首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Here, we report on the characterization of 22 clinical toxigenic V. cholerae non-O1/non-O139 strains isolated in the Middle Asia (Uzbekistan) in 1971–1990. PCR analysis has revealed that these strains contain the main virulence genes such as ctxA, zot, ace (CTXφ); rstC (RS1φ); tcpA, toxT, aldA (pathogenicity island VPI), but they lack both pandemic islands VSP-I and VSP-II specific to epidemic strains of O1 serogroup of El Tor biotype and O139 serogroup. Only two of the twenty two toxigenic strains have tcpA gene of El Tor type, one strain has tcpA gene of classical type, while nineteen other strains carry a new variant of this gene, designated as tcpA uzb. Nucleotide sequences analysis of virulence genes in toxigenic V. cholerae non-O1/non-O139 strains from Uzbekistan showed that they differ significantly from the sequences of these genes in epidemic O1 and O139 strain indicating that they belong to a separate line of evolution of virulent V. cholerae strains. For the first time it is shown that V. cholerae non-O1/non-O139 toxigenic strains of different serogroups may belong to the same clone.  相似文献   

2.
Non-O1/non-O139 Vibrio cholerae inhabits estuarine and coastal waters globally, but its clinical significance has not been sufficiently investigated, despite the fact that it has been associated with septicemia and gastroenteritis. The emergence of virulent non-O1/non-O139 V. cholerae is consistent with the recognition of new pathogenic variants worldwide. Oyster, sediment, and water samples were collected during a vibrio surveillance program carried out from 2009 to 2012 in the Chesapeake Bay, Maryland. V. cholerae O1 was detected by a direct fluorescent-antibody (DFA) assay but was not successfully cultured, whereas 395 isolates of non-O1/non-O139 V. cholerae were confirmed by multiplex PCR and serology. Only a few of the non-O1/non-O139 V. cholerae isolates were resistant to ampicillin and/or penicillin. Most of the isolates were sensitive to all antibiotics tested, and 77 to 90% carried the El Tor variant hemolysin gene hlyAET, the actin cross-linking repeats in toxin gene rtxA, the hemagglutinin protease gene hap, and the type 6 secretion system. About 19 to 21% of the isolates carried the neuraminidase-encoding gene nanH and/or the heat-stable toxin (NAG-ST), and only 5% contained a type 3 secretion system. None of the non-O1/non-O139 V. cholerae isolates contained Vibrio pathogenicity island-associated genes. However, ctxA, ace, or zot was present in nine isolates. Fifty-five different genotypes showed up to 12 virulence factors, independent of the source of isolation, and represent the first report of both antibiotic susceptibility and virulence associated with non-O1/non-O139 V. cholerae from the Chesapeake Bay. Since these results confirm the presence of potentially pathogenic non-O1/non-O139 V. cholerae, monitoring for total V. cholerae, regardless of serotype, should be done within the context of public health.  相似文献   

3.
Pathogenic non-O1/non-O139 Vibrio cholerae strains can cause sporadic outbreaks of cholera worldwide. In this study, multilocus sequence typing (MLST) of seven housekeeping genes was applied to 55 non-O1/non-O139 isolates from clinical and environmental sources. Data from five published O1 isolates and 17 genomes were also included, giving a total of 77 isolates available for analysis. There were 66 sequence types (STs), with the majority being unique, and only three clonal complexes. The V. cholerae strains can be divided into four subpopulations with evidence of recombination among the subpopulations. Subpopulations I and III contained predominantly clinical strains. PCR screening for virulence factors including Vibrio pathogenicity island (VPI), cholera toxin prophage (CTXΦ), type III secretion system (T3SS), and enterotoxin genes (rtxA and sto/stn) showed that combinations of these factors were present in the clinical isolates with 85.7% having rtxA, 51.4% T3SS, 31.4% VPI, 31.4% sto/stn (NAG-ST) and 11.4% CTXΦ. These factors were also present in environmental isolates but at a lower frequency. Five strains previously mis-identified as V. cholerae serogroups O114 to O117 were also analysed and formed a separate population with V. mimicus. The MLST scheme developed in this study provides a framework to identify sporadic cholera isolates by genetic identity.  相似文献   

