首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.  相似文献   

2.
The production of benthic foraminiferal communities is filtered through taphonomic (mainly destructive) processes within the sediments to generate the fossil assemblage. Both the production and the taphonomy depend on bottom water oxygen content and flux of organic carbon to the seabed. An examination of the relationships of processes generating the fossil assemblage to oxygen and organic carbon supply is made using pore water geochemical measurements to estimate carbon flux for locations in the Gulf of Mexico and the central California margin. The locations are plotted in a three dimensional field with bottom water oxygen content, organic carbon flux, and sediment depth as the axes. Then the response of foraminiferal standing stock, taphonomic processes and the developing fossil assemblage to the field is investigated. Variation in the vertical stratification of foraminiferal standing stock and test production, species' stratification, taphonomic process intensity and stratification, and sediment bioturbation lead to marked differences in the way the fossil assemblage is generated across the oxygen content-organic carbon flux field. The result is that the oxygen-carbon flux field has a significant impact on the fossil assemblage through the interaction of biological and biogeochemical processes in the sediments. A model of this interaction is investigated to show how its elements change across the oxygen-carbon flux field and how these affect the generation of the fossil assemblage.  相似文献   

3.
Hasemann C  Soltwedel T 《PloS one》2011,6(12):e29152
The unexpected high species richness of deep-sea sediments gives rise to the questions, which processes produce and maintain diversity in the deep sea, and at what spatial scales do these processes operate? The idea of a small-scale habitat structure at the deep-sea floor provides the background for this study. At small scales biogenic structures create a heterogeneous environment that influences the structure of the surrounding communities and the dynamics of the meiobenthic populations. As an example for biogenic structures, small deep-sea sponges (Tentorium semisuberites Schmidt 1870) and their sedimentary environment were investigated for small-scale distribution patterns of benthic deep-sea nematodes. Sampling was carried out with the remotely operated vehicle Victor 6000 at the Arctic deep-sea observatory HAUSGARTEN. In order to investigate nematode community patterns sediment cores around three small sponges and corresponding control cores were analysed. A total of approx. 5800 nematodes were identified. The comparison of the nematode communities from sponge and control samples indicated an influence of the biogenic structure “sponge” on diversity patterns and habitat heterogeneity. The increased number of nematode species and functional groups found in the sediments around the sponges suggest that on a small scale the sponge acts as a gradient and creates a more divers habitat structure. The nematode community from the sponge sediments shows a greater taxonomic variance and species richness together with lower relative abundances of the species compared to those from control sediments. Obviously, the more homogeneous habitat conditions of the control sediments offer less micro-habitats than the sediments around the sponges. This seems to reduce the number of functional groups and species coexisting in the control sediments.  相似文献   

4.
Submarine canyon systems provide a heterogeneous habitat for deep-sea benthos in terms of topography, hydrography, and the quality and quantity of organic matter present. Enhanced meiofauna densities as found in organically enriched canyon sediments suggest that nematodes, as the dominant metazoan meiobenthic taxon, may play an important role in the benthic food web of these sediments. Very little is known about the natural diets and trophic biology of deep-sea nematodes, but enrichment experiments can shed light on nematode feeding selectivity and trophic position. An in-situ pulse-chase experiment (Feedex) was performed in the Nazaré Canyon on the Portuguese margin in summer 2007 to study nematode feeding behaviour. 13C-labelled diatoms and bacteria were added to sediment cores which were then sampled over a 14-day period. There was differential uptake by the nematode community of the food sources provided, indicating selective feeding processes. 13C isotope results revealed that selective feeding was less pronounced at the surface, compared to the sediment subsurface. This was supported by a higher trophic diversity in surface sediments (Θ−1 = 3.50 ± 0.2) compared to the subsurface (2.78 ± 0.6), implying that more food items may be used by the nematode community at the sediment surface. Predatory and scavenging nematodes contributed relatively more to biomass than other feeding types and can be seen as key contributors to the nematode food web at the canyon site. Non-selective deposit feeding nematodes were the dominant trophic group in terms of abundance and contributed substantially to total nematode biomass. The high levels of ‘fresh’ (bioavailable) organic matter input and moderate hydrodynamic disturbance of the canyon environment lead to a more complex trophic structure in canyon nematode communities than that found on the open continental slope, and favours predator/scavengers and non-selective deposit feeders.  相似文献   

