首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Understanding gene regulation and its adaptive significance requires not only a detailed knowledge of individual molecular interactions that give rise to changes in gene expression but also an overview of complete genetic networks and the ways in which components within them interact. Increasingly, such studies are being done using luminescent or fluorescent reporter proteins that enable monitoring of gene expression dynamics in real time, particularly during changes in expression. We show here that such an approach is valid for dissecting the responses of the AR2 or GAD network of Escherichia coli K-12 to changes in pH, which is one of the most complex networks known in E. coli. In addition to confirming several regulatory interactions that have been revealed by previous studies, this approach has identified new components in this system that lead to complex dynamics of gene expression following a drop in pH, including an auto-regulatory loop involving the YdeO activator protein and novel roles for the PhoP protein.  相似文献   

2.
The detection of protein–protein interactions through two-hybrid assays has revolutionized our understanding of biology. The remarkable impact of two-hybrid assay platforms derives from their speed, simplicity, and broad applicability. Yet for many organisms, the need to express test proteins in Saccharomyces cerevisiae or Escherichia coli presents a substantial barrier because variations in codon specificity or bias may result in aberrant protein expression. In particular, nonstandard genetic codes are characteristic of several eukaryotic pathogens, for which there are currently no genetically based systems for detection of protein–protein interactions. We have developed a protein–protein interaction assay that is carried out in native host cells by using GFP as the only foreign protein moiety, thus circumventing these problems. We show that interaction can be detected between two protein pairs in both the model yeast S. cerevisiae and the fungal pathogen Candida albicans. We use computational analysis of microscopic images to provide a quantitative and automated assessment of confidence.  相似文献   

3.
Protein–protein interactions are essential to ensure timely and precise recruitment of chromatin remodellers and repair factors to DNA damage sites. Conventional analyses of protein–protein interactions at a population level may mask the complexity of interaction dynamics, highlighting the need for a method that enables quantification of DNA damage-dependent interactions at a single-cell level. To this end, we integrated a pulsed UV laser on a confocal fluorescence lifetime imaging (FLIM) microscope to induce localized DNA damage. To quantify protein–protein interactions in live cells, we measured Förster resonance energy transfer (FRET) between mEGFP- and mCherry-tagged proteins, based on the fluorescence lifetime reduction of the mEGFP donor protein. The UV-FLIM-FRET system offers a unique combination of real-time and single-cell quantification of DNA damage-dependent interactions, and can distinguish between direct protein–protein interactions, as opposed to those mediated by chromatin proximity. Using the UV-FLIM-FRET system, we show the dynamic changes in the interaction between poly(ADP-ribose) polymerase 1, amplified in liver cancer 1, X-ray repair cross-complementing protein 1 and tripartite motif containing 33 after DNA damage. This new set-up complements the toolset for studying DNA damage response by providing single-cell quantitative and dynamic information about protein–protein interactions at DNA damage sites.  相似文献   

4.
5.
Construction and analyses of tissue specific networks is crucial to unveil the function and organizational structure of biological systems. As a direct method to detect protein dynamics, human proteome-wide expression data provide an valuable resource to investigate the tissue specificity of proteins and interactions. By integrating protein expression data with large-scale interaction network, we constructed 30 tissue/cell specific networks in human and analyzed their properties and functions. Rather than the tissue specificity of proteins, we mainly focused on the tissue specificity of interactions to distill tissue specific networks. Through comparing our tissue specific networks with those inferred from gene expression data, we found our networks have larger scales and higher reliability. Furthermore, we investigated the similar extent of multiple tissue specific networks, which proved that tissues with similar functions tend to contain more common interactions. Finally, we found that the tissue specific networks differed from the static network in multiple topological properties. The proteins in tissue specific networks are interacting looser and the hubs play more important roles than those in the static network.  相似文献   

