首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BRCA1 is the first susceptibility gene to be linked to breast and ovarian cancers. Although mounting evidence has indicated that BRCA1 participates in DNA double-strand break (DSB) repair pathways, its precise mechanism is still unclear. Here, we analyzed the in situ response of BRCA1 at DSBs produced by laser microirradiation. The amino (N)- and carboxyl (C)-terminal fragments of BRCA1 accumulated independently at DSBs with distinct kinetics. The N-terminal BRCA1 fragment accumulated immediately after laser irradiation at DSBs and dissociated rapidly. In contrast, the C-terminal fragment of BRCA1 accumulated more slowly at DSBs but remained at the sites. Interestingly, rapid accumulation of the BRCA1 N terminus, but not the C terminus, at DSBs depended on Ku80, which functions in the nonhomologous end-joining (NHEJ) pathway, independently of BARD1, which binds to the N terminus of BRCA1. Two small regions in the N terminus of BRCA1 independently accumulated at DSBs and interacted with Ku80. Missense mutations found within the N terminus of BRCA1 in cancers significantly changed the kinetics of its accumulation at DSBs. A P142H mutant failed to associate with Ku80 and restore resistance to irradiation in BRCA1-deficient cells. These might provide a molecular basis of the involvement of BRCA1 in the NHEJ pathway of the DSB repair process.  相似文献   

2.
Multiple DNA double-strand break (DSB) repair pathways are active in S phase of the cell cycle; however, DSBs are primarily repaired by homologous recombination (HR) in this cell cycle phase. As the non-homologous end-joining (NHEJ) factor, Ku70/80 (Ku), is quickly recruited to DSBs in S phase, we hypothesized that an orchestrated mechanism modulates pathway choice between HR and NHEJ via displacement of the Ku heterodimer from DSBs to allow HR. Here, we provide evidence that phosphorylation at a cluster of sites in the junction of the pillar and bridge regions of Ku70 mediates the dissociation of Ku from DSBs. Mimicking phosphorylation at these sites reduces Ku''s affinity for DSB ends, suggesting that phosphorylation of Ku70 induces a conformational change responsible for the dissociation of the Ku heterodimer from DNA ends. Ablating phosphorylation of Ku70 leads to the sustained retention of Ku at DSBs, resulting in a significant decrease in DNA end resection and HR, specifically in S phase. This decrease in HR is specific as these phosphorylation sites are not required for NHEJ. Our results demonstrate that the phosphorylation-mediated dissociation of Ku70/80 from DSBs frees DNA ends, allowing the initiation of HR in S phase and providing a mechanism of DSB repair pathway choice in mammalian cells.  相似文献   

3.
Cell cycle plays a crucial role in regulating the pathway used to repair DNA double-strand breaks (DSBs). In Saccharomyces cerevisiae, homologous recombination is primarily limited to non-G1 cells as the formation of recombinogenic single-stranded DNA requires CDK1-dependent 5′ to 3′ resection of DNA ends. However, the effect of cell cycle on non-homologous end joining (NHEJ) is not yet clearly defined. Using an assay to quantitatively measure the contributions of each repair pathway to repair product formation and cellular survival after DSB induction, we found that NHEJ is most efficient at G1, and markedly repressed at G2. Repression of NHEJ at G2 is achieved by efficient end resection and by the reduced association of core NHEJ proteins with DNA breaks, both of which depend on the CDK1 activity. Importantly, repression of 5′ end resection by CDK1 inhibition at G2 alone did not fully restore either physical association of Ku/Dnl4-Lif1 with DSBs or NHEJ proficiency to the level at G1. Expression of excess Ku can partially offset the inhibition of end joining at G2. The results suggest that regulation of Ku/Dnl4-Lif1 affinity for DNA ends may contribute to the cell cycle-dependent modulation of NHEJ efficiency.  相似文献   