4.
Non-O1/O139 Vibrio cholerae is naturally present in aquatic ecosystems and has been linked with cholera-like diarrhea and local outbreaks. The distribution of virulence-associated genes and genetic relationships among aquatic isolates from China are largely unknown. In this study, 295 aquatic isolates of V. cholerae non-O1/O139 serogroups from different regions in China were investigated. Only one isolate was positive for ctxB and harbored a rare genotype; 10 (3.4%) isolates carried several types of rstR sequences, eight of which carried rare types of toxin-coregulated pili (tcpA). Furthermore, 16 (5.4%) isolates carried incomplete (with partial open reading frames [ORFs]) vibrio seventh pandemic island I (VSP-I) or VSP-II clusters, which were further classified as 11 novel types. PCR-based analyses revealed remarkable variations in the distribution of putative virulence genes, including mshA (95.6%), hlyA (95.3%), rtxC (89.8%), rtxA (82.7%), IS1004 (52.9%), chxA (30.2%), SXT (15.3%), type III secretion system (18.0%), and NAG-ST (3.7%) genes. There was no correlation between the prevalence of putative virulence genes and that of CTX prophage or TCP genes, whereas there were correlations among the putative virulence genes. Further multilocus sequence typing (MLST) placed selected isolates (n = 70) into 69 unique sequence types (STs), which were different from those of the toxigenic O1 and O139 counterparts, and each isolate occupied a different position in the MLST tree. The V. cholerae non-O1/O139 aquatic isolates predominant in China have high genotypic diversity; these strains constitute a reservoir of potential virulence genes, which may contribute to evolution of pathogenic isolates.  相似文献   

5.
Historically, cholera outbreaks have been linked to V. cholerae O1 serogroup strains or its derivatives of the O37 and O139 serogroups. A genomic study on the 2010 Haiti cholera outbreak strains highlighted the putative role of non O1/non-O139 V. cholerae in causing cholera and the lack of genomic sequences of such strains from around the world. Here we address these gaps by scanning a global collection of V. cholerae strains as a first step towards understanding the population genetic diversity and epidemic potential of non O1/non-O139 strains. Whole Genome Mapping (Optical Mapping) based bar coding produces a high resolution, ordered restriction map, depicting a complete view of the unique chromosomal architecture of an organism. To assess the genomic diversity of non-O1/non-O139 V. cholerae, we applied a Whole Genome Mapping strategy on a well-defined and geographically and temporally diverse strain collection, the Sakazaki serogroup type strains. Whole Genome Map data on 91 of the 206 serogroup type strains support the hypothesis that V. cholerae has an unprecedented genetic and genomic structural diversity. Interestingly, we discovered chromosomal fusions in two unusual strains that possess a single chromosome instead of the two chromosomes usually found in V. cholerae. We also found pervasive chromosomal rearrangements such as duplications and indels in many strains. The majority of Vibrio genome sequences currently in public databases are unfinished draft sequences. The Whole Genome Mapping approach presented here enables rapid screening of large strain collections to capture genomic complexities that would not have been otherwise revealed by unfinished draft genome sequencing and thus aids in assembling and finishing draft sequences of complex genomes. Furthermore, Whole Genome Mapping allows for prediction of novel V. cholerae non-O1/non-O139 strains that may have the potential to cause future cholera outbreaks.  相似文献   

