首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Diabetic peripheral neuropathy (DPN) is the most common and troublesome complication of type 2 diabetes mellitus (T2DM). Recent findings reveal an important role of endoplasmic reticulum (ER) stress in the development of DPN and identify a potential new therapeutic target. Schwann cells (SC), the myelinating cells in peripheral nervous system, are highly susceptible to ER homeostasis. Grape seed proanthocyanidins (GSPs) have been reported to improve DPN of type 1 diabetic rats and relieve ER stress in skeletal muscles and pancreas of T2DM. We investigated the potential role of ER stress in SC in regulating DPN of T2DM and assessed whether early intervention of GSPs would prevent DPN by modulating ER stress. The present study was performed in Sprague–Dawley rats made T2DM with low-dose streptozotocin and a high-carbohydrate/high-fat diet and in rat SC cultured in serum from type 2 diabetic rats. Diabetic rats showed a typical characteristic of T2DM and slowing of nerve conduction velocity (NCV) in sciatic/tibial nerves. The lesions of SC, Ca2+ overload and ER stress were present in sciatic nerves of diabetic rats, as well as in cell culture models. GSPs administration significantly decreased the low-density lipoprotein level and increased NCV in diabetic rats. GSPs or their metabolites also partially prevented cell injury, Ca2+ overload and ER stress in animal and cell culture models. Therefore, ER stress is implicated in peripheral neuropathy in animal and cell culture models of T2DM. Prophylactic GSPs treatment might have auxiliary preventive potential for DPN partially by alleviating ER stress.  相似文献   

2.
3.
Neuroprotective effects of metformin have been increasingly recognized in both diabetic and non-diabetic conditions. Thus far, no information has been available on the potential beneficial effects of metformin on peripheral nerve regeneration in diabetes mellitus. The present study was designed to investigate such a possibility. Diabetes was established by a single injection of streptozotocin at 50 mg/kg in rats. After sciatic nerve crush injury, the diabetic rats were intraperitoneally administrated daily for 4 weeks with metformin (30, 200 and 500 mg/kg), or normal saline, respectively. The axonal regeneration was investigated by morphometric analysis and retrograde labeling. The functional recovery was evaluated by electrophysiological studies and behavioral analysis. It was found that metformin significantly enhanced axonal regeneration and functional recovery compared to saline after sciatic nerve injury in diabetic rats. In addition, metformin at 200 and 500 mg/kg showed better performance than that at 30 mg/kg. Taken together, metformin is capable of promoting nerve regeneration after sciatic nerve injuries in diabetes mellitus, highlighting its therapeutic values for peripheral nerve injury repair in diabetes mellitus.  相似文献   

4.
Diabetes mellitus (DM) is associated with increased risk of impaired cognitive function. Diabetic neuropathy is one of the most common and important complications of DM. Estrogens prevent neuronal loss in experimental models of neurodegeneration and accelerate nerve regeneration. Aromatase catalyzes the conversion of androgens to estrogens and expressed in a variety of tissues including neurons. Although insulin is known to regulate the activity of aromatase there is no study about the effects of diabetes on this enzyme. Present study was designed to investigate the effects of experimental diabetes on aromatase expression in nervous system. Gender-based differences were also investigated. Rats were injected with streptozotocin to induce diabetes. At the end of 4 and 12 weeks sciatic nerve and hippocampus homogenates were prepared and evaluated for aromatase proteins. Aromatase expressions in sciatic nerves of both genders were decreased in 4 weeks of diabetes, but in 12 weeks the enzyme levels were increased in females and reached to control levels in male animals. Aromatase levels were not altered in hippocampus at 4 weeks but increased at 12 weeks in female diabetic rats. No significant differences were observed at enzyme levels of hippocampus in male diabetic rats. Insulin therapy prevented all diabetes-induced changes. In conclusion, these results indicated for the first time that, DM altered the expression of aromatase both in central and peripheral nervous systems. Peripheral nervous system is more vulnerable to damage than central nervous system in diabetes. These effects of diabetes differ with gender and compensatory neuroprotective mechanisms are more efficient in female rats.  相似文献   