5.
The carcasses of large pelagic vertebrates that sink to the seafloor represent a bounty of food to the deep-sea benthos, but natural food-falls have been rarely observed. Here were report on the first observations of three large ‘fish-falls’ on the deep-sea floor: a whale shark (Rhincodon typus) and three mobulid rays (genus Mobula). These observations come from industrial remotely operated vehicle video surveys of the seafloor on the Angola continental margin. The carcasses supported moderate communities of scavenging fish (up to 50 individuals per carcass), mostly from the family Zoarcidae, which appeared to be resident on or around the remains. Based on a global dataset of scavenging rates, we estimate that the elasmobranch carcasses provided food for mobile scavengers over extended time periods from weeks to months. No evidence of whale-fall type communities was observed on or around the carcasses, with the exception of putative sulphide-oxidising bacterial mats that outlined one of the mobulid carcasses. Using best estimates of carcass mass, we calculate that the carcasses reported here represent an average supply of carbon to the local seafloor of 0.4 mg m−2d−1, equivalent to ∼4% of the normal particulate organic carbon flux. Rapid flux of high-quality labile organic carbon in fish carcasses increases the transfer efficiency of the biological pump of carbon from the surface oceans to the deep sea. We postulate that these food-falls are the result of a local concentration of large marine vertebrates, linked to the high surface primary productivity in the study area.  相似文献   

6.

Background

Here, insight is provided into the present knowledge on free-living nematodes associated with chemosynthetic environments in the deep sea. It was investigated if the same trends of high standing stock, low diversity, and the dominance of a specialized fauna, as observed for macro-invertebrates, are also present in the nematodes in both vents and seeps.

Methodology

This review is based on existing literature, in combination with integrated analysis of datasets, obtained through the Census of Marine Life program on Biogeography of Deep-Water Chemosynthetic Ecosystems (ChEss).

Findings

Nematodes are often thriving in the sulphidic sediments of deep cold seeps, with standing stock values ocassionaly exceeding largely the numbers at background sites. Vents seem not characterized by elevated densities. Both chemosynthetic driven ecosystems are showing low nematode diversity, and high dominance of single species. Genera richness seems inversely correlated to vent and seep fluid emissions, associated with distinct habitat types. Deep-sea cold seeps and hydrothermal vents are, however, highly dissimilar in terms of community composition and dominant taxa. There is no unique affinity of particular nematode taxa with seeps or vents.

Conclusions

It seems that shallow water relatives, rather than typical deep-sea taxa, have successfully colonized the reduced sediments of seeps at large water depth. For vents, the taxonomic similarity with adjacent regular sediments is much higher, supporting rather the importance of local adaptation, than that of long distance distribution. Likely the ephemeral nature of vents, its long distance offshore and the absence of pelagic transport mechanisms, have prevented so far the establishment of a successful and typical vent nematode fauna. Some future perspectives in meiofauna research are provided in order to get a more integrated picture of vent and seep biological processes, including all components of the marine ecosystem.  相似文献   

7.
Several seamounts are known as ‘oases’ of high abundances and biomass and hotspots of biodiversity in contrast to the surrounding deep-sea environments. Recent studies have indicated that each single seamount can exhibit a high intricate habitat turnover. Information on alpha and beta diversity of single seamount is needed in order to fully understand seamounts contribution to regional and global biodiversity. However, while most of the seamount research has been focused on summits, studies considering the whole seamount structure are still rather poor. In the present study we analysed abundance, biomass and diversity of nematodes collected in distinct physiographic sites and surrounding sediments of the Condor Seamount (Azores, North-East Atlantic Ocean). Our study revealed higher nematode biomass in the seamount bases and values 10 times higher in the Condor sediments than in the far-field site. Although biodiversity indices did not showed significant differences comparing seamount sites and far-field sites, significant differences were observed in term of nematode composition. The Condor summit harboured a completely different nematode community when compared to the other seamount sites, with a high number of exclusive species and important differences in term of nematode trophic diversity. The oceanographic conditions observed around the Condor Seamount and the associated sediment mixing, together with the high quality of food resources available in seamount base could explain the observed patterns. Our results support the hypothesis that seamounts maintain high biodiversity through heightened beta diversity and showed that not only summits but also seamount bases can support rich benthic community in terms of standing stocks and diversity. Furthermore functional diversity of nematodes strongly depends on environmental conditions link to the local setting and seamount structure. This finding should be considered in future studies on seamounts, especially in view of the potential impacts due to current and future anthropogenic threats.  相似文献   