6.
Several species of the genus Vibrio, including Vibrio cholerae, are bioluminescent or contain bioluminescent strains. Previous studies have reported that only 10% of V. cholerae strains are luminescent. Analysis of 224 isolates of non-O1/non-O139 V. cholerae collected from Chesapeake Bay, MD, revealed that 52% (116/224) were luminescent when an improved assay method was employed and 58% (130/224) of isolates harbored the luxA gene. In contrast, 334 non-O1/non-O139 V. cholerae strains isolated from two rural provinces in Bangladesh yielded only 21 (6.3%) luminescent and 35 (10.5%) luxA+ isolates. An additional 270 clinical and environmental isolates of V. cholerae serogroups O1 and O139 were tested, and none were luminescent or harbored luxA. These results indicate that bioluminescence may be a trait specific for non-O1/non-O139 V. cholerae strains that frequently occur in certain environments. Luminescence expression patterns of V. cholerae were also investigated, and isolates could be grouped based on expression level. Several strains with defective expression of the lux operon, including natural K variants, were identified.  相似文献   

7.
A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membrane protein (ompU), for genomic organization, and for the presence of the regulatory protein genes tcpI and toxR in order to determine relationships between epidemic serotypes and sources of isolation. While 22 of the 26 strains were hemolytic on 5% sheep blood nutrient agar, all strains were PCR positive for hlyA, the hemolysin gene. When multiplex PCR was used, all serogroup O1 and O139 strains were positive for tcpA, ompU, and tcpI. All O1 and O139 strains except one O1 strain and one O139 strain were positive for the ctxA, zot, and ace genes. Also, O1 strain VO3 was negative for the zot gene. All of the non-O1, non-O139 strains were negative for the ctxA, zot, ace, tcpA, and tcpI genes, and all of the non-O1, non-O139 strains except strain VO26 were negative for ompU. All of the strains except non-O1, non-O139 strain VO22 were PCR positive for the gene encoding the central regulatory protein, toxR. All V. cholerae strains were negative for the NAG-specific st gene. Of the nine non-ctx-producing strains of V. cholerae, only one, non-O1, non-O139 strain VO24, caused fluid accumulation in the rabbit ileal loop assay. The other eight strains, including an O1 strain, an O139 strain, and six non-O1, non-O139 strains, regardless of the source of isolation, caused fluid accumulation after two to five serial passages through the rabbit gut. Culture filtrates of all non-cholera-toxigenic strains grown in AKI media also caused fluid accumulation, suggesting that a new toxin was produced in AKI medium by these strains. Studies of clonality performed by using enterobacterial repetitive intergenic consensus sequence PCR, Box element PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) collectively indicated that the V. cholerae O1 and O139 strains had a clonal origin, whereas the non-O1, non-O139 strains belonged to different clones. The clinical isolates closely resembled environmental isolates in their genomic patterns. Overall, there was an excellent correlation among the results of the PCR, AFLP, and PFGE analyses, and individual strains derived from clinical and environmental sources produced similar fingerprint patterns. From the results of this study, we concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. cholerae O1 and O139 strains. We also concluded that the aquatic environment is a reservoir for V. cholerae O1, O139, non-O1, and non-O139 serogroup strains.  相似文献   