4.
Ku, the heterodimer of Ku70 and Ku80, plays an essential role in the DNA double-strand break (DSB) repair pathway, i.e., non-homologous end-joining (NHEJ). Two isoforms of Ku80 encoded by the same genes, namely, Ku80 and KARP-1 are expressed and function in primate cells, but not in rodent cells. Ku80 works as a heterodimer with Ku70. However, it is not yet clear whether KARP-1 forms a heterodimer with Ku70 and works as a heterodimer. Although KARP-1 appears to work in NHEJ, its physiological role remains unclear. In this study, we established and characterized EGFP-KARP-1-expressing xrs-6 cell lines, EGFP-KARP-1/xrs-6. We found that nuclear localization signal (NLS) of KARP-1 is localized in the C-terminal region. Our data showed that KARP-1 localizes within the nucleus in NLS-dependent and NLS-independent manner and forms a heterodimer with Ku70, and stabilizes Ku70. On the other hand, EGFP-KARP-1 could not perfectly complement the radiosensitivity and DSB repair activity of Ku80-deficient xrs-6 cells. Furthermore, KARP-1 could not accumulate at DSBs faster than Ku80, although EGFP-KARP-1 accumulates at DSBs. Our data demonstrate that the function of KARP-1 could not perfectly replace that of Ku80 in DSB repair, although KARP-1 has some biochemical properties, which resemble those of Ku80, and works as a heterodimer with Ku70. On the other hand, the number of EGFP-KARP-1-expressing xrs-6 cells showing pan-nuclear γ-H2AX staining significantly increases following X-irradiation, suggesting that KARP-1 may have a novel role in DSB response.  相似文献   

5.
Nonhomologous end-joining (NHEJ) is an important pathway for the repair of DNA double-strand breaks (DSBs) and plays a critical role in maintaining genomic stability in mammalian cells. While Ku70/80 (Ku) functions in NHEJ as part of the DNA-dependent protein kinase (DNA-PK), genetic evidence indicates that the role of Ku in NHEJ goes beyond its participation in DNA-PK. Inositol hexakisphosphate (IP6) was previously found to stimulate NHEJ in vitro and Ku was identified as an IP6-binding factor. Through mutational analysis, we identified a bipartite IP6-binding site in Ku and generated IP6-binding mutants that ranged from 1.22% to 58.48% of wild-type binding. Significantly, these Ku IP6-binding mutants were impaired for participation in NHEJ in vitro and we observed a positive correlation between IP6 binding and NHEJ. Ku IP6-binding mutants were separation-of-function mutants that bound DNA and activated DNA-PK as well as wild-type Ku. Our observations identify a hitherto undefined IP6-binding site in Ku and show that this interaction is important for DSB repair by NHEJ in vitro. Moreover, these data indicate that in addition to binding of exposed DNA termini and activation of DNA-PK, the Ku heterodimer plays a role in mammalian NHEJ that is regulated by binding of IP6.  相似文献   

6.
7.
A double -strand break (DSB) is one of the most deleterious forms of DNA damage. In eukaryotic cells, two main repair pathways have evolved to repair DSBs, homologous recombination (HR) and non-homologous end-joining (NHEJ). HR is the predominant pathway of repair in the unicellular eukaryotic organism, S. cerevisiae. However, during replicative aging the relative use of HR and NHEJ shifts in favor of end-joining repair. By monitoring repair events in the HO-DSB system, we find that early in replicative aging there is a decrease in the association of long-range resection factors, Dna2-Sgs1 and Exo1 at the break site and a decrease in DNA resection. Subsequently, as aging progressed, the recovery of Ku70 at DSBs decreased and the break site associated with the nuclear pore complex at the nuclear periphery, which is the location where DSB repair occurs through alternative pathways that are more mutagenic. End-bridging remained intact as HR and NHEJ declined, but eventually it too became disrupted in cells at advanced replicative age. In all, our work provides insight into the molecular changes in DSB repair pathway during replicative aging. HR first declined, resulting in a transient increase in the NHEJ. However, with increased cellular divisions, Ku70 recovery at DSBs and NHEJ subsequently declined. In wild type cells of advanced replicative age, there was a high frequency of repair products with genomic deletions and microhomologies at the break junction, events not observed in young cells which repaired primarily by HR.  相似文献   

8.
The repair of DNA double-strand breaks (DSB) is central to the maintenance of genomic integrity. In tumor cells, the ability to repair DSBs predicts response to radiation and many cytotoxic anti-cancer drugs. DSB repair pathways include homologous recombination and non-homologous end joining (NHEJ). NHEJ is a template-independent mechanism, yet many NHEJ repair products carry limited genetic changes, which suggests that NHEJ includes mechanisms to minimize error. Proteins required for mammalian NHEJ include Ku70/80, the DNA-dependent protein kinase (DNA-PKcs), XLF/Cernunnos and the XRCC4:DNA ligase IV complex. NHEJ also utilizes accessory proteins that include DNA polymerases, nucleases, and other end-processing factors. In yeast, mutations of tyrosyl-DNA phosphodiesterase (TDP1) reduced NHEJ fidelity. TDP1 plays an important role in repair of topoisomerase-mediated DNA damage and 3′-blocking DNA lesions, and mutation of the human TDP1 gene results in an inherited human neuropathy termed SCAN1. We found that human TDP1 stimulated DNA binding by XLF and physically interacted with XLF to form TDP1:XLF:DNA complexes. TDP1:XLF interactions preferentially stimulated TDP1 activity on dsDNA as compared to ssDNA. TDP1 also promoted DNA binding by Ku70/80 and stimulated DNA-PK activity. Because Ku70/80 and XLF are the first factors recruited to the DSB at the onset of NHEJ, our data suggest a role for TDP1 during the early stages of mammalian NHEJ.  相似文献   

