vessels; this was studied on the guinea-pig iliac vein. Secondly, they potentiate the response to various vasoconstrictors; this was studied on the rabbit femoral artery and vein, using noradrenaline and histamine, respectively, as agonists. Thirdly, NPY and PYY act prejunctionally in that they suppress the release of noradrenaline from sympathetic nerve endings upon stimulation; this was studied in the rat vas deferens. NPY and PYY were approximately equipotent in constricting the guinea-pig iliac vein, while desamido-NPY and the fragments were without effect. Desamido-NPY and the fragments were ineffective also in potentiating the response to noradrenaline in the rabbit femoral artery, nor did they potentiate the response to histamine in the rabbit femoral vein. NPY and PYY potentiated the response to noradrenaline in the artery, as well as the response to histamine in the vein. The NPY- and PYY-induced suppression of noradrenaline release from the prostatic portion of the rat vas deferens was reproduced by PYY 13-36 but not by the shorter fragments nor by desamido-NPY. In conclusion, a C-terminal portion seems to be sufficient for exerting the prejunctional effect of NPY and PYY, while the whole sequence seems to be required for post-junctional (direct and modulatory) effects. An amidated C-terminal is crucial for maintaining the biological activity of NPY. Desamido-NPY and the fragments that were inactive as agonists also seemed inactive as antagonists.  相似文献   

4.
Neuropeptide Y (NPY) elicits eating when injected directly into the paraventricular nucleus (PVN) or perifornical hypothalamus (PFH). To identify the essential regions of the NPY molecule and the relative contributions of Y1 and Y2 receptors, the eating stimulatory potency of NPY was compared to that of its fragments, analogues, and agonists when injected into the PVN or PFH of satiated rats. Additionally, antisera to NPY was injected into the cerebral ventricles (ICV) to determine whether passive immunization suppresses the eating produced by mild food deprivation. Tests with NPY fragments revealed that NPY(2-36) was surprisingly potent, nearly three times more so than intact NPY. In contrast, fragments with further N-terminal deletions were progressively less effective or ineffective, as was the free acid form of NPY. Collectively, this suggests that both N- and C-terminal regions of NPY participate in the stimulation of eating. Tests with agonists revealed that the putative Y1 agonist [Pro34]NPY elicited a strong dose-dependent feeding response, while the putative Y2 agonist, C2-NPY, had only a small effect at the highest doses. Although this suggests mediation by Y1 receptors, the uncharacteristically high potency of NPY(2-36) may additionally suggest that the receptor subtype underlying feeding is distinct from that mediating other responses. Additional results revealed that ICV injection of antisera to NPY, which should inactivate endogenous NPY, produced a concentration-dependent suppression of eating induced by mild food deprivation. This finding, along with published work demonstrating enhanced levels of hypothalamic NPY in food-deprived rats, suggests that endogenous NPY mediates the eating produced by deprivation.  相似文献   

5.
C-terminal analogues of neuropeptide Y (NPY) of small molecular size have been synthesized. The influence of chain length, single or multiple amino acid substitution, and segment substitutions on receptor binding, pre- and postsynaptic biological activity, and conformational properties have been investigated. Receptor binding and in vivo assays revealed biological activity for NPY Ac-25-36 that increased with increasing alpha-helicity. In attempts to stabilize the alpha-helical content, three independent types of modified NPY Ac-25-36 analogues were synthesized. Strong agonistic activities could be detected in a series of discontinuous analogues, which are constructs of N-terminal parts linked via different spacer molecules to C-terminal segments. One of the most active molecules was NPY 1-4-Aca-25-36 (Aca, epsilon-aminocaproic acid). For the first time conformational properties of a series of small NPY analogues have been investigated by CD, and correlated with biological activity and receptor binding. A C-terminal dodecapeptide segment of NPY with an amount of 50% substitution to the native C-terminal sequence of NPY was found to exhibit significant receptor binding.  相似文献   