8.
Vibrio cholerae non-O1, non-O139 was isolated from natural surface waters from different sites sampled in diarrhea endemic zones in Kolkata, India. Twenty-one of these isolates were randomly selected and included in the characterization. The multiserogroup isolates were compared by their virulence traits with a group of clinical non-O1, non-O139 isolates from the same geographic area. Of the 21 environmental isolates, 6 and 14 strains belonged to Heiberg groups I and II, respectively. Three of the environmental isolates showed resistance to 2,2-diamine-6,7-diisopropylpteridine phosphate. All of the non-O1, non-O139 strains were positive for toxR, and except for one environmental isolate, none of them were positive for tcpA in the PCR assay. None of the isolates were positive for genes encoding cholera toxin (ctxA), heat-stable toxin (est), heat-labile toxin (elt), and Shiga toxin variants (stx) of Escherichia coli. Additionally, except for one environmental isolate (PC32), all were positive for the gene encoding El Tor hemolysin (hly). The culture supernatants of 86% (18 of 21) of the environmental isolates showed a distinct cytotoxic effect on HeLa cells, and some of these strains also produced cell-rounding factor. The lipase, protease, and cell-associated hemagglutination activities and serum resistance properties of the environmental and clinical isolates did not differ much. However, seven environmental isolates exhibited very high hemolytic activities (80 to 100%), while none of the clinical strains belonged to this group. The environmental isolates manifested three adherence patterns, namely, carpet-like, diffuse, and aggregative adherence, and the clinical isolates showed diffuse adherence on HeLa cells. Of the 11 environmental isolates tested for enteropathogenic potential, 8 (73%) induced positive fluid accumulation (≥100) in a mouse model, and the reactivities of these isolates were comparable to those of clinical strains of non-O1, non-O139 and toxigenic O139 V. cholerae. Comparison of the counts of the colonized environmental and clinical strains in the mouse intestine showed that the organisms of both groups had similar colonizing efficiencies. These findings indicate the presence of potentially pathogenic V. cholerae non-O1, non-O139 strains in surface waters of the studied sites in Kolkata.  相似文献   

9.

Background

Human infections with non-O1, non-O139 V. cholerae have been described from Laos. Elsewhere, non cholera-toxin producing, non-O1, non-O139 V. cholerae have been described from blood cultures and ascitic fluid, although they are exceedingly rare isolates.

Case presentation

We describe a farmer who died with Vibrio cholerae O21 bacteremia and peritonitis in Vientiane, Laos, after eating partially cooked apple snails (Pomacea canaliculata) and mussels (Ligumia species). The cultured V. cholerae were non-motile. PCR detected ompW and toxR gene regions but not the ctxA, ompU, omp K and TCP gene regions. Although the organisms lacked flagellae on scanning electron microscopy, they possessed the Vibrio flagellin flaA gene.

Conclusion

Severe bacteremic non-O1, non-O139 V. cholerae is reported from Laos. The organisms were unusual in being non-motile. They possessed the Vibrio flagellin flaA gene. Further research to determine the reasons for the non-motility and virulence is required.  相似文献   

10.
The aim of this study was to investigate the presence of TCP gene clusters among clinical and environmental Vibrio cholerae isolates and to explore the genetic relatedness of isolates using ribotyping technique. A total of 50 V. cholerae strains (30 clinical and 20 environmental) were included in this study. Three clinical isolates were negative for TCP cluster genes while the cluster was absent in all of the environmental strains. Ribotyping of rRNA genes with BglI produced 18 different ribotype patterns, three of which belonged to clinical O1 serotype isolates. The remaining 15 ribotypes belonged to clinical non-O1, non-O139 serogroups (two patterns) and environmental non-O1, non-O139 serogroups (13 patterns). Clinical V. cholerae O1 strains from 2004 through 2006 and several environmental non-O1, non-O139 V. cholerae strains from 2006 showed 67.3 % similarity and fell within one single gene cluster. Ribotyping analysis made it possible to further comprehend the close originality of clinical isolates as very little changes have been occurred within rRNA genes of different genotypes of V. cholerae strains through years. In conclusion, ribotyping analysis of environmental V. cholerae isolates showed a substantial genomic diversity supporting the fact that genetic changes within bacterial genome occurs during years in the environment, while only little changes may arise within the genome of clinical isolates.  相似文献   

