首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
HIV is known to spread efficiently both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Likewise to what extent cell-cell transmission is vulnerable to inhibition by neutralizing antibodies and entry inhibitors remains to be determined. Here we report on neutralizing antibody activity during cell-cell transmission using specifically tailored experimental strategies which enable unambiguous discrimination between the two transmission routes. We demonstrate that the activity of neutralizing monoclonal antibodies (mAbs) and entry inhibitors during cell-cell transmission varies depending on their mode of action. While gp41 directed agents remain active, CD4 binding site (CD4bs) directed inhibitors, including the potent neutralizing mAb VRC01, dramatically lose potency during cell-cell transmission. This implies that CD4bs mAbs act preferentially through blocking free virus transmission, while still allowing HIV to spread through cell-cell contacts. Thus providing a plausible explanation for how HIV maintains infectivity and rapidly escapes potent and broadly active CD4bs directed antibody responses in vivo.  相似文献   

2.
One of the first immunologic responses against HIV infection is the presence of neutralizing antibodies that seem able to inactivate several HIV strains. Moreover, in vitro studies have shown the existence of monoclonal antibodies that exhibit broad crossclade neutralizing potential. Yet their number is low and slow to develop in vivo. In this paper, we investigate the potential benefits of inducing poly-specific neutralizing antibodies in vivo throughout immunization. We develop a mathematical model that considers the activation of families of B lymphocytes producing poly-specific and strain-specific antibodies and use it to demonstrate that, even if such families are successful in producing neutralizing antibodies, the competition between them may limit the poly-specific response allowing the virus to escape. We modify this model to account for viral evolution under the pressure of antibody responses in natural HIV infection. The model can reproduce viral escape under certain conditions of B lymphocyte competition. Using these models we provide explanations for the observed antibody failure in controlling natural infection and predict quantitative measures that need to be satisfied for long-term control of HIV infection.  相似文献   