6.
Neuropeptide Y (NPY) is widely distributed in central and peripheral neurons. In sympathetic postganglionic neurons, NPY coexists with noradrenaline. NPY and its structural relative peptide YY (PYY) appear to exert three principally different effects at the sympathetic neuroeffector junction. Firstly, NPY has a direct postjunctional effect; this effect is manifested as a vasoconstriction when studied on the guinea pig iliac vein. Secondly, NPY has an indirect postjunctional effect in that it potentiates the response to various vasoconstrictors; this was studied on the rabbit femoral artery and vein, using noradrenaline and histamine, respectively, as vasoconstrictors. Thirdly, NPY acts prejunctionally in that it suppresses the release of noradrenaline from sympathetic nerve terminals; this was studied in the rat vas deferens. The aim of the investigation was to examine whether the three effects of NPY were mediated by the same type of receptor. For this purpose, we examined the effects of a series of NPY-related peptides, namely NPY, PYY, desamido-NPY, and five C-terminal fragments (NPY 19-36, NPY 24-36, PYY 13-36, PYY 24-36 and PYY 27-36). NPY and PYY were active in all three assay systems. The C-terminal amide appears to be crucial for maintaining the biological activity, since desamido-NPY was inactive in the three test systems. Interestingly, PYY 13-36 was almost as active as NPY and PYY in suppressing the electrically evoked contractions of the vas deferens; PYY 13-36 was inactive in the two other test systems. None of the shorter fragments had any biological activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Pre- and postjunctional actions of neuropeptide Y and related peptides   总被引:4,自引:0,他引:4  
The effects of neuropeptide Y (NPY) and related peptide fragments on blood pressure and vagal action at the heart were compared in the anaesthetized rat. A change in vagal action was taken as a measure of presynaptic activity and a change in blood pressure was taken as a measure of postsynaptic activity. NPY, NPY-(13-36), PYY-(13-36), des-Ser22-NPY-(13-36) and a stabilized 13-36 analogue of NPY (ANA NPY) all exerted pressor actions and attenuated vagal action at the heart. The maximum vagal inhibitory or presynaptic action in order of potency was NPY, ANA-NPY, PYY-(13-36) significantly greater than NPY-(13-36), des-Ser22-NPY-(13-36). The order of potency for the half time of this effect was NPY, ANA-NPY significantly longer than PYY-(13-36) and NPY-(13-36), which were significantly longer than des Ser22-NPY-(13-36). For the pressor or postsynaptic effects, NPY increased blood pressure significantly more and for a longer duration than all the 13-36 fragments, which were not demonstrably different in this respect. These results are consistent with the proposal that there are two populations of NPY receptors. The C-terminal flanking peptide of NPY (CPON) and desamido-NPY had no effect on either vagal action at the heart or on blood pressure.  相似文献   

8.
In anesthetized, spontaneously breathing rats, microinjections of selective agonists of neuropeptide Y (NPY) receptor subtypes were made into the medial region of the caudal nucleus of the solitary tract (NTS) at the level of the area postrema. This region of the rat NTS exhibits very high densities of NPY binding sites. Microinjections of the long C-terminal NPY fragment, NPY(13-36), a selective agonist at Y2 receptors, into the caudal NTS elicited pronounced, dose-related reductions in blood pressure and respiratory minute volume. Moreover, the specific pattern of cardiorespiratory responses elicited by NPY(13-36) was remarkably similar, over approximately the same dosage range, with the cardiorespiratory response pattern elicited by intact NPY. In contrast to the potent NTS-mediated responses evoked by NPY(13-36), similar microinjections conducted with either NPY(26-36), an inactive C-terminal NPY fragment, or [Leu31,Pro34]NPY, a NPY analog with specific agonist properties at Y1 receptors, into the same caudal NTS sites did not appreciably affect cardiorespiratory parameters even at 10-20-fold higher dosages. The present results with selective agonists for NPY receptor subtypes suggest that the depressor responses and reductions in minute volume elicited by microinjections of intact NPY and NPY(13-36) were mediated by Y2 receptors in the caudal NTS, likely distributed at presynaptic sites in the medial region of the subpostremal NTS.  相似文献   