9.
Rad9是一种重要的细胞周期监控点调控蛋白.越来越多的证据显示,Rad9也可与多种DNA损伤修复通路中的蛋白质相互作用,并调节其功能,在DNA损伤修复中发挥重要作用.非同源末端连接修复是DNA双链断裂的一条重要修复途径.Ku70、Ku80和DNA依赖的蛋白激酶催化亚基(DNA-PKcs)共同组成DNA依赖的蛋白激酶复合物(DNA-PK),在非同源末端修复连接中起重要作用.本研究中,检测到Rad9与Ku70有直接的物理相互作用和功能相互作用.我们在不同的细胞模型中发现,Rad9基因敲除、Rad9蛋白去除或Rad9表达降低会导致非同源末端连接效率明显下降.已有的研究表明,DNA损伤可导致细胞中Ku70与染色质结合增加及DNA-PKcs激酶活性增强.我们的结果显示,与野生小鼠细胞相比,Rad9基因敲除的小鼠细胞中, DNA损伤诱导的上述效应均减弱.综上所述,我们的研究首次报道了Rad9与非同源末端连接修复蛋白Ku70间有相互作用,并提示Rad9可通过调节Ku70/Ku80/DNA-PKcs复合物功能参与非同源末端连接修复.  相似文献   

10.
DNA double strand breaks (DSBs) formed during S phase are preferentially repaired by homologous recombination (HR), whereas G1 DSBs, such as those occurring during immunoglobulin class switch recombination (CSR), are repaired by non-homologous end joining (NHEJ). The DNA damage response proteins 53BP1 and BRCA1 regulate the balance between NHEJ and HR. 53BP1 promotes CSR in part by mediating synapsis of distal DNA ends, and in addition, inhibits 5’ end resection. BRCA1 antagonizes 53BP1 dependent DNA end-blocking activity during S phase, which would otherwise promote mutagenic NHEJ and genome instability. Recently, it was shown that supra-physiological levels of the E3 ubiquitin ligase RNF168 results in the hyper-accumulation of 53BP1/BRCA1 which accelerates DSB repair. Here, we ask whether increased expression of RNF168 or 53BP1 impacts physiological versus mutagenic NHEJ. We find that the anti-resection activities of 53BP1 are rate-limiting for mutagenic NHEJ but not for physiological CSR. As heterogeneity in the expression of RNF168 and 53BP1 is found in human tumors, our results suggest that deregulation of the RNF168/53BP1 pathway could alter the chemosensitivity of BRCA1 deficient tumors.  相似文献   

11.
Smarcal1 is a SWI/SNF-family protein with an ATPase domain involved in DNA-annealing activities and a binding site for the RPA single-strand-DNA-binding protein. Although the role played by Smarcal1 in the maintenance of replication forks has been established, it remains unknown whether Smarcal1 contributes to genomic DNA maintenance outside of the S phase. We disrupted the SMARCAL1 gene in both the chicken DT40 and the human TK6 B cell lines. The resulting SMARCAL1−/− clones exhibited sensitivity to chemotherapeutic topoisomerase 2 inhibitors, just as nonhomologous end-joining (NHEJ) null-deficient cells do. SMARCAL1−/− cells also exhibited an increase in radiosensitivity in the G1 phase. Moreover, the loss of Smarcal1 in NHEJ null-deficient cells does not further increase their radiosensitivity. These results demonstrate that Smarcal1 is required for efficient NHEJ-mediated DSB repair. Both inactivation of the ATPase domain and deletion of the RPA-binding site cause the same phenotype as does null-mutation of Smarcal1, suggesting that Smarcal1 enhances NHEJ, presumably by interacting with RPA at unwound single-strand sequences and then facilitating annealing at DSB ends. SMARCAL1−/−cells showed a poor accumulation of Ku70/DNA-PKcs and XRCC4 at DNA-damage sites. We propose that Smarcal1 maintains the duplex status of DSBs to ensure proper recruitment of NHEJ factors to DSB sites.  相似文献   