5.
Diabetic peripheral neuropathy (DPN) is one of the most common diabetic chronic complications. There is an increased attention directed towards the role of angiogenic factors including vascular endothelial growth factor (VEGF) and anti‐angiogenic factors including soluble endoglin (sEng) as contributors to diabetic microvascular complications including neuropathy. The purposes of this study were to determine the role of these angiogenesis regulators in the prognosis of DPN. The study group included 60 patients with type 2 diabetes mellitus (T2DM) and 20 clinically healthy individuals. The patients were divided into two groups. Group I included 20 T2DM patients without peripheral neuropathy, and Group II consisted of 40 T2DM patients with DPN. In all groups, plasma VEGF, sEng and endothelin‐1 (ET‐1), nitric oxide and ET‐1 mRNA were estimated. Plasma levels of VEGF, sEng, ET‐1 and nitric oxide were significantly elevated in diabetic patients (Groups I and II) compared with healthy control subjects, with a higher increase in their levels in patients with DPN compared with diabetic patients without peripheral neuropathy. Measurement of plasma levels of angiogenesis‐related biomarkers in high‐risk diabetic patients might identify who later develop DPN, thus providing opportunities for early detection and targets for novel treatments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Single-nucleotide polymorphisms of the genes for mitochondrial (SOD2) and extracellular (SOD3) superoxide dismutases were tested for association with diabetic polyneuropathy (DPN) in diabetes mellitus (DM) type 1. Patients (N = 180) were divided into two groups with nonoverlapping (polar) phenotypes. Group DPN+ included 86 individuals with DPN and DM type 1 record of no more than 5 years. Group DPN– included 94 patients with DM type 1 record of more than 10 years but without clinical signs of DPN. Fisher's exact test revealed significant differences in allele and genotype frequencies for the two groups. Higher frequencies of SOD2 allele Val and genotype Val/Val and of SOD3 allele Arg and genotype Arg/Arg were established for group DPN+. On this evidence, SOD2 and SOD3 were associated with DPN in DM type 1.  相似文献   

8.
Single-nucleotide polymorphisms of the genes for mitochondrial (SOD2) and extracellular (SOD3) superoxide dismutases were tested for association with diabetic polyneuropathy (DPN) in diabetes mellitus (DM) type 1. Patients (n = 180) were divided into two groups with nonoverlapping (polar) phenotypes. Group DPN+ included 86 individuals with DPN and DM type 1 record of no more than 5 years. Group DPN-included 94 patients with DM type 1 record of more than 10 years but without clinical signs of DPN. Fisher's exact test revealed significant differences in allele and genotype frequencies for the two groups. Higher frequencies of SOD2 allele Val and genotype Val/Val and of SOD3 allele Arg and genotype Arg/Arg were established for group DPN+. On this evidence, SOD2 and SOD3 were associated with DPN in DM type 1.  相似文献   

9.
The prevalence of diabetes has reached epidemic proportions. There are two forms of diabetes: type 1 diabetes mellitus is due to auto-immune-mediated destruction of pancreatic β-cells resulting in absolute insulin deficiency and type 2 diabetes mellitus is due to reduced insulin secretion and or insulin resistance. Both forms of diabetes are characterized by chronic hyperglycemia, leading to the development of diabetic peripheral neuropathy (DPN) and microvascular pathology. DPN is characterized by enhanced or reduced thermal, chemical, and mechanical pain sensitivities. In the long-term, DPN results in peripheral nerve damage and accounts for a substantial number of non-traumatic lower-limb amputations. This review will address the mechanisms, especially the role of reactive oxygen and nitrogen species in the development and progression of DPN.  相似文献   

10.
Abstract: Diabetic neuropathy is a degenerative complication of diabetes accompanied by an alteration of nerve conduction velocity (NCV) and Na,K-ATPase activity. The present study in rats was designed first to measure diabetes-induced abnormalities in Na,K-ATPase activity, isoenzyme expression, fatty acid content in sciatic nerve membranes, and NCV and second to assess the preventive ability of a fish oil-rich diet (rich in n-3 fatty acids) on these abnormalities. Diabetes was induced by intravenous streptozotocin injection. Diabetic animals (D) and nondiabetic control animals (C) were fed the standard rat chow either without supplementation or supplemented with either fish oil (DM, CM) or olive oil (DO, CO) at a daily dose of 0.5 g/kg by gavage during 8 weeks. Analysis of the fatty acid composition of purified sciatic nerve membranes from diabetic animals showed a decreased incorporation of C16:1(n-7) fatty acids and arachidonic acids. Fish oil supplementation changed the fatty acid content of sciatic nerve membranes, decreasing C18:2(n-6) fatty acids and preventing the decreases of arachidonic acids and C18:1(n-9) fatty acids. Protein expression of Na,K-ATPase α subunits, Na,K-ATPase activity, and ouabain affinity were assayed in purified sciatic nerve membranes from CO, DO, and DM. Na,K-ATPase activity was significantly lower in sciatic nerve membranes of diabetic rats and significantly restored in diabetic animals that received fish oil supplementation. Diabetes induced a specific decrease of α1- and α3-isoform activity and protein expression in sciatic nerve membranes. Fish oil supplementation restored partial activity and expression to varying degrees depending on the isoenzyme. These effects were associated with a significant beneficial effect on NCV. This study indicates that fish oil has beneficial effects on diabetes-induced alterations in sciatic nerve Na,K-ATPase activity and function.  相似文献   