9.
Neuropeptide Y (NPY) and pancreatic polypeptide (PP) bind to the Y-receptors with very different affinities: NPY has high affinity for the receptors Y(1), Y(2) and Y(5), while PP binds only to Y(4)-receptor with picomolar affinity. By exchanging of specific amino acid positions between the two peptides, we developed 38 full-length PP/NPY chimeras with binding properties that are completely different from those of the two native ligands. Pig NPY (pNPY) analogs containing the segment 19-23 from human PP (hPP) bound to the Y-receptors with much lower affinity than NPY itself. The affinity of the hPP analog containing the pNPY segments 1-7 and 19-23 was comparable to that of pNPY at the Y(1)- and Y(5)-receptor subtypes, and to that of hPP at the Y(4)-receptor. Furthermore, the presence of the segments 1-7 from chicken PP (cPP) and 19-23 from pNPY within the hPP sequence led to a ligand with IC(50) of 40 pM at the Y(5)-receptor. This is the most potent Y(5)-receptor ligand known so far, with 15-fold higher affinity than NPY.  相似文献   

10.
Neuropeptide Y (NPY) and the pancreatic polypeptide (PP) are members of the neuropeptide Y family of hormones. They bind to the Y receptors with very different affinities: Whereas PP is highly selective for the Y(4) receptor, NPY displays highest affinites for Y(1), Y(2), and Y(5) receptor subtypes. Introducing the NPY segment 19-23 into PP leads to an increase in affinity at the Y(1) and Y(2) receptor subtypes whereas the exchange of this segment from PP into NPY leads to a large decrease in affinity at all receptor subtypes. PP displays a very stable structure in solution, with the N terminus being back-folded onto the C-terminal alpha-helix (the so-called PP-fold). The helix of NPY is less stable and the N terminus is freely diffusing in solution. The exchange of this segment, however, does not alter the PP-fold propensities of the chimeric peptides in solution. The structures of the phospholipid micelle-bound peptides serving to mimic the membrane-bound species display segregation into a more flexible N-terminal region and a well-defined alpha-helical region. The introduction of the [19-23]-pNPY segment into hPP leads to an N-terminal extension of the alpha-helix, now starting at Pro(14) instead of Met(17). In contrast, a truncated helix is observed in [(19)(-)(23)hPP]-pNPY, starting at Leu(17) instead of Ala(14). All peptides display moderate binding affinities to neutral membranes (K(assoc) in the range of 1.7 to 6.8 x 10(4) mol(-)(1) as determined by surface plasmon resonance) with the differences in binding being most probably related to the exchange of Arg-19 (pNPY) by Glu-23 (hPP). Differences in receptor binding properties between the chimeras and their parental peptides are therefore most likely due to changes in the conformation of the micelle-bound peptides.  相似文献   

11.
Hipposin is a potent 51-mer antimicrobial peptide (AMP) from Atlantic halibut with sequence similarity to parasin (19-mer catfish AMP), buforin I (39-mer toad AMP), and buforin II (an active 21-mer fragment of buforin I), suggesting that the antimicrobial activity of these peptides might all be due to a common antimicrobial sequence motif. In order to identify the putative sequence motif, the antimicrobial activity of hipposin fragments against 20 different bacteria was compared to the activity of hipposin, parasin and buforin II. Neither parasin nor the 19-mer parasin-like fragment HIP(1-19) (differs from parasin in only three residues) that is derived from the N-terminal part (residues 1-19) of hipposin had marked antimicrobial activity. In contrast, the fragment HIP(16-36) (identical to buforin II) that is derived from the middle part of hipposin (residues 16-36) had such activity, indicating that this part of hipposin contained an antimicrobial sequence motif. The activity was enhanced when the parasin-like N-terminal sequence was also present, as the fragment HIP(1-36) which consists of residues 1-36 in hipposin was more potent than HIP(16-36). Extending HIP(1-36) with three C-terminal residues-thereby constructing the buforin I-like peptide HIP(1-39) (differs from buforin I in only three residues)-increased the activity further. Also, the presence of the C-terminal part of hipposin (residues 40-51) increased the activity, as hipposin was clearly the most potent of all the peptides that were tested. Circular dichroism structural analysis of the peptides revealed that they were all non-structured in aqueous solution. However, trifluoroethanol and the membrane-mimicking entities dodecylphosphocholine micelles and negatively charged liposomes induced (amphiphilic) alpha-helical structuring in hipposin. Judging from the structuring of the individual fragments, the tendency for alpha-helical structuring appeared to be greater in the C-terminal and the buforin II-like middle region of hipposin than in the parasin-like N-terminal region.  相似文献   