6.
The (asymptotic) degree distributions of the best-known “scale-free” network models are all similar and are independent of the seed graph used; hence, it has been tempting to assume that networks generated by these models are generally similar. In this paper, we observe that several key topological features of such networks depend heavily on the specific model and the seed graph used. Furthermore, we show that starting with the “right” seed graph (typically a dense subgraph of the protein–protein interaction network analyzed), the duplication model captures many topological features of publicly available protein–protein interaction networks very well.  相似文献   

7.
Information Flow Analysis of Interactome Networks   总被引:1,自引:0,他引:1  
Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein–protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we combine gene expression data with interaction data in C. elegans and construct an interactome network for muscle-specific genes. We find that genes that rank high in terms of information flow in the muscle interactome network but not in the entire network tend to play important roles in muscle function. This framework for studying tissue-specific networks by the information flow model can be applied to other tissues and other organisms as well.  相似文献   

8.
9.
Signal transduction systems are influenced by positive and negative forces resulting in an output reflecting the sum of the opposing forces. The Rap family of regulatory protein modules control the output of two-component signal transduction systems through protein∶protein and protein∶peptide interactions. These modules and their peptide regulators are found in complex signaling pathways, including the bacterial developmental pathway to sporulation, competence, and protease secretion. Two articles published in the current issue of PLOS Biology reveal by means of crystallographic analyses how the Rap proteins of bacilli are regulated by their inhibitor Phr peptide and provide a mechanistic explanation for a genetic phenotype isolated decades earlier. The Rap-Phr module of bacterial regulators was the prototype of a family that now extends to other bacterial signaling proteins that involve the use of the tetratricopeptide repeat structural fold. The results invite speculation regarding the potential exploitation of this module as a molecular tool for applications in therapeutic design and biotechnology.Cell signaling by oligopeptides is a critical component of the biology of eukaryotic and prokaryotic cells. In microorganisms such as Gram-positive bacteria, small peptides have been found to regulate a variety of cellular functions, providing the bacteria with the ability to communicate and change behavior of the same or of other species in response to conditions and perturbations of the environment [1]. Studies in the spore-forming model organism Bacillus subtilis were among the first to identify pathways in which peptide signaling played a regulatory role.  相似文献   

10.
The analysis of protein–protein interactions is important for developing a better understanding of the functional annotations of proteins that are involved in various biochemical reactions in vivo. The discovery that a protein with an unknown function binds to a protein with a known function could provide a significant clue to the cellular pathway concerning the unknown protein. Therefore, information on protein–protein interactions obtained by the comprehensive analysis of all gene products is available for the construction of interactive networks consisting of individual protein–protein interactions, which, in turn, permit elaborate biological phenomena to be understood. Systems for detecting protein–protein interactions in vitro and in vivo have been developed, and have been modified to compensate for limitations. Using these novel approaches, comprehensive and reliable information on protein–protein interactions can be determined. Systems that permit this to be achieved are described in this review.K. Kuroda, M. Kato and J. Mima contributed equally to this work.  相似文献   

11.
The availability of large-scale protein-protein interaction networks for numerous organisms provides an opportunity to comprehensively analyze whether simple properties of proteins are predictive of the roles they play in the functional organization of the cell. We begin by re-examining an influential but controversial characterization of the dynamic modularity of the S. cerevisiae interactome that incorporated gene expression data into network analysis. We analyse the protein-protein interaction networks of five organisms, S. cerevisiae, H. sapiens, D. melanogaster, A. thaliana, and E. coli, and confirm significant and consistent functional and structural differences between hub proteins that are co-expressed with their interacting partners and those that are not, and support the view that the former tend to be intramodular whereas the latter tend to be intermodular. However, we also demonstrate that in each of these organisms, simple topological measures are significantly correlated with the average co-expression of a hub with its partners, independent of any classification, and therefore also reflect protein intra- and inter- modularity. Further, cross-interactomic analysis demonstrates that these simple topological characteristics of hub proteins tend to be conserved across organisms. Overall, we give evidence that purely topological features of static interaction networks reflect aspects of the dynamics and modularity of interactomes as well as previous measures incorporating expression data, and are a powerful means for understanding the dynamic roles of hubs in interactomes.  相似文献   