3.
Due to the inherent immune evasion properties of the HIV envelope, broadly neutralizing HIV-specific antibodies capable of suppressing HIV infection are rarely produced by infected individuals. We examined the feasibility of utilizing genetic engineering to circumvent the restricted capacity of individuals to endogenously produce broadly neutralizing HIV-specific antibodies. We constructed a single lentiviral vector that encoded the heavy and light chains of 2G12, a broadly neutralizing anti-HIV human antibody, and that efficiently transduced and directed primary human B cells to secrete 2G12. To evaluate the capacity of this approach to provide protection from in vivo HIV infection, we used the humanized NOD/SCID/γcnull mouse model, which becomes populated with human B cells, T cells, and macrophages after transplantation with human hematopoietic stem cells (hu-HSC) and develops in vivo infection after inoculation with HIV. The plasma of the irradiated NOD/SCID/γcnull mice transplanted with hu-HSC transduced with the 2G12-encoding lentivirus contained 2G12 antibody, likely secreted by progeny human lymphoid and/or myeloid cells. After intraperitoneal inoculation with high-titer HIV-1JR-CSF, mice engrafted with 2G12-transduced hu-HSC displayed marked inhibition of in vivo HIV infection as manifested by a profound 70-fold reduction in plasma HIV RNA levels and an almost 200-fold reduction in HIV-infected human cell numbers in mouse spleens, compared to control hu-HSC-transplanted NOD/SCID/γcnull mice inoculated with equivalent high-titer HIV-1JR-CSF. These results support the potential efficacy of this new gene therapy approach of using lentiviral vectors encoding a mixture of broadly neutralizing HIV antibodies for the treatment of HIV infection, particularly infection with multiple-drug-resistant isolates.While broadly neutralizing human immunodeficiency virus (HIV)-specific antibodies have the capacity to prevent or suppress HIV infection, they are rarely produced by infected individuals, thereby markedly compromising the ability of the humoral response to control HIV infection (reviewed in reference 28). The high degree of sequence variability in the gp120 structure limits the number of highly conserved epitopes available for targeting by neutralizing antibodies (40). In addition, HIV utilizes several mechanisms to shield the limited number of conserved neutralizing epitopes from the potentially potent antiviral effects of HIV envelope-specific antibodies (14). First, the envelope protein is heavily glycosylated, and the linkage of the most immunoreactive envelope peptide structures to poorly immunogenic glycans shields them from antibody binding (37). Second, exposure of neutralizing epitopes not protected from antibody binding by glycosylation is greatly reduced by trimerization of the gp120-gp41 structure (5). Third, susceptibility of other neutralizing epitopes to antibodies is greatly reduced by limiting their accessibility to antibody binding to the brief transient phase of conformational changes that occur only during binding of the envelope protein to its cellular receptors, CD4 and CCR5 or CXCR4 (41). These intrinsic structural features of gp120 greatly reduce the capacity of natural HIV infection or vaccination to generate broadly neutralizing antibodies able to prevent or control infection. Despite these constraints, rare human antibodies with broad anti-HIV neutralizing activity, i.e., 2G12, b12, 2F5, and 4E10, have been isolated (2).The capacity of passive immunization with neutralizing antibodies to prevent infection was suggested by challenge studies demonstrating that transferred neutralizing antibodies protected monkeys from infection by simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) (15). These studies were extended to humans, including several studies that examined the effect of passive immunotherapy using 2G12, 2F5, and 4E10 on inhibition of HIV replication in infected individuals (20). Passive immunotherapy with a triple combination of 2G12, 2F5, and 4E10 delayed viral rebound after the cessation of highly active antiretroviral therapy (HAART), and activity of 2G12 was critical for inhibitory activity by this antibody combination (18). The key role of 2G12 in suppressing HIV replication was supported by the development of viral rebound in parallel with the emergence of HIV isolates resistant to neutralization by 2G12 (19).While HIV infection may be controlled by the lifelong treatment of HIV-infected individuals with periodic infusions of neutralizing-antibody cocktails every few weeks, this is not a practical or cost-effective therapeutic approach. Eliciting these antibodies by vaccination has not been successful. Therefore, we investigated whether we could circumvent the mechanisms that limit the endogenous production of broadly neutralizing HIV-specific antibodies using a molecular genetic approach to generate B cells that secrete these protective antibodies. In a proof-of-concept study, we examined the capacity of a single lentiviral vector to express the heavy and light chains of the 2G12 antibody, a well-studied anti-HIV human antibody that has broad neutralizing activity both against T cell line-adapted and primary HIV isolates (31). The 2G12 antibody was generated by applying murine/human xenohybridoma technology to establish human hybridoma cell lines from B cells isolated from HIV-infected individuals (16), and it targets the high-mannose and/or hybrid glycans of residues 295, 332, and 392 and peripheral glycans from residues 386 and 448 on gp120. In the current study we demonstrated that a lentiviral vector encoding the heavy and light chains of the 2G12 antibody reprogrammed B cells in vitro to secrete 2G12 with functional neutralizing activity. Furthermore, we demonstrated that the 2G12 lentiviral vector genetically modified human hematopoietic stem cells (hu-HSC), enabling them to differentiate in vivo into progeny cells that secreted 2G12 antibody that inhibited the development of in vivo HIV infection in humanized mice.  相似文献   

4.
The first evidence that plants represent a valid, safe and cost-effective alternative to traditional expression systems for large-scale production of antigens and antibodies was described more than 10 years ago. Since then, considerable improvements have been made to increase the yield of plant-produced proteins. These include the use of signal sequences to target proteins to different cellular compartments, plastid transformation to achieve high transgene dosage, codon usage optimization to boost gene expression, and protein fusions to improve recombinant protein stability and accumulation. Thus, several HIV/SIV antigens and neutralizing anti-HIV antibodies have recently been successfully expressed in plants by stable nuclear or plastid transformation, and by transient expression systems based on plant virus vectors or Agrobacterium-mediated infection. The current article gives an overview of plant expressed HIV antigens and antibodies and provides an account of the use of different strategies aimed at increasing the expression of the accessory multifunctional HIV-1 Nef protein in transgenic plants.  相似文献   