12.
Neuropeptide Y (NPY) is an important regulator of energy balance in mammals through its orexigenic, antithermogenic, and insulin secretagogue actions. We investigated the regulation of endogenous NPY release from rat hypothalamic slices by NPY receptor ligands and calcium channel antagonists. High-potassium stimulation (60 mM) of the slices produced a calcium-dependent threefold increase in NPY release above basal release. The Y2 receptor agonists NPY(13-36) and N-acetyl[Leu28,Leu31]NPY(24-36), the Y4 agonist rat pancreatic polypeptide (rPP), and the Y4/Y5 agonist human pancreatic polypeptide (hPP) significantly reduced both basal and stimulated NPY release. NPY(13-36)-induced reduction of NPY release could be partially prevented in the presence of the weak Y2 antagonist T4-[NPY(33-36)]4, whereas the hPP- and rPP-induced inhibition of release was not affected by the Y5 antagonist CGP71683A or the Y1 antagonist BIBP3226. The selective Y1, Y2, and Y5 antagonists had no effect on either basal or potassium-stimulated release when administered alone. The calcium channel inhibitors omega-conotoxin GVIA (N-type), omega-agatoxin TK (P/Q-type), and omega-conotoxin MVIIC (Q-type) all significantly inhibited potassium-stimulated NPY release, without any effect on basal release, whereas nifedipine had no effect on either basal or stimulated release. Addition of both omega-conotoxin GVIA and omega-agatoxin TK together completely inhibited the potassium-stimulated release. In conclusion, we have demonstrated that NPY release from hypothalamic slices is calcium-dependent, involving N-, P-, and Q-type calcium channels. NPY release is also inhibited by Y2 agonists and rPP/hPP, suggesting that Y2 and Y4 receptors may act as autoreceptors on NPY-containing nerve terminals.  相似文献   

13.
Subtypes of the neuropeptide Y (NPY) receptor in the rat brain were identified by the use of the selective Y-1 analog, [Leu34-Pro34] NPY. In rat brain homogenate binding studies, [Leu31-Pro34] NPY was found to produce a partial inhibition of 100 pM 125I-labeled peptide YY (PYY) binding with a plateau at 50-1000 nM [Leu31-Pro34] NPY resulting in a 70% inhibition of binding. The C-terminal fragment NPY 13-36, a putative Y-2 agonist, exhibited very little selectivity in rat brain homogenates. Scatchard analysis of 125I-labeled PYY binding to rat brain homogenate yielded biphasic plots with Kd values of 40 and 610 pM. Inclusion of 100 nM [Leu31-Pro34] NPY was found to eliminate the low affinity component of 125I-labeled PYY binding leaving a single, high affinity binding site with a Kd of 68 pM. In autoradiographic studies, displacement curves indicated that [Leu31-Pro34] NPY completely inhibited binding in the cerebral cortex with little effect on the binding in the hypothalamus. On the other hand NPY 13-36 inhibited binding in the hypothalamus at low concentrations but required higher concentrations to inhibit binding in the cerebral cortex. Other brain regions such as the hippocampus, appeared to contain both subtypes. Subsequent to these studies, a quantitative autoradiographic map was conducted using 50-100 pM 125I-labeled PYY in the presence and absence of [Leu31-Pro34] NPY which produced a selective displacement of binding in certain distinct brain regions. These areas included the cerebral cortex, certain thalamic nuclei and brainstem while ligand binding was retained in other brain regions including the zona lateralis of the substantia nigra, lateral septum, nucleus of the solitary tract and the hippocampus. Numerous brain regions appeared to contain both receptor subtypes. Therefore, the Y-1 and Y-2 receptor subtypes exhibited a somewhat distinct distribution in the brain. In addition, 125I-labeled PYY appears to label the Y-2 receptor with relatively higher affinity when compared to the Y-1 receptor.  相似文献   