8.
In marine soft sediments, large organisms are potentially important players in the nonlinear interactions that occur among animals, their food, and their chemical environment, all of which influence the contribution of benthos to ecosystem function. We investigated the consequences of removing large individuals of two functionally contrasting benthic communities on nutrient regeneration, microphyte standing stock, and macrobenthic community composition. The experiment was conducted at two adjacent sites that were physically similar but biologically different, one dominated by large deposit feeders and the other by large suspension feeders. Chemical fluxes were measured in experimental plots, and sediments were sampled to assess changes in macrofauna, sediment grain size, organic content, and microphyte standing stock. Our results demonstrate that the removal of large suspension feeders or deposit feeders influenced the flux of nitrogen and oxygen, surficial sediment characteristics, and community composition. In the deposit-feeder community, interactions between nutrient regeneration and grazing highlight important feedbacks between large macrofauna and biogeochemical processes and production by microphytes, indicating that the loss of large infauna driven by increased rates of anthropogenic disturbance may lead to functional extinction and cause shifts in community structure and ecosystem performance.  相似文献   

9.
The vertical distribution of nematodes in the sediments of three cores from the phytodetritus-influenced Porcupine Abyssal Plain station is compared with three cores from the Madeira Abyssal Plain station in the DEEPSEAS programme. Nematode vertical distributions are compared with sediment organic chemistry data sampled at the same time from the same sites. The results support the two hypotheses erected by Thiel (1983) that the penetration of meiofauna into deep-sea sediments might be correlated with the input of organic matter and that a greater biological activity of larger organisms would increase the penetration of nematodes into the sediment through increase downward transport of food material.  相似文献   

10.
Marginal ice zones (MIZ) are known to be the most highly productive systems in the Arctic Ocean with large amounts of primary production reaching the deep seafloor. This study characterizes the effect of the ice-edge related primary production and subsequent phytodetritus sedimentation on deep-sea meiobenthic communities, particularly nematodes, along the Eastern Greenland continental margin in July 2000. Results were based on data from six stations along a depth transect crossing the MIZ with the shallowest stations under the ice-cover (656 and 1,198 m), intermediate stations at the ice-edge (1,560 and 2,129 m), and deepest stations in ice-free areas (2,735 and 3,033 m). The presence of the ice-cover significantly affected the availability of organic matter on the deep seafloor. The present results confirm a close bentho-pelagic coupling in the area of investigation. Enhanced flux of phytodetritus from primary production to the benthic system appears at stations underneath or close to the ice-edge and at the sampling sites in ice-free areas. The availability of phytodetritus at these stations enhanced bacterial activities, meiofauna abundances, and the number of nematodes species. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

11.
Kongsfjord and Hornsund are fjords located on the west coast of the island of Spitsbergen that differ in terms of hydrographical conditions and food source availability for benthic organisms. We studied the nematode communities of these two glacial fjords with respect to their morphometric attributes (body length, width, length/width ratio) and biomass (total and individual) to evaluate whether their differences reflect differences in hydrographical and biogeochemical conditions. Sediments collected from Kongsfjord, which contained enhanced marine organic material than sediments from Hornsund, supported nematode communities exhibiting higher biomass and morphological diversity. The roles that the biochemical properties of sediments and food availability play in structuring biological communities were reflected in the wider spectrum of length/width ratio (L/W) and size spectra, with biomass dominance in the higher weight-classes observed in Kongsfjord. In this respect, the appearance of short and plump nematodes in the Kongsfjord nematode assemblage (12% of all nematodes), characterised by a L/W ratio of <12, was striking. This morphotype, which is almost absent in the Hornsund fjord (4%), is considered to be an indicator of well-oxygenated sediments with favourable food sources and may further confirm that the organic material in the Kongsfjord sediments is of higher quality. Furthermore, the homogeneity of sediment composition suggests that the morphological landscape of nematode communities are not structured by granulometry per se, as has been suggested in other studies, but rather by other environmental factors that are indirectly connected with particle size. The results of the present study provide evidence that the morphometric characteristics of nematodes are suitable for detecting differences in sediments, particularly with regard to organic matter availability.  相似文献   