5.
It is well established that proper N-glycosylation significantly influences the efficacy of monoclonal antibodies (mAbs). However, the specific immunological relevance of individual mAb-associated N-glycan structures is currently largely unknown, because of the heterogeneous N-glycan profiles of mAbs when produced in mammalian cells. Here we report on the generation of a plant-based expression platform allowing the efficient production of mAbs with a homogeneous β1,4-galactosylated N-glycosylation structure, the major N-glycan species present on serum IgG. This was achieved by the expression of a highly active modified version of the human β1,4-galactosyltransferase in glycoengineered plants lacking plant-specific glycosylation. Moreover, we demonstrate that two anti-human immunodeficiency virus mAbs with fully β1,4-galactosylated N-glycans display improved virus neutralization potency when compared with other glycoforms produced in plants and Chinese hamster ovary cells. These findings indicate that mAbs containing such homogeneous N-glycan structures should display improved in vivo activities. Our system, using expression of mAbs in tobacco plants engineered for post-translational protein processing, provides a new means of overcoming the two hurdles that limit the therapeutic use of anti-human immunodeficiency virus mAbs in global health initiatives, low biological potency and high production costs.About 40 million people are estimated to be infected with HIV-1,2 and the HIV-1/AIDS epidemic continues to escalate, with the most devastating consequences seen in the most impoverished nations (1). Two strategies that have been pursued over the past 2 decades for stopping the AIDS pandemic/epidemic are the generation of vaccines to prevent HIV infection and the development of microbicides to prevent HIV transmission. Highly effective monoclonal antibodies (mAbs) are suitable to be used in both modalities. To date, only a handful of anti-HIV mAbs with neutralizing activities has been explored in more detail (2). In a recent clinical study, it has been demonstrated that a combination of three broadly neutralizing anti-HIV antibodies (2G12, 2F5, and 4E10) shows promise as AIDS treatment (3). However, despite effective in vitro neutralization activities, relatively modest in vivo effects were obtained, suggesting that the in vivo properties of these antibodies require further improvement (2). Noteworthy, these antibodies bind to HIV envelope proteins thus inhibiting viral entry into target cells (2, 4, 5). In addition to their potential use in therapeutic modalities, this renders them as promising candidates for microbicide development. However, high production costs using mammalian-cell technologies and insufficient efficacy of anti-HIV antibodies are remaining hurdles for their effective use. Among recent advances in generating antibodies with enhanced activities, glyco-engineering has been proven to be a powerful tool (6). It is well established that proper N-glycosylation significantly influences the efficacy of mAbs. Nevertheless, the specific immunological relevance of individual mAb-associated N-glycan structures is largely unknown, because of the heterogeneous N-glycan profiles of mAbs when produced in mammalian cells. A series of studies emphasize the critical role of IgG glycoforms lacking core α1,6-fucose for cell-mediated immunological activities (6). However, the immunological significance of N-glycans with terminal β1,4-galactose residues, the major N-glycan species present on serum IgG, has not yet been established.During the last 2 decades, plants have been under intensive investigation to provide an alternative system for cost-effective, highly scalable, and safe production of recombinant proteins. This resulted in a significant enhancement of expression levels (up to 100-fold) and a reduction of production time (7, 8), which makes the system economically interesting. Another important achievement was the generation of plant glycosylation mutants, which allows a controlled human-type glycosylation of recombinant glycoproteins (9, 10). Recently, we have generated different glycoforms of anti-HIV mAb 2G12 in the tobacco-related plant species Nicotiana benthamiana (9). All of them were functionally active, and HIV neutralization potency was comparable with CHO-derived 2G12. This process involved the generation of a plant glycosylation mutant (ΔXT/FT), which was found to produce mAbs carrying homogeneous N-glycans with terminal N-acetylglucosamine (Gn) residues (i.e. GnGn structures) lacking unwanted plant-specific β1,2-xylose and core α1,3-fucose residues. These glycans are devoid of any β1,4-linked galactose residues; thus in this study, we set out to glyco-engineer ΔXT/FT plants for quantitative β1,4-galactosylation. A highly active modified version of human β1,4-galactosyltransferase was used to transform ΔXT/FT and progeny screened for efficient protein β1,4-galactosylation. In total four glycoforms from the two anti-HIV mAbs 2G12 and 4E10 (plant- and CHO-derived) were generated and compared toward antigen binding and virus neutralization capacities.  相似文献   