11.
12.
摘要 目的:调查上海市杨浦区社区2型糖尿病(T2DM)患者周围神经病变(DPN)患病率,并分析其影响因素。方法:于2019年3月~2020年3月在上海市杨浦区所辖社区中随机选取5个社区,采用分层随机抽样法从每个社区选取100例T2DM患者进行调查,统计T2DM患者DPN患病率,采用多因素Logistic回归分析DPN发生的影响因素。结果:本次研究共发放500份调查问卷,回收498份,回收率为99.60%(498/500),其中DPN患者222例,DPN发生率为44.58%(222/498),纳为DPN组,276例未发生DPN纳为非DPN组。单因素分析结果显示:DPN组与非DPN组在腰围、合并糖尿病视网膜病变(DR)、合并下肢血管病变(PVD)、吸烟史、高血压、脑梗死病史、文化程度、婚姻状况、收缩压(SBP)、空腹血糖(FPG)、葡萄糖达标时间百分比(TIR)、载脂蛋白B、尿酸方面比较有差异(P<0.05)。进一步多因素Logistic回归分析结果显示:合并DR、合并PVD、有吸烟史、有脑梗死病史、婚姻状况为未婚/离异/丧偶、FPG水平较高是T2DM患者发生DPN的危险因素(P<0.05)。结论:T2DM患者中DPN的患病率较高,合并DR、PVD、吸烟史、脑梗死病史以及婚姻状况是DPN发生的影响因素,应重视DPN筛查并进行干预,针对上述影响因素对T2DM患者开展健康宣教,减少DPN的发生。  相似文献   

13.
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM) and the dysfunction of Schwann cells plays an important role in the pathogenesis of DPN. Thioredoxin-interacting protein (TXNIP) is known as an inhibitor of thioredoxin and associated with oxidative stress and inflammation. However, whether TXNIP is involved in dysfunction of Schwann cells of DPN and the exact mechanism is still not known. In this study, we first reported that TXNIP expression was significantly increased in the sciatic nerves of diabetic mice, accompanied by abnormal electrophysiological indexes and myelin sheath structure. Similarly, in vitro cultured Schwann cells TXNIP was evidently enhanced by high glucose stimulation. Again, the function experiment found that knockdown of TXNIP in high glucose-treated RSC96 cells led to a 4.12 times increase of LC3-II/LC3-I ratio and a 25.94% decrease of cleaved caspase 3/total caspase 3 ratio. Then, DNA methyltransferase (DNMT) inhibitor 5-Aza has been reported to benefit Schwann cell in DPN, and here 5-Aza treatment reduced TXNIP protein expression, improved autophagy and inhibited apoptosis in high glucose-treated RSC96 cells and the sciatic nerves of diabetic mice. Furthermore, DNMT1 and DNMT3a upregulation were found to be involved in TXNIP overexpression in high glucose-stimulated RSC96 cells. Silencing of DNMT1 and DNMT3a effectively reversed high glucose-enhanced TXNIP. Moreover, high glucose-inhibited PI3K/Akt pathway led to DNMT1, DNMT3a, and TXNIP upregulation in RSC96 cells. Knockdown of DNMT1 and DNMT3a prevented PI3K/Akt pathway inhibition-caused TXNIP upregulation in RSC96 cells. Finally, in vivo knockout of TXNIP improved nerve conduction function, increased autophagosome and LC3 expression, and decreased cleaved Caspase 3 and Bax expression in diabetic mice. Taken together, PI3K/Akt pathway inhibition mediated high glucose-induced DNMT1 and DNMT3a overexpression, leading to cell autophagy inhibition and apoptosis via TXNIP protein upregulation in Schwann cells of DPN.Subject terms: Insulin signalling, Diabetes complications, Peripheral neuropathies  相似文献   