12.
Efficient repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity. In mammalian cells, DSBs are preferentially repaired by non-homologous end-joining (NHEJ). We have previously described a new DSBs microhomology end-joining pathway depending on PARP-1 and the XRCC1/DNA ligase III complex. In this study we analysed, with recombinant proteins and protein extracts, the effect of DSB end sequences: (i) on the DSB synapsis activity; (ii) on the end-joining activity. We report that PARP-1 DSB synapsis activity is independent of the DSB sequence and could be detected with non-complementary DSBs. We demonstrate also that the efficiency of DSBs repair by PARP-1 NHEJ is strongly dependent on the presence of G:C base pairs at microhomology termini. These results highlight a new role of the PARP-1 protein on the synapsis of DSBs and could explain why the PARP-1 NHEJ pathway is strongly dependent on the DSBs microhomology sequence.  相似文献   

13.
DNA-methylating agents of the SN2 type target DNA mostly at ring nitrogens, producing predominantly N-methylated purines. These adducts are repaired by base excision repair (BER). Since defects in BER cause accumulation of DNA single-strand breaks (SSBs) and sensitize cells to the agents, it has been suggested that some of the lesions on their own or BER intermediates (e.g. apurinic sites) are cytotoxic, blocking DNA replication and inducing replication-mediated DNA double-strand breaks (DSBs). Here, we addressed the question of whether homologous recombination (HR) or non-homologous end-joining (NHEJ) or both are involved in the repair of DSBs formed following treatment of cells with methyl methanesulfonate (MMS). We show that HR defective cells (BRCA2, Rad51D and XRCC3 mutants) are dramatically more sensitive to MMS-induced DNA damage as measured by colony formation, apoptosis and chromosomal aberrations, while NHEJ defective cells (Ku80 and DNA-PKCS mutants) are only mildly sensitive to the killing, apoptosis-inducing and clastogenic effects of MMS. On the other hand, the HR mutants were almost completely refractory to the formation of sister chromatid exchanges (SCEs) following MMS treatment. Since DSBs are expected to be formed specifically in the S-phase, we assessed the formation and kinetics of repair of DSBs by γH2AX quantification in a cell cycle specific manner. In the cytotoxic dose range of MMS a significant amount of γH2AX foci was induced in S, but not G1- and G2-phase cells. A major fraction of γH2AX foci colocalized with 53BP1 and phosphorylated ATM, indicating they are representative of DSBs. DSB formation following MMS treatment was also demonstrated by the neutral comet assay. Repair kinetics revealed that HR mutants exhibit a significant delay in DSB repair, while NHEJ mutants completed S-phase specific DSB repair with a kinetic similar to the wildtype. Moreover, DNA-PKcs inhibition in HR mutants did not affect the repair kinetics after MMS treatment. Overall, the data indicate that agents producing N-alkylpurines in the DNA induce replication-dependent DSBs. Further, they show that HR is the major pathway of protection of cells against DSB formation, killing and genotoxicity following SN2-alkylating agents.  相似文献   

14.
Non-Homologous End-Joining (NHEJ) is the predominant pathway for the repair of DNA double strand breaks (DSBs) in human cells. The NHEJ pathway is frequently upregulated in several solid cancers as a compensatory mechanism for a separate DSB repair defect or for innate genomic instability, making this pathway a powerful target for synthetic lethality approaches. In addition, NHEJ reduces the efficacy of cancer treatment modalities which rely on the introduction of DSBs, like radiation therapy or genotoxic chemotherapy. Consequently, inhibition of the NHEJ pathway can modulate a radiation- or chemo-refractory disease presentation. The Ku70/80 heterodimer protein plays a pivotal role in the NHEJ process. It possesses a ring-shaped structure with high affinity for DSBs and serves as the first responder and central scaffold around which the rest of the repair complex is assembled. Because of this central position, the Ku70/80 dimer is a logical target for the disruption of the entire NHEJ pathway. Surprisingly, specific inhibitors of the Ku70/80 heterodimer are currently not available. We here describe an in silico, pocket-based drug discovery methodology utilizing the crystal structure of the Ku70/80 heterodimer. We identified a novel putative small molecule binding pocket and selected several potential inhibitors by computational screening. Subsequent biological screening resulted in the first identification of a compound with confirmed Ku-inhibitory activity in the low micro-molar range, capable of disrupting the binding of Ku70/80 to DNA substrates and impairing Ku-dependent activation of another NHEJ factor, the DNA-PKCS kinase. Importantly, this compound synergistically sensitized human cell lines to radiation treatment, indicating a clear potential to diminish DSB repair. The chemical scaffold we here describe can be utilized as a lead-generating platform for the design and development of a novel class of anti-cancer agents.  相似文献   