6.
Evaluating the structure-function relationship of viral envelope (Env) evolution and the development of broadly cross-neutralizing antibodies (bnAbs) in natural infection can inform rational immunogen design. In the present study, we examined the magnitude and specificity of autologous neutralizing antibodies induced in rabbits by a novel HIV-1 clade C Env protein (1PGE-THIVC) vis-à-vis those developed in an elite neutralizer from whom the env sequence was obtained that was used to prepare the soluble Env protein. The novel 1PGE-THIVC Env trimer displayed a native like pre-fusion closed conformation in solution as determined by small angle X-ray scattering (SAXS) and negative stain electron microscopy (EM). This closed spike conformation of 1PGE-THIVC Env trimers was correlated with weak or undetectable binding of non-neutralizing monoclonal antibodies (mAbs) compared to neutralizing mAbs. Furthermore, 1PGE-THIVC SOSIP induced potent neutralizing antibodies in rabbits to autologous virus variants. The autologous neutralizing antibody specificity induced in rabbits by 1PGE-THIVC was mapped to the C3/V4 region (T362/P401) of viral Env. This observation agreed with electron microscopy polyclonal epitope mapping (EMPEM) of the Env trimer complexed with IgG Fab prepared from the immunized rabbit sera. Our study demonstrated neutralization of sequence matched and unmatched autologous viruses by serum antibodies induced in rabbits by 1PGE-THIVC and also highlighted a comparable specificity for the 1PGE-THIVC SOSIP trimer with that seen with polyclonal antibodies elicited in the elite neutralizer by negative-stain electron microscopy polyclonal epitope (ns-EMPEM) mapping.  相似文献   

7.
Characterization of antibodies targeting the attachment and entry of the viral particles into host cells is important for studding antibody mediated neutralization. Antibodies against the envelope glycoproteins (EGP) have neutralizing capacity and can prevent HCV infections. System based on HCV pseudo typed-particles (HCVpp) stably expressing EGP can be used for screening of HCV anti envelope neutralizing antibodies in the serum of patients with acute and chronic HCV infections. The aim of the current study was to check HCVpp as a useful tool for the detection of anti-HCV envelope antibodies in the serum of HCV infected patients and to test the binding potential of these antiviral molecules to EGP of HCV 3a. Previously developed HCVpp harboring unmodified glycoproteins from local isolates in 293T cell line were used in this study. HCVpp were pre incubated with different concentrations of anti E1 antibody and different E2 antibodies to check antiviral activity. Further we used serum samples with low/medium (≤800,000 IU/mL), and high (>800,000 IU/mL) viral titer from chronic HCV male and female patients. Infection was done in Huh-7 cells for 1 h at 37 oC. Infectivity was checked through Luciferase assay. Considerable decrease in HCVpp infectivity with anti-envelope antibodies was observed in dose dependent manner. Maximum inhibition was seen when 5 µg/ml of monoclonal anti E1 antibody used. Further increase in concentration exhibited no decrease in infectivity which suggests that other factors are also involved in causing infection. Various well characterized E2-specific monoclonal antibodies (mAbs) have been screened for their capability to reduce infection in Huh-7 cells. Three of the four mAbs specific for the E2 had no effect on the infectivity of HCVpp. Confirmation sensitive antibody H53 showed maximum inhibition of infectivity. HCV ELISA positive samples from both male and female patients were used to neutralize the HCVpp. The neutralizing antibody response was observed in both males and females patients and do not assemble the rapidly evolving HCV envelope glycoproteins. That is why in spite the presence of neutralizing antibodies in the blood they fail to resolve infections. Moreover E1 antibodies insignificantly (>0.05) inhibit HCVpp infectivity while E2 antibodies significantly (<0.05) inhibit HCVpp infection. Based on the results of this study it is concluded that anti-envelope antibodies particularly the anti-E2 could be extremely valuable for characterizing the humoral immune response to HCV and for evaluating the potential for developing passive and active immunization for hepatitis C along with interferon therapy.  相似文献   