11.
Since Vibrio cholerae O139 first appeared in 1992, both O1 El Tor and O139 have been recognized as the epidemic serogroups, although their geographic distribution, endemicity, and reservoir are not fully understood. To address this lack of information, a study of the epidemiology and ecology of V. cholerae O1 and O139 was carried out in two coastal areas, Bakerganj and Mathbaria, Bangladesh, where cholera occurs seasonally. The results of a biweekly clinical study (January 2004 to May 2005), employing culture methods, and of an ecological study (monthly in Bakerganj and biweekly in Mathbaria from March 2004 to May 2005), employing direct and enrichment culture, colony blot hybridization, and direct fluorescent-antibody methods, showed that cholera is endemic in both Bakerganj and Mathbaria and that V. cholerae O1, O139, and non-O1/non-O139 are autochthonous to the aquatic environment. Although V. cholerae O1 and O139 were isolated from both areas, most noteworthy was the isolation of V. cholerae O139 in March, July, and September 2004 in Mathbaria, where seasonal cholera was clinically linked only to V. cholerae O1. In Mathbaria, V. cholerae O139 emerged as the sole cause of a significant outbreak of cholera in March 2005. V. cholerae O1 reemerged clinically in April 2005 and established dominance over V. cholerae O139, continuing to cause cholera in Mathbaria. In conclusion, the epidemic potential and coastal aquatic reservoir for V. cholerae O139 have been demonstrated. Based on the results of this study, the coastal ecosystem of the Bay of Bengal is concluded to be a significant reservoir for the epidemic serogroups of V. cholerae.  相似文献   

12.
Vibrio cholerae, the causative agent of major epidemics of diarrheal disease in Bangladesh, South America, Southeastern Asia, and Africa, was isolated from clinical samples and from aquatic environments during and between epidemics over the past 20 years. To determine the evolutionary relationships and molecular diversity of these strains, in order to understand sources, origin, and epidemiology, a novel DNA fingerprinting technique, amplified fragment length polymorphism (AFLP), was employed. Two sets of restriction enzyme-primer combinations were tested for fingerprinting of V. cholerae serogroup O1, O139, and non-O1, O139 isolates. Amplification of HindIII- and TaqI-digested genomic DNA produced 30 to 50 bands for each strain. However, this combination, although capable of separating environmental isolates of O1 and non-O1 strains, was unable to distinguish between O1 and O139 clinical strains. This result confirmed that clinical O1 and O139 strains are genetically closely related. On the other hand, AFLP analyses of restriction enzyme ApaI- and TaqI-digested genomic DNA yielded 20 to 30 bands for each strain, but were able to separate O1 from O139 strains. Of the 74 strains examined with the latter combination, 26 serogroup O1 strains showed identical banding patterns and were represented by the O1 El Tor strain of the seventh pandemic. A second group, represented by O139 Bengal, included 12 strains of O139 clinical isolates, with 7 from Thailand, 3 from Bangladesh, and 2 from India. Interestingly, an O1 clinical isolate from Africa also grouped with the O139 clinical isolates. Eight clinical O1 isolates from Mexico grouped separately from the O1 El Tor of the seventh pandemic, suggesting an independent origin of these isolates. Identical fingerprints were observed between an O1 environmental isolate from a river in Chile and an O1 clinical strain from Kenya, both isolated more than 10 years apart. Both strains were distinct from the O1 seventh pandemic strain. Two O139 clinical isolates from Africa clustered with environmental non-O1 isolates, independent of other O139 strains included in the study. These results suggest that although a single clone of pathogenic V. cholerae appears responsible for many cases of cholera in Asia, Africa, and Latin America during the seventh pandemic, other cases of clinical cholera were caused by toxigenic V. cholerae strains that appear to have been derived locally from environmental O1 or non-O1 strains.  相似文献   