15.
The DNA damage response (DDR) involves both the control of DNA damage repair and signaling to cell cycle checkpoints. Therefore, unraveling the underlying mechanisms of the DDR is important for understanding tumor suppression and cellular resistance to clastogenic cancer therapeutics. Because the DDR is likely to be influenced by chromatin regulation at the sites of DNA damage, we investigated the role of heterochromatin protein 1 (HP1) during the DDR process. We monitored double-strand breaks (DSBs) using the γH2AX foci marker and found that depleting cells of HP1 caused genotoxic stress, a delay in the repair of DSBs and elevated levels of apoptosis after irradiation. Furthermore, we found that these defects in repair were associated with impaired BRCA1 function. Depleting HP1 reduced recruitment of BRCA1 to DSBs and caused defects in two BRCA1-mediated DDR events: (i) the homologous recombination repair pathway and (ii) the arrest of cell cycle at the G2/M checkpoint. In contrast, depleting HP1 from cells did not affect the non-homologous end-joining (NHEJ) pathway: instead it elevated the recruitment of the 53BP1 NHEJ factor to DSBs. Notably, all three subtypes of HP1 seemed to be almost equally important for these DDR functions. We suggest that the dynamic interaction of HP1 with chromatin and other DDR factors could determine DNA repair choice and cell fate after DNA damage. We also suggest that compromising HP1 expression could promote tumorigenesis by impairing the function of the BRCA1 tumor suppressor.  相似文献   

16.
Chloroethylnitrosureas (CNUs) are powerful DNA-reactive alkylating agents used in cancer therapy. Here, we analyzed cyto- and genotoxicity of nimustine (ACNU), a representative of CNUs, in synchronized cells and in cells deficient in repair proteins involved in homologous recombination (HR) or nonhomologous end-joining (NHEJ). We show that HR mutants are extremely sensitive to ACNU, as measured by colony formation, induction of apoptosis and chromosomal aberrations. The NHEJ mutants differed in their sensitivity, with Ku80 mutants being moderately sensitive and DNA-PKcs mutated cells being resistant. HR mutated cells displayed a sustained high level of γH2AX foci and displayed co-staining with Rad51 and 53BP1, indicating DNA double-strand breaks (DSB) to be formed. Using synchronized cells, we analyzed whether DSB formation after ACNU treatment was replication-dependent. We show that γH2AX foci were not induced in G1 but increased significantly in S phase and remained at a high level in G2, where a fraction of cells became arrested and underwent, with a delay of > 12 h, cell death by apoptosis and necrosis. Rad51, ATM, MDC-1 and RPA-2 foci were also formed and shown to co-localize with γH2AX foci induced in S phase, indicating that the DNA damage response was activated. All effects observed were abrogated by MGMT, which repairs O6-chloroethylguanine that is converted into DNA cross-links. We deduce that the major genotoxic and killing lesion induced by CNUs are O6-chloroethylguanine-triggered cross-links, which give rise to DSBs in the treatment cell cycle, and that HR, but not NHEJ, is the major route of protection against this group of anticancer drugs. Base excision repair had no significant impact on ACNU-induced cytotoxicity.  相似文献   

17.
The primary pathways for DNA double strand break (DSB) repair are homologous recombination (HR) and non-homologous end–joining (NHEJ). The choice between HR and NHEJ is influenced by the extent of DNA end resection, as extensive resection is required for HR but repressive to NHEJ. Conversely, association of the DNA end-binding protein Ku, which is integral to classical NHEJ, inhibits resection. In absence of key NHEJ components, a third repair pathway is exposed; this alternative-end joining (A-EJ) is a highly error-prone process that uses micro-homologies at the breakpoints and is initiated by DNA end resection. In Saccharomyces cerevisiae, the high mobility group protein Hmo1p has been implicated in controlling DNA end resection, suggesting its potential role in repair pathway choice. Using a plasmid end-joining assay, we show here that absence of Hmo1p results in reduced repair efficiency and accuracy, indicating that Hmo1p promotes end-joining; this effect is only observed on DNA with protruding ends. Notably, inhibition of DNA end resection in an hmo1Δ strain restores repair efficiency to the levels observed in wild-type cells. In absence of Ku, HMO1 deletion also reduces repair efficiency further, while inhibition of resection restores repair efficiency to the levels observed in kuΔ. We suggest that Hmo1p functions to control DNA end resection, thereby preventing error-prone A-EJ repair and directing repairs towards classical NHEJ. The very low efficiency of DSB repair in kuΔhmo1Δ cells further suggests that excessive DNA resection is inhibitory for A-EJ.  相似文献   