8.
The induction of a broadly neutralizing antibody (BNAb) response against HIV-1 would be a desirable feature of a protective vaccine. Vaccine strategies thus far have failed to elicit broadly neutralizing antibody responses; however a minority of HIV-infected patients do develop circulating BNAbs, from which several potent broadly neutralizing monoclonal antibodies (mAbs) have been isolated. The findings that several BNmAbs exhibit autoreactivity and that autoreactive serum antibodies are observed in some HIV patients have advanced the possibility that enforcement of self-tolerance may contribute to the rarity of BNAbs. To examine the possible breakdown of tolerance in HIV patients, we utilized the 9G4 anti-idiotype antibody system, enabling resolution of both autoreactive VH4-34 gene-expressing B cells and serum antibodies. Compared with healthy controls, HIV patients had significantly elevated 9G4+ serum IgG antibody concentrations and frequencies of 9G4+ B cells, a finding characteristic of systemic lupus erythematosus (SLE) patients, both of which positively correlated with HIV viral load. Compared to the global 9G4-IgD--memory B cell population, the 9G4+IgD--memory fraction in HIV patients was dominated by isotype switched IgG+ B cells, but had a more prominent bias toward "IgM only" memory. HIV envelope reactivity was observed both in the 9G4+ serum antibody and 9G4+ B cell population. 9G4+ IgG serum antibody levels positively correlated (r = 0.403, p = 0.0019) with the serum HIV BNAbs. Interestingly, other serum autoantibodies commonly found in SLE (anti-dsDNA, ANA, anti-CL) did not correlate with serum HIV BNAbs. 9G4-associated autoreactivity is preferentially expanded in chronic HIV infection as compared to other SLE autoreactivities. Therefore, the 9G4 system provides an effective tool to examine autoreactivity in HIV patients. Our results suggest that the development of HIV BNAbs is not merely a consequence of a general breakdown in tolerance, but rather a more intricate expansion of selective autoreactive B cells and antibodies.  相似文献   

9.

Background

Fc-glycosylation of monoclonal antibodies (mAbs) has profound implications on the Fc-mediated effector functions. Alteration of this glycosylation may affect the efficiency of an antibody. However, difficulties in the production of mAbs with homogeneous N-glycosylation profiles in sufficient amounts hamper investigations of the potential biological impact of different glycan residues.

Methodology/Principal Findings

Here we set out to evaluate a transient plant viral based production system for the rapid generation of different glycoforms of a monoclonal antibody. Ebola virus mAb h-13F6 was generated using magnICON expression system in Nicotiana benthamiana, a plant species developed for commercial scale production of therapeutic proteins. h-13F6 was co-expressed with a series of modified mammalian enzymes involved in the processing of complex N-glycans. Using wild type (WT) plants and the glycosylation mutant ΔXTFT that synthesizes human like biantennary N-glycans with terminal N-acetylglucosamine on each branch (GnGn structures) as expression hosts we demonstrate the generation of h-13F6 complex N-glycans with (i) bisected structures, (ii) core α1,6 fucosylation and (iii) β1,4 galactosylated oligosaccharides. In addition we emphasize the significance of precise sub Golgi localization of enzymes for engineering of IgG Fc-glycosylation.

Conclusion

The method described here allows the efficient generation of a series of different human-like glycoforms at large homogeneity of virtually any antibody within one week after cDNA delivery to plants. This accelerates follow up functional studies and thus may contribute to study the biological role of N-glycan residues on Fcs and maximizing the clinical efficacy of therapeutic antibodies.  相似文献   

10.
Although placental trophoblasts, the only fetal cells in direct contact with infectious maternal blood, can be infected with HIV, the precise cause for the low transmission rate of virus across the placental barrier is unknown. One of the most common conjectures is that maternal anti-HIV antibodies (Abs) contribute to the protection of the fetus. This hypothesis has been tested in vitro by infecting the CD4-negative placental trophoblast line, BeWo, with HIV-1IIIB in the presence of serial dilutions of neutralizing monoclonal Abs against the V3 loop (No. 694) or CD4-binding conformational domain (No. 588). The results, based on measurement of p24 production from virus-exposed cells, reveal that the titers of Abs, adequate in preventing the infection of control MT-4 T lymphocytes, were less effective in protecting trophoblasts. Furthermore, PCR analysis of HIV DNA formed after a single round of infection has shown no significant decrease in the number of viral copies in Ab-protected BeWo cells. An anti-HIV serum from a pregnant woman did also have no effect. Although our in vitro observations do not necessarily apply to the in vivo situation, the results suggest that the humoral immune response sustained by neutralizing Abs may be able to protect T lymphocytes, but not placental trophoblasts. The findings are consistent with recent clinical studies demonstrating a lack of correlation between the presence of neutralizing anti-HIV Abs in pregnant women and HIV transmission in utero.  相似文献   