12.
Variations in oceanic primary productivity, flux of organic carbon to the sediments, and dissolved-oxygen levels in the water column are thought to be important in the control of benthic foraminiferal test size, wall thickness, morphology, and species composition of assemblages by many foraminiferal paleontologists. Aspects of these processes should be reflected by the benthic foraminiferal oxygen index (BFOI) based on these foraminiferal characteristics. However, analyses indicate that the BFOI correlates most strongly with dissolved-oxygen levels in overlying water (R2=0.81), weakly with oceanic primary productivity (R2=0.55), and weakly with organic carbon flux to the sediments (R2=0.51). Although both dissolved oxygen and organic carbon flux are main controlling factors for benthic foraminiferal assemblages, the BFOI is a useful indicator extracted from benthic foraminiferal assemblages for estimating the condition of dissolved oxygen in Cretaceous and Cenozoic oceans.  相似文献   

13.
Consensus is growing among ecologists that energy and the factors influencing its utilization can play overarching roles in regulating large-scale patterns of biodiversity. The deep sea--the world's largest ecosystem--has simplified energetic inputs and thus provides an excellent opportunity to study how these processes structure spatial diversity patterns. Two factors influencing energy availability and use are chemical (productive) and thermal energy, here represented as seafloor particulate organic carbon (POC) flux and temperature. We related regional patterns of benthic molluscan diversity in the North Atlantic to these factors, to conduct an explicit test of species-energy relationships in the modern day fauna of the deep ocean. Spatial regression analyses in a model-averaging framework indicated that POC flux had a substantially higher relative importance than temperature for both gastropods and protobranch bivalves, although high correlations between variables prevented definitive interpretation. This contrasts with recent research on temporal variation in fossil diversity from deep-sea cores, where temperature is generally a more significant predictor. These differences may reflect the scales of time and space at which productivity and temperature operate, or differences in body size; but both lines of evidence implicate processes influencing energy utilization as major determinants of deep-sea species diversity.  相似文献   

14.
Surface primary productivity and carbon flux in the Arctic Seas are higher along the warm Spitsbergen Water Current than along the ice-infested East Greenland Current. These contrasting oceanographic conditions are reflected in the deep-sea environment and may shape nematode assemblages. However, the paucity of samples in the Arctic deep seas precludes any regional scale assessment. In the present study, nematode assemblages were investigated in relation to a range of environmental variables along the 2,000 m isobath between latitudes 72°N and 79°N for both East and Western margins of the northern North Atlantic. Results showed that both margins had distinct environmental characteristics, with respect to chloroplastic pigments, sediment water content, sediment-bound organic matter, phospholipids and particulate proteins. Nematode assemblages varied according to these environmental changes. Along the more oligotrophic western margin, chloroplastic pigments increased towards the North, while the other environmental variables, nematode abundances and species richness decreased. In contrast, along the eastern margin, we observed higher quantities of organic matter and particulate protein, which supported higher abundance and species richness. Nematode assemblages along both margins varied according to food availability with species composition more variable in areas with lower amounts. Seventy percent of the species occurred in both margins indicating a low turnover of species. The present results support the hypothesis of a positive latitudinal gradient across the North Atlantic and further suggest that contemporary climate and recent ecological processes may predict nematode diversity patterns at larger scales.  相似文献   