12.
Essentially all biological processes depend on protein–protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (∼24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner.  相似文献   

13.
The idea of “date” and “party” hubs has been influential in the study of protein–protein interaction networks. Date hubs display low co-expression with their partners, whilst party hubs have high co-expression. It was proposed that party hubs are local coordinators whereas date hubs are global connectors. Here, we show that the reported importance of date hubs to network connectivity can in fact be attributed to a tiny subset of them. Crucially, these few, extremely central, hubs do not display particularly low expression correlation, undermining the idea of a link between this quantity and hub function. The date/party distinction was originally motivated by an approximately bimodal distribution of hub co-expression; we show that this feature is not always robust to methodological changes. Additionally, topological properties of hubs do not in general correlate with co-expression. However, we find significant correlations between interaction centrality and the functional similarity of the interacting proteins. We suggest that thinking in terms of a date/party dichotomy for hubs in protein interaction networks is not meaningful, and it might be more useful to conceive of roles for protein-protein interactions rather than for individual proteins.  相似文献   

14.
Gy?rgy Abrusán 《Genetics》2013,195(4):1407-1417
It has been recently discovered that new genes can originate de novo from noncoding DNA, and several biological traits including expression or sequence composition form a continuum from noncoding sequences to conserved genes. In this article, using yeast genes I test whether the integration of new genes into cellular networks and their structural maturation shows such a continuum by analyzing their changes with gene age. I show that 1) The number of regulatory, protein–protein, and genetic interactions increases continuously with gene age, although with very different rates. New regulatory interactions emerge rapidly within a few million years, while the number of protein–protein and genetic interactions increases slowly, with a rate of 2–2.25 × 10−8/year and 4.8 × 10−8/year, respectively. 2) Gene essentiality evolves relatively quickly: the youngest essential genes appear in proto-genes ∼14 MY old. 3) In contrast to interactions, the secondary structure of proteins and their robustness to mutations indicate that new genes face a bottleneck in their evolution: proto-genes are characterized by high β-strand content, high aggregation propensity, and low robustness against mutations, while conserved genes are characterized by lower strand content and higher stability, most likely due to the higher probability of gene loss among young genes and accumulation of neutral mutations.  相似文献   

15.

Background

RNA-binding proteins regulate a number of cellular processes, including synthesis, folding, translocation, assembly and clearance of RNAs. Recent studies have reported that an unexpectedly large number of proteins are able to interact with RNA, but the partners of many RNA-binding proteins are still uncharacterized.

Results

We combined prediction of ribonucleoprotein interactions, based on catRAPID calculations, with analysis of protein and RNA expression profiles from human tissues. We found strong interaction propensities for both positively and negatively correlated expression patterns. Our integration of in silico and ex vivo data unraveled two major types of protein–RNA interactions, with positively correlated patterns related to cell cycle control and negatively correlated patterns related to survival, growth and differentiation. To facilitate the investigation of protein–RNA interactions and expression networks, we developed the catRAPID express web server.

Conclusions

Our analysis sheds light on the role of RNA-binding proteins in regulating proliferation and differentiation processes, and we provide a data exploration tool to aid future experimental studies.  相似文献   

16.
We apply our recently developed information-theoretic measures for the characterisation and comparison of protein–protein interaction networks. These measures are used to quantify topological network features via macroscopic statistical properties. Network differences are assessed based on these macroscopic properties as opposed to microscopic overlap, homology information or motif occurrences. We present the results of a large–scale analysis of protein–protein interaction networks. Precise null models are used in our analyses, allowing for reliable interpretation of the results. By quantifying the methodological biases of the experimental data, we can define an information threshold above which networks may be deemed to comprise consistent macroscopic topological properties, despite their small microscopic overlaps. Based on this rationale, data from yeast–two–hybrid methods are sufficiently consistent to allow for intra–species comparisons (between different experiments) and inter–species comparisons, while data from affinity–purification mass–spectrometry methods show large differences even within intra–species comparisons.  相似文献   

17.