18.
Shao Z  Davis AJ  Fattah KR  So S  Sun J  Lee KJ  Harrison L  Yang J  Chen DJ 《DNA Repair》2012,11(3):310-316
DNA double strand breaks (DSBs) are repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). The DNA cell cycle stage and resection of the DSB ends are two key mechanisms which are believed to push DSB repair to the HR pathway. Here, we show that the NHEJ factor Ku80 associates with DSBs in S phase, when HR is thought to be the preferred repair pathway, and its dynamics/kinetics at DSBs is similar to those observed for Ku80 in non-S phase in mammalian cells. A Ku homolog from Mycobacterium tuberculosis binds to and is retained at DSBs in S phase and was used as a tool to determine if blocking DNA ends affects end resection and HR in mammalian cells. A decrease in DNA end resection, as marked by IR-induced RPA, BrdU, and Rad51 focus formation, and HR are observed when Ku deficient rodent cells are complemented with Mt-Ku. Together, this data suggests that Ku70/80 binds to DSBs in all cell cycle stages and is likely actively displaced from DSB ends to free the DNA ends for DNA end resection and thus HR to occur.  相似文献   

19.
Non-homologous DNA end joining   总被引:9,自引:0,他引:9  
DNA double-strand breaks (DSBs) are a serious threat for the cell and when not repaired or misrepaired can result in mutations or chromosome rearrangements and eventually in cell death. Therefore, cells have evolved a number of pathways to deal with DSB including homologous recombination (HR), single-strand annealing (SSA) and non-homologous end joining (NHEJ). In mammals DSBs are primarily repaired by NHEJ and HR, while HR repair dominates in yeast, but this depends also on the phase of the cell cycle. NHEJ functions in all kinds of cells, from bacteria to man, and depends on the structure of DSB termini. In this process two DNA ends are joined directly, usually with no sequence homology, although in the case of same polarity of the single stranded overhangs in DSBs, regions of microhomology are utilized. The usage of microhomology is common in DNA end-joining of physiological DSBs, such as at the coding ends in V(D)J (variable(diversity) joining) recombination. The main components of the NHEJ system in eukaryotes are the catalytic subunit of DNA protein kinase (DNA-PK(cs)), which is recruited by DNA Ku protein, a heterodimer of Ku70 and Ku80, as well as XRCC4 protein and DNA ligase IV. A complex of Rad50/Mre11/Xrs2, a family of Sir proteins and probably other yet unidentified proteins can be also involved in this process. NHEJ and HR may play overlapping roles in the repair of DSBs produced in the S phase of the cell cycle or at replication forks. Aside from DNA repair, NHEJ may play a role in many different processes, including the maintenance of telomeres and integration of HIV-1 genome into a host genome, as well as the insertion of pseudogenes and repetitive sequences into the genome of mammalian cells. Inhibition of NHEJ can be exploited in cancer therapy in radio-sensitizing cancer cells. Identification of all key players and fundamental mechanisms underlying NHEJ still requires further research.  相似文献   

20.
Double-strand breaks (DSBs) are repaired through two major pathways, homology-directed recombination (HDR) and non-homologous end joining (NHEJ). The choice between these two pathways is largely influenced by cell cycle phases. HDR can occur only in S/G2 when sister chromatid can provide homologous templates, whereas NHEJ can take place in all phases of the cell cycle except mitosis. Central to NHEJ repair is the Ku70/80 heterodimer which forms a ring structure that binds DSB ends and serves as a platform to recruit factors involved in NHEJ. Upon completion of NHEJ repair, DNA double strand-encircling Ku dimers have to be removed. The removal depends on ubiquitylation and proteasomal degradation of Ku80 by the ubiquitin E3 ligases RNF8. Here we report that RNF8 is a substrate of APCCdh1 and the latter keeps RNF8 level in check at DSBs to prevent premature turnover of Ku80.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号