11.
The simian immunodeficiency virus (SIV) challenge model of lentiviral infection is often used as a model to human immunodeficiency virus type 1 (HIV-1) for studying vaccine mediated and immune correlates of protection. However, knowledge of the structure of the SIV envelope (Env) glycoprotein is limited, as is knowledge of binding specificity, function and potential efficacy of SIV antibody responses. In this study we describe the use of a competitive probe binding sort strategy as well as scaffolded probes for targeted isolation of SIV Env-specific monoclonal antibodies (mAbs). We isolated nearly 70 SIV-specific mAbs directed against major sites of SIV Env vulnerability analogous to broadly neutralizing antibody (bnAb) targets of HIV-1, namely, the CD4 binding site (CD4bs), CD4-induced (CD4i)-site, peptide epitopes in variable loops 1, 2 and 3 (V1, V2, V3) and potentially glycan targets of SIV Env. The range of SIV mAbs isolated includes those exhibiting varying degrees of neutralization breadth and potency as well as others that demonstrated binding but not neutralization. Several SIV mAbs displayed broad and potent neutralization of a diverse panel of 20 SIV viral isolates with some also neutralizing HIV-27312A. This extensive panel of SIV mAbs will facilitate more effective use of the SIV non-human primate (NHP) model for understanding the variables in development of a HIV vaccine or immunotherapy.  相似文献   

12.
Seed‐specific expression is an appealing alternative technology for the production of recombinant proteins in transgenic plants. Whereas attractive yields of recombinant proteins have been achieved by this method, little attention has been paid to the intracellular deposition and the quality of such products. Here, we demonstrate a comparative study of two antiviral monoclonal antibodies (mAbs) (HA78 against Hepatitis A virus; 2G12 against HIV) expressed in seeds of Arabidopsis wild‐type (wt) plants and glycosylation mutants lacking plant specific N‐glycan residues. We demonstrate that 2G12 is produced with complex N‐glycans at great uniformity in the wt as well as in the glycosylation mutant, carrying a single dominant glycosylation species, GnGnXF and GnGn, respectively. HA78 in contrast, contains additionally to complex N‐glycans significant amounts of oligo‐mannosidic structures, which are typical for endoplasmic reticulum (ER)‐retained proteins. A detailed subcellular localization study demonstrated the deposition of both antibodies virtually exclusively in the extracellular space, illustrating their efficient secretion. In addition, although a KDEL‐tagged version of 2G12 exhibited an ER‐typical N‐glycosylation pattern, it was surprisingly detected in protein storage vacuoles. The different antibody variants showed different levels of degradation with hardly any degradation products detectable for HA78 carrying GnGnXF glycans. Finally, we demonstrate functional integrity of the HA78 and 2G12 glycoforms using viral inhibition assays. Our data therefore demonstrate the usability of transgenic seeds for the generation of mAbs with a controlled N‐glycosylation pattern, thus expanding the possibilities for the production of optimally glycosylated proteins with enhanced biological activities for the use as human therapeutics.  相似文献   

13.
Recombinant Secretory IgA (SIgA) complexes have the potential to improve antibody-based passive immunotherapeutic approaches to combat many mucosal pathogens. In this report, we describe the expression, purification and characterization of a human SIgA format of the broadly neutralizing anti-HIV monoclonal antibody (mAb) 2G12, using both transgenic tobacco plants and transient expression in Nicotiana benthamiana as expression hosts (P2G12 SIgA). The resulting heterodecameric complexes accumulated in intracellular compartments in leaf tissue, including the vacuole. SIgA complexes could not be detected in the apoplast. Maximum yields of antibody were 15.2 μg/g leaf fresh mass (LFM) in transgenic tobacco and 25 μg/g LFM after transient expression, and assembly of SIgA complexes was superior in transgenic tobacco. Protein L purified antibody specifically bound HIV gp140 and neutralised tier 2 and tier 3 HIV isolates. Glycoanalysis revealed predominantly high mannose structures present on most N-glycosylation sites, with limited evidence for complex glycosylation or processing to paucimannosidic forms. O-glycan structures were not identified. Functionally, P2G12 SIgA, but not IgG, effectively aggregated HIV virions. Binding of P2G12 SIgA was observed to CD209 / DC-SIGN, but not to CD89 / FcalphaR on a monocyte cell line. Furthermore, P2G12 SIgA demonstrated enhanced stability in mucosal secretions in comparison to P2G12 IgG mAb.  相似文献   

14.

Background

The capacity of plants and plant cells to produce large amounts of recombinant protein has been well established. Due to advantages in terms of speed and yield, attention has recently turned towards the use of transient expression systems, including viral vectors, to produce proteins of pharmaceutical interest in plants. However, the effects of such high level expression from viral vectors and concomitant effects on host cells may affect the quality of the recombinant product.