Background  

Studies of cellular signaling indicate that signal transduction pathways combine to form large networks of interactions. Viewing protein-protein and ligand-protein interactions as graphs (networks), where biomolecules are represented as nodes and their interactions are represented as links, is a promising approach for integrating experimental results from different sources to achieve a systematic understanding of the molecular mechanisms driving cell phenotype. The emergence of large-scale signaling networks provides an opportunity for topological statistical analysis while visualization of such networks represents a challenge.  相似文献   

18.
The SSU processome is a large, evolutionarily conserved ribonucleoprotein (RNP), consisting of the U3 snoRNA and at least 28 protein components, that is required for biogenesis of the 18S rRNA. We tested the function of one protein–protein interaction in the SSU processome, Mpp10p–Imp4p, in ribosome biogenesis. Exploiting the reverse two-hybrid system, we screened for mutated Imp4 proteins that were conditionally defective for interaction with Mpp10p. Three different imp4 sequences were isolated that: (i) conferred conditional growth in the two-hybrid strain; (ii) complemented the disrupted imp4; (iii) conferred conditional growth in the context of their normal cellular function; and (iv) resulted in defective pre-rRNA processing at the non-permissive temperatures. Domain swapping revealed that mutations that conferred cold sensitivity resided in the N-terminal coiled-coil domain while mutations in the C-terminus conferred temperature sensitivity. Surprisingly, the mutated Imp4 proteins were not measurably defective for interaction with Mpp10p in the context of the SSU processome. This suggests that other members of the complex may contribute to maintaining the Mpp10p–Imp4p interaction in this large RNP. Since protein–protein interactions are critical for many different aspects of cellular metabolism, our work has implications for the study of other large protein complexes.  相似文献   

19.
SUMOylation is a posttranslational process that attaches a small ubiquitin-like modifier (SUMO) to its target proteins covalently. SUMOylation controls multiple cellular processes through the recognition of SUMO by a SUMO-interacting motif (SIM). In this study, we developed assay systems for detecting noncovalent interactions between SUMO and SIM in cells using split-luciferase complementation. We applied a version of this assay to the detection of in vitro SUMO–SIM interactions using a bacterial expression system. These novel assays enable screening of inhibitors of SUMO-dependent protein–protein interactions, either in vivo or in vitro, in a high-throughput manner.  相似文献   

20.
Directed evolution methodologies benefit from read-outs quantitatively linking genotype to phenotype. We therefore devised a method that couples protein–peptide interactions to the dynamic read-out provided by an engineered DNA polymerase. Fusion of a processivity clamp protein to a thermostable nucleic acid polymerase enables polymerase activity and DNA amplification in otherwise prohibitive high-salt buffers. Here, we recapitulate this phenotype by indirectly coupling the Sso7d processivity clamp to Taq DNA polymerase via respective fusion to a high affinity and thermostable interacting protein–peptide pair. Escherichia coli cells co-expressing protein–peptide pairs can directly be used in polymerase chain reactions to determine relative interaction strengths by the measurement of amplicon yields. Conditional polymerase activity is further used to link genotype to phenotype of interacting protein–peptide pairs co-expressed in E. coli using the compartmentalized self-replication directed evolution platform. We validate this approach, termed compartmentalized two-hybrid replication, by selecting for high-affinity peptides that bind two model protein partners: SpyCatcher and the large fragment of NanoLuc luciferase. We further demonstrate directed co-evolution by randomizing both protein and peptide components of the SpyCatcher–SpyTag pair and co-selecting for functionally interacting variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号