13.
Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.  相似文献   

14.
Non-O1/non-O139 nontoxigenic Vibrio cholerae associated with cholera-like diarrhea has been reported in Kolkata, India. However, the property involved in the pathogenicity of these strains has remained unclear. The character of 25 non-O1/non-O139 nontoxigenic V. cholerae isolated during 8 years from 2007 to 2014 in Kolkata was examined. Determination of the serogroup showed that the serogroups O6, O10, O35, O36, O39, and O70 were represented by two strains in each serogroup, and the remaining isolates belonged to different serogroups. To clarify the character of antibiotic resistance of these isolates, an antibiotic resistance test and the gene analysis were performed. According to antimicrobial drug susceptibility testing, 13 strains were classified as drug resistant. Among them, 10 strains were quinolone resistant and 6 of the 13 strains were resistant to more than three antibiotics. To define the genetic background of the antibiotic character of these strains, whole-genome sequences of these strains were determined. From the analysis of these sequences, it becomes clear that all quinolone resistance isolates have mutations in quinolone resistance-determining regions. Further research on the genome sequence showed that four strains possess Class 1 integrons in their genomes, and that three of the four integrons are found to be located in their genomic islands. These genomic islands are novel types. This indicates that various integrons containing drug resistance genes are spreading among V. cholerae non-O1/non-O139 strains through the action of newly generated genomic islands.  相似文献   

15.
The pathogenic strains of Vibrio cholerae that cause acute enteric infections in humans are derived from environmental nonpathogenic strains. To track the evolution of pathogenic V. cholerae and identify potential precursors of new pathogenic strains, we analyzed 324 environmental or clinical V. cholerae isolates for the presence of diverse genes involved in virulence or ecological fitness. Of 251 environmental non-O1, non-O139 strains tested, 10 (3.9%) carried the toxin coregulated pilus (TCP) pathogenicity island encoding TCPs, and the CTX prophage encoding cholera toxin, whereas another 10 isolates carried the TCP island alone, and were susceptible to transduction with CTX phage. Most V. cholerae O1 and O139 strains carried these two major virulence determinants, as well as the Vibrio seventh pandemic islands (VSP-1 and VSP-2), whereas 23 (9.1%) non-O1, non-O139 strains carried several VSP island genes, but none carried a complete VSP island. Conversely, 30 (11.9%) non-O1, non-O139 strains carried type III secretion system (TTSS) genes, but none of 63 V. cholerae O1 or O139 strains tested were positive for TTSS. Thus, the distribution of major virulence genes in the non-O1, non-O139 serogroups of V. cholerae is largely different from that of the O1 or O139 serogroups. However, the prevalence of putative accessory virulence genes (mshA, hlyA, and RTX) was similar in all strains, with the mshA being most prevalent (98.8%) followed by RTX genes (96.2%) and hlyA (94.6%), supporting more recent assumptions that these genes imparts increased environmental fitness. Since all pathogenic strains retain these genes, the epidemiological success of the strains presumably depends on their environmental persistence in addition to the ability to produce major virulence factors. Potential precursors of new pathogenic strains would thus require to assemble a combination of genes for both ecological fitness and virulence to attain epidemiological predominance.  相似文献   

16.
Two major virulence factors are associated with epidemic strains (O1 and O139 serogroups) of Vibrio cholerae: cholera toxin encoded by the ctxAB genes and toxin-coregulated pilus encoded by the tcpA gene. The ctx genes reside in the genome of a filamentous phage (CTX), and the tcpA gene resides in a vibrio pathogenicity island (VPI) which has also been proposed to be a filamentous phage designated VPI. In order to determine the prevalence of horizontal transfer of VPI and CTX among nonepidemic (non-O1 and non-O139 serogroups) V. cholerae, 300 strains of both clinical and environmental origin were screened for the presence of tcpA and ctxAB. In this paper, we present the comparative genetic analyses of 11 nonepidemic serogroup strains which carry the VPI cluster. Seven of the 11 VPI+ strains have also acquired the CTX. Multilocus sequence typing and restriction fragment length polymorphism analyses of the VPI and CTX prophage regions revealed that the non-O1 and non-O139 strains were genetically diverse and clustered in lineages distinct from that of the epidemic strains. The left end of the VPI in the non-O1 and non-O139 strains exhibited extensive DNA rearrangements. In addition, several CTX prophage types characterized by novel repressor (rstR) and ctxAB genes and VPIs with novel tcpA genes were found in these strains. These data suggest that the potentially pathogenic, nonepidemic, non-O1 and non-O139 strains identified in our study most likely evolved by sequential horizontal acquisition of the VPI and CTX independently rather than by exchange of O-antigen biosynthesis regions in an existing epidemic strain.  相似文献   