14.
15.
Studies of rats with experimental streptozotocin (STZ)-induced diabetes at 4 months have identified sciatic nerve trunk oligemia and hypoxia, but it is uncertain how early these abnormalities develop or which develops first. We studied young (4-week-old) rats after 6 or 16 weeks of STZ-induced diabetes (or after citrate buffer injection in controls) by recording multi-fiber conduction in three different nerve territories and by measuring sciatic endoneurial blood flow (NBF) and oxygen tension (PnO2) at end point. To evaluate the impact of sympathectomy on this diabetic model, separate animal groups were treated for 5 weeks with guanethidine monosulfate given at the onset of diabetes (group 1, end point 6 weeks) or after 6 weeks of diabetes (group 2, end point 16 weeks). Diabetes was associated with deficits in sensory and motor caudal conduction and increased resistance to ischemic conduction failure (RICF). NBF was comparable to control animals at both time points and was within the published normal range of NBF. In contrast, oxygen tensions were shifted to lower values in diabetic animals. Sympathectomy was associated with blunting of the RICF increase in group 2 but worsened caudal sensory conduction despite evidence of modest improvement in sciatic nerve oxygenation. Our findings support the concept that neuropathy occurs early in diabetes and that hypoxia develops before oligemia. Sympathectomy did not benefit this diabetic model.  相似文献   

16.
We investigated the effects of diabetes mellitus and antioxidant treatment on the sensory and reflex function of cardiac chemosensory nerves in rats. Diabetes was induced by streptozotocin (STZ; 85 mg/kg ip). Subgroups of sham- and STZ-treated rats were chronically treated with an antioxidant, vitamin E (60 mg/kg per os daily, started 2 days before STZ). Animals were studied 6-8 wk after STZ injection. We measured renal sympathetic nerve activity (RSNA), mean arterial blood pressure (MABP), and cardiac vagal and sympathetic afferent activities in response to stimulation of chemosensitive sensory nerves in the heart by epicardial application of capsaicin (Caps) and bradykinin (BK). In cardiac sympathetic-denervated rats, Caps and BK (1-10.0 microg) evoked a vagal afferent mediated reflex depression of RSNA and MABP, which was significantly blunted in STZ-treated rats (P < 0.05). In vagal-denervated rats, Caps and BK (1-10.0 microg) evoked a sympathetic afferent-mediated reflex elevation of RSNA and MABP, which also was significantly blunted in STZ-treated rats (P < 0.05). Chronic vitamin E treatment effectively prevented these cardiac chemoreflex defects in STZ-treated rats without altering resting blood glucose or hemodynamics. STZ-treated rats with insulin replacement did not exhibit impaired cardiac chemoreflexes. In afferent studies, Caps and BK (0.1 g-10.0 microg) increased cardiac vagal and sympathetic afferent nerve activity in a dose-dependent manner in sham-treated rats. These responses were significantly blunted in STZ-treated rats. Vitamin E prevented the impairment of afferent discharge to chemical stimulation in STZ rats. The following were concluded: STZ-induced, insulin-dependent diabetes in rats extensively impairs the sensory and reflex properties of cardiac chemosensitive nerve endings, and these disturbances can be prevented by chronic treatment with vitamin E. These results suggest that oxidative stress plays an important role in the neuropathy of this autonomic reflex in diabetes.  相似文献   

17.
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM). More than 90% of all cases of DM belong to type 2 diabetes mellitus (T2DM). Emodin is the main active component of Radix et rhizoma rhei and has anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. Nanoparticle encapsulation of drugs is beneficial for drug targeting and bioavailability as well as for lowering drug toxicity side effects. The aim of this study was to investigate the effects of nanoparticle-encapsulated emodin (nano emodin) on diabetic neuropathic pain (DNP) mediated by the Purin 2X3 (P2X3) receptor in the dorsal root ganglia (DRG). Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) values in T2DM rats were lower than those of control rats. MWT and TWL in T2DM rats treated with nano emodin were higher compared with those in T2DM rats. Expression levels of P2X3 protein and messenger RNA (mRNA) in the DRG of T2DM rats were higher than those of controls, while levels in T2DM rats treated with nano emodin were significantly lower than those of the T2DM rats. Phosphorylation and activation of ERK1/2 in the T2DM DRG were decreased by nano emodin treatment. Nano emodin significantly inhibited currents activated by the P2X3 agonist α,β-meATP in HEK293 cells transfected with the P2X3 receptor. Therefore, nano emodin treatment may relieve DNP by decreasing excitatory transmission mediated by the DRG P2X3 receptor in T2DM rats.  相似文献   