14.
The rat glucocorticoid-induced receptor (rGIR) is an orphan G protein-coupled receptor awaiting pharmacological characterization. Among known receptors, rGIR exhibits highest sequence similarity to the neuropeptide Y (NPY)-Y(2) receptor (38-40%). The pharmacological profile of rGIR was investigated using (125)I-PYY(3-36), a Y(2)-preferring radioligand and several NPY analogs. rGIR displayed a similar displacement profile as reported for the Y(2) receptor, in that the Y(2)-selective C terminus fragments of NPY and PYY (NPY(3-36) and PYY(3-36)) showed high affinity binding and activation of rGIR (low nanomolar range). The rank order potency for displacement was NPY(3-36)>PYY(3-36)=NPY>NPY(13-36)>Ac, Leu NPY(24-36)>[D-Trp(32)]-NPY>Leu(31), Pro(34)-NPY=hPP. NPY and Y(2)-selective agonists NPY(3-36) and PYY(3-36) led to significant activation of (35)S-GTPgammaS binding to rGIR transfected cells. BIIE0246, a specific Y(2) antagonist, displaced (125)I-PYY(3-36) binding to rGIR with high affinity (95nM). Activation of (35)S-GTPgammaS binding by Y(2)-selective agonist in rGIR transfected cells was also completely abolished by BIIE0246. Our data report, for the first time, an interaction of NPY ligands with rGIR expressed in vitro, and indicate similarities between GIR and the NPY-Y(2) receptor.  相似文献   

15.
Pancreatic polypeptide (PP) and neuropeptide Y (NPY) belong to a family of regulatory peptides which hold a distinct tertiary structure, the PP-fold, even in dilute aqueous solution. High-affinity receptors, specific for both PP and NPY, are described on the rat phaeochromocytoma cell line, PC-12. The binding of [125I-Tyr36]PP to PC-12 cells was inhibited by concentrations of unlabeled PP which correspond to physiological concentrations of the hormone, 10(-11)-10(-9) mol/l. The affinity of the receptor for the neuropeptide, NPY, was 10(2)-times lower than that of the PP receptor. C-terminal fragments of both PP (PP24-36) and NPY (NPY13-36) were between 10(2)- and 10(3)-times less potent in displacing the radiolabeled 36-amino-acid peptides from their respective receptors. It is concluded that PC-12 cells are suited for structure-function studies of the PP-fold peptides and studies on the cellular events following cellular binding of PP-fold peptides.  相似文献   

16.
The physiological role of neuropeptide Y (NPY) and of specific NPY receptors in regulating the intestinal peristaltic reflex was examined in three-compartment flat-sheet preparations of rat colon. Graded muscle stretch or mucosal stimulation applied to the central compartment inhibited NPY release in the orad compartment where ascending contraction was measured. NPY and the Y1-receptor agonist [Leu31, Pro34]NPY inhibited, whereas the selective Y1-receptor antagonist BIBP 3226 augmented ascending contraction and substance P (SP) release in the orad compartment induced by muscle stretch or mucosal stimulation. Neither agonist nor antagonist had any effect on descending relaxation or VIP release in the caudad compartment. The Y2-receptor agonist NPY13-36 and antagonist BIIE 0246 had no effect on peptide release or mechanical response. The results indicate that suppression of a tonic inhibitory influence of NPY neurons on excitatory neurotransmitter release contributes substantially to the orad contractile phase of the peristaltic reflex. The effect of NPY on neurotransmitter release is mediated by Y1 receptors.  相似文献   

17.
The occurrence, molecular characteristics and biological function of neuropeptide Y (NPY) has been studied in the female genital tract of non-pregnant rabbits. NPY immunoreactivity was demonstrated throughout the genital tract. Maximum concentrations were found in the salpinx (fallopian tube), 570 pmol/g (median) lower within the uterine body (1.5 pmol/g), cervix (2.8 pmol/g) and vagina (3.6 pmol/g). In vitro, NPY had a dose-dependent stimulatory effect on non-vascular smooth muscle (ED50 10(-9) mol/l) as studied by myometrial tension recordings. In vivo, NPY (50 pmol/min.kg) induced a dose-related, non-adrenergic and non-cholinergic decrease in myometrial blood flow. Small C-terminal (NPY31-36) or N-terminal (NPY1-16) fragments of NPY had no effect on myometrial blood flow. NPY was found to interact with the smooth muscle effect of VIP; the presence of VIP (10(-8) mol/l) counteracted the contraction elicited by NPY (10(-8) mol/l) returning the response to control value. VIP and NPY displayed a similar physiological antagonism on myometrial blood flow. There was a clear difference in the response to VIP and NPY as the effect of NPY on myometrial blood flow first appeared after a lag period of 2 minutes whereas the effect of VIP was almost instantaneous. It is concluded that NPY and VIP may interact in the local nervous control of genital functions.  相似文献   