17.
Vibrio cholerae is a human pathogen and natural inhabitant of aquatic environments. Serogroups O1/O139 have been associated with epidemic cholera, while non-O1/non-O139 serogroups usually cause human disease other than classical cholera. V. cholerae non-O1/non-O139 from the Neusiedler See, a large Central European lake, have caused ear and wound infections, including one case of fatal septicaemia. Recent investigations demonstrated rapid planktonic growth of V. cholerae non-O1/non-O139 and correlation with zooplankton biomass. The aim of this study was to elucidate the interaction of autochthonous V. cholerae with two dominant crustacean zooplankton species in the lake and investigate the influence of the natural bacterial community on this interaction. An existing data set was evaluated for statistical relationships between zooplankton species and V. cholerae and co-culture experiments were performed in the laboratory. A new fluorescence in situ hybridisation protocol was applied for quantification of V. cholerae non-O1/non-O139 cells, which significantly reduced analysis time. The experiments clearly demonstrated a significant relationship of autochthonous V. cholerae non-O1/non-O139 with cladocerans by promoting growth of V. cholerae non-O1/non-O139 in the water and on the surfaces of the cladocerans. In contrast, copepods had a negative effect on the growth of V. cholerae non-O1/non-O139 via competing bacteria from their surfaces. Thus, beside other known factors, biofilm formation by V. cholerae on crustacean zooplankton appears to be zooplankton taxon specific and may be controlled by the natural bacterial community.  相似文献   

18.
Studies of Vibrio cholerae diversity have focused primarily on pathogenic isolates of the O1 and O139 serotypes. However, autochthonous environmental isolates of this species routinely display more extensive genetic diversity than the primarily clonal pathogenic strains. In this study, genomic and metabolic profiles of 41 non-O1/O139 environmental isolates from central California coastal waters and four clinical strains are used to characterize the core genome and metabolome of V. cholerae. Comparative genome hybridization using microarrays constructed from the fully sequenced V. cholerae O1 El Tor N16961 genome identified 2,787 core genes that approximated the projected species core genome within 1.6%. Core genes are almost universally present in strains with widely different niches, suggesting that these genes are essential for persistence in diverse aquatic environments. In contrast, the dispensable genes and phenotypic traits identified in this study should provide increased fitness for certain niche environments. Environmental parameters, measured in situ during sample collection, are correlated to the presence of specific dispensable genes and metabolic capabilities, including utilization of mannose, sialic acid, citrate, and chitosan oligosaccharides. These results identify gene content and metabolic pathways that are likely selected for in certain coastal environments and may influence V. cholerae population structure in aquatic environments.  相似文献   

19.
20.
The bacterium Vibrio cholerae is a natural inhabitant of aquatic ecosystems across the planet. V. cholerae serogroups O1 and O139 are responsible for cholera outbreaks in developing countries accounting for 3–5 million infections worldwide and 28.800–130.000 deaths per year according to the World Health Organization. In contrast, V. cholerae serogroups other than O1 and O139, also designated as V. cholerae non-O1/O139 (NOVC), are not associated with epidemic cholera but can cause other illnesses that may range in severity from mild (e.g. gastroenteritis, otitis, etc.) to life-threatening (e.g. necrotizing fasciitis). Although generally neglected, NOVC-related infections are on the rise and represent one of the most striking examples of emerging human diseases linked to climate change. NOVC strains are also believed to potentially contribute to the emergence of new pathogenic strains including strains with epidemic potential as a direct consequence of genetic exchange mechanisms such as horizontal gene transfer and genetic recombination. Besides general features concerning the biology and ecology of NOVC strains and their associated diseases, this review aims to highlight the most relevant aspects related to the emergence and potential threat posed by NOVC strains under a rapidly changing environmental and climatic scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号