18.
Delayed wound healing is a common complication in diabetes mellitus. From this point of view, the main purpose of the present study is to investigate the effect of extremely low frequency pulsed electromagnetic fields (ELF PEMFs) on skin wound healing in diabetic rats. In this study, diabetes was induced in male Wistar rats via a single subcutaneous injection of 65 mg/kg streptozocin (freshly dissolved in sterile saline, 0.9%). One month after the induction of diabetes, a full‐thickness dermal incision (35 mm length) was made on the right side of the paravertebral region. The wound was exposed to ELF PEMF (20 Hz, 4 ms, 8 mT) for 1 h per day. Wound healing was evaluated by measuring surface area, percentage of healing, duration of healing, and wound tensile strength. Obtained results showed that the duration of wound healing in diabetic rats in comparison with the control group was significantly increased. In contrast, the rate of healing in diabetic rats receiving PEMF was significantly greater than in the diabetic control group. The wound tensile strength also was significantly greater than the control animals. In addition, the duration of wound healing in the control group receiving PEMF was less than the sham group. Based on the above‐mentioned results we concluded that this study provides some evidence to support the use of ELF PEMFs to accelerate diabetic wound healing. Further research is needed to determine the PEMF mechanisms in acceleration of wound healing in diabetic rats. Bioelectromagnetics 31:318–323, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
目的:探讨外源性C肽对Ⅰ型糖尿病大鼠坐骨神经结构及功能的影响。方法:选取Wistar大鼠40只,分为正常对照组(NC组)和糖尿病组(Dia组),糖尿病组链脲佐菌素诱发大鼠成模后,再随机分为三组:糖尿病组(Dia组)、胰岛素治疗组(In组)和C肽治疗组(CP组)8周后,测定各组大鼠运动、感觉神经传导速度,并对病变大鼠的坐骨神经进行病理定量图像分析及超微结构分析,结果:1.In组、CP肽组与DM组相比:大鼠运动、感觉神经传导速度均明显增加(P〈0.01);2.腓肠神经纤维的数量和总横截面面积也显著增加(P〈0.01)。3.CP组与In组相比运动、感觉神经传导速度也显著增加(P〈0.01)。4.电镜显示:Dia组有髓神经纤维髓鞘发生分离并有无颗粒囊胞状结构聚集现象,In组有髓神经纤维髓鞘分离现象明显减轻但仍有无颗粒囊胞状结构聚集现象.而CP组有髓神经纤维结构完全接近正常组。结论:C肽在改善糖尿病大鼠的神经结构和功能方面明显优于胰岛素.  相似文献   

20.
ObjectiveTo investigate the analgesic effect of amitriptyline on neuropathic pain model rats, diabetic neuropathic pain model rats and fibromyalgia model rats.MethodsThe healthy male Sprague wrote – Dawley (SD) rats were taken as the research object, and they were randomly divided into model group (group A), beside the sciatic nerve and injection of 5 mm amitriptyline group (group B), beside the sciatic nerve and injection of 10 mm amitriptyline group (group C), beside the sciatic nerve and injection of 15 mm amitriptyline group (group D), intraperitoneal injection of amitriptyline group (group E). Pain induced by selective injury of sciatic nerve branches in rats, pain induced by chronic compression of sciatic nerve, diabetic neuropathic pain and fibromyalgia were conducted to determine the pain threshold of mechanical stimulation in rats after drug administration.ResultsThe pain threshold of mechanical stimulation in the local amitriptyline group (group B, C, D) was significantly higher than that in the group A and group E at each time point after drug treatment, and the pain threshold of mechanical stimulation gradually increased with the increase of concentration. There was no statistically significant difference in mechanical stimulation pain threshold between group A and group E at each time point after drug treatment.ConclusionPara-sciatic injection of amitriptyline at different concentrations has analgesic effects on neuropathic pain, diabetic neuropathic pain and fibromyalgia in rat models, and amitriptyline directly ACTS on the local sciatic nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号