Methodology/Principal Findings

To assess the quality of antibodies transiently expressed to high levels in plants, we have expressed and characterised the human anti-HIV monoclonal antibody, 2G12, using both replicating and non-replicating systems based on deleted versions of Cowpea mosaic virus (CPMV) RNA-2. The highest yield (approximately 100 mg/kg wet weight leaf tissue) of affinity purified 2G12 was obtained when the non-replicating CPMV-HT system was used and the antibody was retained in the endoplasmic reticulum (ER). Glycan analysis by mass-spectrometry showed that the glycosylation pattern was determined exclusively by whether the antibody was retained in the ER and did not depend on whether a replicating or non-replicating system was used. Characterisation of the binding and neutralisation properties of all the purified 2G12 variants from plants showed that these were generally similar to those of the Chinese hamster ovary (CHO) cell-produced 2G12.

Conclusions

Overall, the results demonstrate that replicating and non-replicating CPMV-based vectors are able to direct the production of a recombinant IgG similar in activity to the CHO-produced control. Thus, a complex recombinant protein was produced with no apparent effect on its biochemical properties using either high-level expression or viral replication. The speed with which a recombinant pharmaceutical with excellent biochemical characteristics can be produced transiently in plants makes CPMV-based expression vectors an attractive option for biopharmaceutical development and production.  相似文献   

15.
Plants are promising hosts for the production of monoclonal antibodies (mAbs). However, proteolytic degradation of antibodies produced both in stable transgenic plants and using transient expression systems is still a major issue for efficient high‐yield recombinant protein accumulation. In this work, we have performed a detailed study of the degradation profiles of two human IgG1 mAbs produced in plants: an anti‐HIV mAb 2G12 and a tumour‐targeting mAb H10. Even though they use different light chains (κ and λ, respectively), the fragmentation pattern of both antibodies was similar. The majority of Ig fragments result from proteolytic degradation, but there are only a limited number of plant proteolytic cleavage events in the immunoglobulin light and heavy chains. All of the cleavage sites identified were in the proximity of interdomain regions and occurred at each interdomain site, with the exception of the VL/CL interface in mAb H10 λ light chain. Cleavage site sequences were analysed, and residue patterns characteristic of proteolytic enzymes substrates were identified. The results of this work help to define common degradation events in plant‐produced mAbs and raise the possibility of predicting antibody degradation patterns ‘a priori’ and designing novel stabilization strategies by site‐specific mutagenesis.  相似文献   

16.
The four serotypes of dengue virus (DENV1-4) pose a serious threat to global health. Cross-reactive and non-neutralizing antibodies enhance viral infection, thereby exacerbating the disease via antibody-dependent enhancement (ADE). Studying the epitopes targeted by these enhancing antibodies would improve the immune responses against DENV infection. In order to investigate the roles of antibodies in the pathogenesis of dengue, we generated a panel of 16 new monoclonal antibodies (mAbs) against DENV4. Using plaque reduction neutralization test (PRNT), we examined the neutralizing activity of these mAbs. Furthermore, we used the in vitro and in vivo ADE assay to evaluate the enhancement of DENV infection by mAbs. The results indicate that the cross-reactive and poorly neutralizing mAbs, DD11-4 and DD18-5, strongly enhance DENV1-4 infection of K562 cells and increase mortality in AG129 mice. The epitope residues of these enhancing mAbs were identified using virus-like particle (VLP) mutants. W212 and E26 are the epitope residues of DD11-4 and DD18-5, respectively. In conclusion, we generated and characterized 16 new mAbs against DENV4. DD11-4 and D18-5 possessed non-neutralizing activities and enhanced viral infection. Moreover, we identified the epitope residues of enhancing mAbs on envelope protein. These results may provide useful information for development of safe dengue vaccine.  相似文献   