15.
【目的】初步探究海洋线虫与微生物的相互作用对碳、氮循环的影响。【方法】利用16S r RNA和18S r RNA基因高通量测序方法,对33个近岸沉积物样品中细菌、古菌和真核生物的多样性进行调查;对海洋线虫与细菌、海洋线虫与古菌的共现性进行网络分析,并采用Spearman统计学方法,识别出与海洋线虫共现性呈显著相关性的微生物种类。【结果】在夏季,红树林和潮间带泥滩样品中线虫OTU平均相对丰度基本呈随深度增加而递减趋势;冬季的红树林样品中发现相类似变化规律,只有在冬季潮间带泥滩样品中线虫OTU平均相对丰度在深层较高于表层。相对丰度最高的海洋线虫隶属于单宫目(47%)、色矛目(19%)、刺嘴目(16%)和垫刃目(9%),它们与热源体古菌、深古菌、γ-和δ-变形菌等微生物有显著正/负相关关系。【结论】在香港米埔湿地沉积物中,与相对丰度最高的5种线虫显著相关的几大类微生物均在碳、氮、硫等元素循环方面起十分重要的作用,暗示海洋线虫与微生物潜在的相互作用对元素地球化学循环具有重要影响。研究结果有助于深入了解线虫在生态系统中未被揭示的生态功能,有助于更清晰地认识海洋线虫在底栖生态系统中所扮演的角色。  相似文献   

16.
Deep‐water benthic communities in the ocean are almost wholly dependent on near‐surface pelagic ecosystems for their supply of energy and material resources. Primary production in sunlit surface waters is channelled through complex food webs that extensively recycle organic material, but lose a fraction as particulate organic carbon (POC) that sinks into the ocean interior. This exported production is further rarefied by microbial breakdown in the abyssal ocean, but a residual ultimately drives diverse assemblages of seafloor heterotrophs. Advances have led to an understanding of the importance of size (body mass) in structuring these communities. Here we force a size‐resolved benthic biomass model, BORIS, using seafloor POC flux from a coupled ocean‐biogeochemistry model, NEMO‐MEDUSA, to investigate global patterns in benthic biomass. BORIS resolves 16 size classes of metazoans, successively doubling in mass from approximately 1 μg to 28 mg. Simulations find a wide range of seasonal responses to differing patterns of POC forcing, with both a decline in seasonal variability, and an increase in peak lag times with increasing body size. However, the dominant factor for modelled benthic communities is the integrated magnitude of POC reaching the seafloor rather than its seasonal pattern. Scenarios of POC forcing under climate change and ocean acidification are then applied to investigate how benthic communities may change under different future conditions. Against a backdrop of falling surface primary production (?6.1%), and driven by changes in pelagic remineralization with depth, results show that while benthic communities in shallow seas generally show higher biomass in a warmed world (+3.2%), deep‐sea communities experience a substantial decline (?32%) under a high greenhouse gas emissions scenario. Our results underscore the importance for benthic ecology of reducing uncertainty in the magnitude and seasonality of seafloor POC fluxes, as well as the importance of studying a broader range of seafloor environments for future model development.  相似文献   

17.
The enumeration of Archaea in deep-sea sediment samples is still limited, although different methodological procedures have been applied. Among these, catalysed reporter deposition-fluorescence in situ hybridisation (CARD-FISH) technique is a promising tool for estimation of archaeal abundance in deep-sea sediment samples. Comparing different permeabilisation treatments, the best results obtained both on archaeal pure cultures and on natural assemblages were with hydrochloric acid (0.1 M) and proteinase K (0.004 U/ml) treatments. The application of CARD-FISH on deep-sea sediments revealed that Archaea reach up to 41% of total prokaryotic cells. Specific probes for planktonic Archaea showed that marine Crenarchaea dominated archaeal seafloor communities. No clear bathymetric trends were observed for archaeal abundances and the morphology of continental margin (slope vs. canyon) seems not to have a direct influence on archaeal relative abundances. The site-specific sediment habitat—both abiotic environmental setting and sedimentary organic matter quality—explain up to 65% of variance of archaeal, crenarchaeal and euryarchaeal relative abundance, suggesting a wide ecophysiological adaptation to deep-sea benthic ecosystems. The findings demonstrate that Archaea are an important component of benthic microbial assemblages so far neglected, and hence they lay the groundwork for more focused research on their ecological importance in the functioning of deep-sea benthic ecosystems.  相似文献   