18.
The pancreatic polypeptide (PP), a 36-residue, C-terminally amidated polypeptide hormone is a member of the neuropeptide Y (NPY) family. Here, we have studied the structure and dynamics of bovine pancreatic polypeptide (bPP) when bound to DPC-micelles as a membrane-mimicking model as well as the dynamics of bPP in solution. The comparison of structure and dynamics of bPP in both states reveals remarkable differences. The overall correlation time of 5.08ns derived from the 15N relaxation data proves unambiguously that bPP in solution exists as a dimer. Therein, intermolecular as well as intramolecular hydrophobic interactions from residues of both the amphiphilic helix and of the back-folded N terminus contribute to the stability of the PP fold. The overall rigidity is well-reflected in positive values for the heteronuclear NOE for residues 4-34.The membrane-bound species displays a partitioning into a more flexible N-terminal region and a well-defined alpha-helical region comprising residues 17-31. The average RMSD value for residues 17-31 is 0.22(+/-0.09)A. The flexibility of the N terminus is compatible with negative values of the heteronuclear NOE observed for the N-terminal residues 4-12 and low values of the generalized order parameter S(2). The membrane-peptide interface was investigated by micelle-integrating spin-labels and H,2H exchange measurements. It is formed by those residues which make contacts between the C-terminal alpha-helix and the polyproline helix. In contrast to pNPY, also residues from the N terminus display spatial proximity to the membrane interface. Furthermore, the orientation of the C terminus, that presumably contains residues involved in receptor binding, is different in the two environments. We speculate that this pre-positioning of residues could be an important requirement for receptor activation. Moreover, we doubt that the PP fold is of functional relevance for binding at the Y(4) receptor.  相似文献   

19.
The solution structure and self-association behaviour of a 13 residue peptide analogue of the C-terminal region of human neuropeptide Y (NPY) have been investigated. NMR analysis of Ac[Leu(28,31)]NPY(24-36), a potent Y2 receptor agonist, shows that it is unstructured in aqueous solution at 5-20 degrees C, but forms a well-defined helix (encompassing residues 25-35) in 40% trifluoroethanol/water at 20 degrees C. Sedimentation experiments show that, in contrast to many peptides in aqueous trifluoroethanol, Ac[Leu(28,31)]NPY(24-36) associates to form a trimer or, more likely, a tetramer in 40% trifluoroethanol, even though it is monomeric in water. This is consistent with the observation of inter-molecular nuclear Overhauser enhancements in trifluoroethanol. Possible models of the associated form that are consistent with the NMR data are described. The relevance of the helical structure observed in trifluoroethanol to the structure of this peptide bound to the NPY Y2 receptor is discussed.  相似文献   

20.
Neuropeptide Y (NPY) is one of the most abundant neuropeptides in the mammalian brain and acts in humans via at least three receptor subtypes: Y1, Y2, and Y5. Whereas selective agonists and antagonists are known for the Y2- and Y5-receptors, the Y1-receptor still lacks a highly selective agonist. This work presents the first NPY-based analogues with Y1-receptor preference and agonistic properties. Furthermore, the importance of specific amino acids of NPY for binding to the Y-receptor subtypes is presented. Amongst the analogues tested, [Phe7,Pro34]pNPY (where pNPY is porcine neuropeptide Y) showed the most significant Y1-receptor preference (> 1 : 3000-fold), with subnanomolar affinity to the Y1-receptor, and Ki values of approximately 30 nM for the Y2- and Y5-subtype, respectively. Variations of position 6, especially [Arg6,Pro34]pNPY and variations within positions 20-23 of NPY were found to result in further analogues with significant Y1-receptor preference (1 : 400-1 : 2000). In contrast, cyclo S-S [Cys20,Cys24]pNPY was found to be a highly selective ligand at the Y2-receptor, binding only threefold less efficiently than NPY. Analogues containing variations of positions 31 and 32 showed highly reduced affinity to the Y1-receptor, while binding to the Y5-receptor was affected less. Inhibition of cAMP-accumulation of selected peptides with replacements within position 20-23 of NPY showed preserved agonistic properties. The NPY analogues tested give insights into ligand-receptor interaction of NPY at the Y1-, Y2- and Y5-receptor and contribute to our understanding of subtype selectivity. Furthermore, the Y1-receptor-preferring peptides are novel tools that will provide insight into the physiological role of the Y1-receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号