17.
The human antibody response has special significance in the ongoing efforts to develop a protective HIV vaccine. The observation that a subset of HIV infected individuals, who do not develop AIDS, have a broadly neutralizing antibody response has drawn attention to deciphering the nature of this response. It is hoped that an understanding of these protective antibodies, developed over time in response to the ongoing accumulation of mutations in the infecting virus, will facilitate the development of a vaccine that can elicit a similar response. This strategy will be greatly aided by the identification of broadly neutralizing monoclonal HIV antibodies from infected individuals. Several methods have been utilized to isolate and characterize individual antibodies from the human repertoire and each of these methods has been applied to the generation of broadly neutralizing HIV antibodies, albeit with differing rates of success. This review describes several of these methods including human hybridoma; EBV transformation; nonimmortalized B cell culture; clonal sorting; and combinatorial display. Key considerations used in the comparison of different methods includes: efficiency of interrogation of an individual’s entire repertoire; assay formats that can be used to screen for antibodies of interest (i.e., binding versus biological assays); and the ability to recover native antibody heavy and light chain pairs.Key words: HIV, antibody, neutralizing, B cell, repertoire  相似文献   

18.
The development of anti-human immunodeficiency virus (anti-HIV) neutralizing antibodies and the evolution of the viral envelope glycoprotein were monitored in rhesus macaques infected with a CCR5-tropic simian/human immunodeficiency virus (SHIV), SHIVSF162P4. Homologous neutralizing antibodies developed within the first month of infection in the majority of animals, and their titers were independent of the extent and duration of viral replication during chronic infection. The appearance of homologous neutralizing antibody responses was preceded by the appearance of amino acid changes in specific variable and conserved regions of gp120. Amino acid changes first appeared in the V1, V2, C2, and V3 regions and subsequently in the C3, V4, and V5 regions. Heterologous neutralizing antibody responses developed over time only in animals with sustained plasma viremia. Within 2 years postinfection the breadth of these responses was as broad as that observed in certain patients infected with HIV type 1 (HIV-1) for over a decade. Despite the development of broad anti-HIV-1 neutralizing antibody responses, viral replication persisted in these animals due to viral escape. Our studies indicate that cross-reactive neutralizing antibodies are elicited in a subset of SHIVSF162P4 infected macaques and that their development requires continuous viral replication for extended periods of time. More importantly, their late appearance does not prevent progression to disease. The availability of an animal model where cross-reactive anti-HIV neutralizing antibodies are developed may facilitate the identification of virologic and immunologic factors conducive to the development of such antibodies.  相似文献   

19.
The clinical application of monoclonal antibodies (mAbs) potentially concerns a wide range of diseases including, among others, viral infections, cancer and autoimmune diseases. Although intravenous infusion appears to be the simplest and most obvious mode of administration, it is very often not applicable to long-term treatments because of the restrictive cost of mAbs certified for human use and the side effects associated with injection of massive doses of antibodies. Gene/cell therapies designed for sustained and, possibly, regulatable in vivo production and systemic delivery of mAbs might permit to advantageously replace it. We have already shown that several such approaches allow month- to year-long ectopic antibody production by non-B cells in living organisms. Those include grafting of ex vivo genetically modified cells of various types, in vivo adenoviral gene transfer and implantation of encapsulated antibody-producing cells. Because intramuscular electrotransfer of naked DNA has already been used for in vivo production of a variety of proteins, we have wanted to test whether it could be adapted to that of ectopic mAbs as well. We report here that this is actually the case since both long-term and regulatable production of an ectopic mAb could be obtained in the mouse taken as a model animal. Although serum antibody concentrations obtained were relatively low, these data are encouraging in the perspective of future therapeutical applications of this technology in mAb-based immunotherapies, especially in developing countries where cost-effective and easily implementable technologies would be required for large-scale applications in the context of severe chronic viral diseases such as HIV and HCV infections.  相似文献   

20.
A stable hybridoma producing anti-HIV human monoclonal antibody (HMCA) was generated by fusing CD3-depleted human splenic lymphocytes from an HIV sero-positive donor with the mouse myeloma cell line P3x63AgU1. The resultant hybridoma has been secreting IgG1, lambda chain for over nine months at a rate of 2.5 micrograms/10(6)cells/day. The HMCA shows specific reactivity in ELISA using HIV-infected cell lysates. Immunofluorescence tests have indicated that this HMCA binds specifically to the surface of H9 and C3 HIV/HTLVIIIb infected cells, HIV/N1T infected CEM cells and to MoT cells infected with an HIV clinical isolate. Western blotting revealed recognition of glycoproteins 120 and 160 kDa of HIV by the HMCA. Although this HMCA demonstrated no neutralizing activity, the production of an anti-HIV HMCA specific for glycoprotein 120 kDa indicates the possibility that a neutralizing HMCA can be developed as further fusions with lymph nodes and spleens from HIV positive donors are performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号