18.
The dark ocean and the underlying deep seafloor together represent the largest environment on this planet, comprising about 80% of the oceanic volume and covering more than two-thirds of the Earth's surface, as well as hosting a major part of the total biosphere. Emerging evidence suggests that these vast pelagic and benthic habitats play a major role in ocean biogeochemistry and represent an “untapped reservoir” of high genetic and metabolic microbial diversity. Due to its huge volume, the water column of the dark ocean is the largest reservoir of organic carbon in the biosphere and likely plays a major role in the global carbon budget. The dark ocean and the seafloor beneath it are also home to a largely enigmatic food web comprising little-known and sometimes spectacular organisms, mainly prokaryotes and protists. This review considers the globally important role of pelagic and benthic protists across all protistan size classes in the deep-sea realm, with a focus on their taxonomy, diversity, and physiological properties, including their role in deep microbial food webs. We argue that, given the important contribution that protists must make to deep-sea biodiversity and ecosystem processes, they should not be overlooked in biological studies of the deep ocean.  相似文献   

19.
Nematodes inhabiting benthic deep-sea ecosystems account for >90% of the total metazoan abundances and they have been hypothesised to be hyper-diverse, but their biodiversity is still largely unknown. Metabarcoding could facilitate the census of biodiversity, especially for those tiny metazoans for which morphological identification is difficult. We compared, for the first time, different DNA extraction procedures based on the use of two commercial kits and a previously published laboratory protocol and tested their suitability for sequencing analyses of 18S rDNA of marine nematodes. We also investigated the reliability of Roche 454 sequencing analyses for assessing the biodiversity of deep-sea nematode assemblages previously morphologically identified. Finally, intra-genomic variation in 18S rRNA gene repeats was investigated by Illumina MiSeq in different deep-sea nematode morphospecies to assess the influence of polymorphisms on nematode biodiversity estimates. Our results indicate that the two commercial kits should be preferred for the molecular analysis of biodiversity of deep-sea nematodes since they consistently provide amplifiable DNA suitable for sequencing. We report that the morphological identification of deep-sea nematodes matches the results obtained by metabarcoding analysis only at the order-family level and that a large portion of Operational Clustered Taxonomic Units (OCTUs) was not assigned. We also show that independently from the cut-off criteria and bioinformatic pipelines used, the number of OCTUs largely exceeds the number of individuals and that 18S rRNA gene of different morpho-species of nematodes displayed intra-genomic polymorphisms. Our results indicate that metabarcoding is an important tool to explore the diversity of deep-sea nematodes, but still fails in identifying most of the species due to limited number of sequences deposited in the public databases, and in providing quantitative data on the species encountered. These aspects should be carefully taken into account before using metabarcoding in quantitative ecological research and monitoring programmes of marine biodiversity.  相似文献   

20.
Viruses are now recognized as a key component in pelagic systems, but their role in marine sediment has yet to be assessed. In this study bacterial and viral densities were determined at nine deep-sea stations selected from three main sites (i.e., the Sporades Basin, the Cretan Sea, and the Ierapetra Trench at depths of 1,232, 1,840, and 4,235 m, respectively) of the Eastern Mediterranean. The three areas were characterized by different phytopigment and biopolymeric carbon concentrations and by changes in the protein and carbohydrate pools. A gradient of increasing trophic conditions was observed from the Sporades Basin (North Aegean) to the Ierapetra Trench (South Aegean). Viral densities (ranging from 1 × 109 to 2 × 109 viruses ml of sediment−1) were significantly correlated to bacterial densities (n = 9, r2 = 0.647) and reached values up to 3 orders of magnitude higher than those generally reported for the water column. However, the virus-to-bacterium density ratio in deep-sea sediments was about 1 order of magnitude lower (range of 2 to 5, with a modal value of 2.6) than in pelagic environments. Virus density decreased vertically with depth in sediment cores at all stations and was below detection limits at the 10-cm depth of the abyssal sediments of the Ierapetra Trench. Virus density in the sediment apparently reflected a gradient of particle fluxes and trophic conditions, displaying the highest values in the Sporades Basin. The low virus-to-bacterium ratios and their inverse relationship with station depth suggest that the role played by viruses in controlling deep-sea benthic bacterial assemblages and biogeochemical cycles is less relevant than in pelagic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号